/* * Copyright (C) 2008-2010 Tobias Brunner * Copyright (C) 2008 Andreas Steffen * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #ifdef __FreeBSD__ #include /* for LONG_MAX */ #endif #ifdef HAVE_NET_PFKEYV2_H #include #else #include #include #endif #ifdef SADB_X_EXT_NAT_T_TYPE #define HAVE_NATT #endif #ifdef HAVE_NETIPSEC_IPSEC_H #include #elif defined(HAVE_NETINET6_IPSEC_H) #include #else #include #endif #ifdef HAVE_NATT #ifdef HAVE_LINUX_UDP_H #include #else #include #endif /*HAVE_LINUX_UDP_H*/ #endif /*HAVE_NATT*/ #include #include #include #include "kernel_pfkey_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include /** non linux specific */ #ifndef IPPROTO_COMP #ifdef IPPROTO_IPCOMP #define IPPROTO_COMP IPPROTO_IPCOMP #endif #endif #ifndef SADB_X_AALG_SHA2_256HMAC #define SADB_X_AALG_SHA2_256HMAC SADB_X_AALG_SHA2_256 #define SADB_X_AALG_SHA2_384HMAC SADB_X_AALG_SHA2_384 #define SADB_X_AALG_SHA2_512HMAC SADB_X_AALG_SHA2_512 #endif #ifndef SADB_X_EALG_AESCBC #define SADB_X_EALG_AESCBC SADB_X_EALG_AES #endif #ifndef SADB_X_EALG_CASTCBC #define SADB_X_EALG_CASTCBC SADB_X_EALG_CAST128CBC #endif #ifndef SOL_IP #define SOL_IP IPPROTO_IP #define SOL_IPV6 IPPROTO_IPV6 #endif /** from linux/in.h */ #ifndef IP_IPSEC_POLICY #define IP_IPSEC_POLICY 16 #endif /** missing on uclibc */ #ifndef IPV6_IPSEC_POLICY #define IPV6_IPSEC_POLICY 34 #endif /** default priority of installed policies */ #define PRIO_LOW 3000 #define PRIO_HIGH 2000 #ifdef __APPLE__ /** from xnu/bsd/net/pfkeyv2.h */ #define SADB_X_EXT_NATT 0x002 struct sadb_sa_2 { struct sadb_sa sa; u_int16_t sadb_sa_natt_port; u_int16_t sadb_reserved0; u_int32_t sadb_reserved1; }; #endif /** buffer size for PF_KEY messages */ #define PFKEY_BUFFER_SIZE 4096 /** PF_KEY messages are 64 bit aligned */ #define PFKEY_ALIGNMENT 8 /** aligns len to 64 bits */ #define PFKEY_ALIGN(len) (((len) + PFKEY_ALIGNMENT - 1) & ~(PFKEY_ALIGNMENT - 1)) /** calculates the properly padded length in 64 bit chunks */ #define PFKEY_LEN(len) ((PFKEY_ALIGN(len) / PFKEY_ALIGNMENT)) /** calculates user mode length i.e. in bytes */ #define PFKEY_USER_LEN(len) ((len) * PFKEY_ALIGNMENT) /** given a PF_KEY message header and an extension this updates the length in the header */ #define PFKEY_EXT_ADD(msg, ext) ((msg)->sadb_msg_len += ((struct sadb_ext*)ext)->sadb_ext_len) /** given a PF_KEY message header this returns a pointer to the next extension */ #define PFKEY_EXT_ADD_NEXT(msg) ((struct sadb_ext*)(((char*)(msg)) + PFKEY_USER_LEN((msg)->sadb_msg_len))) /** copy an extension and append it to a PF_KEY message */ #define PFKEY_EXT_COPY(msg, ext) (PFKEY_EXT_ADD(msg, memcpy(PFKEY_EXT_ADD_NEXT(msg), ext, PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len)))) /** given a PF_KEY extension this returns a pointer to the next extension */ #define PFKEY_EXT_NEXT(ext) ((struct sadb_ext*)(((char*)(ext)) + PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len))) /** given a PF_KEY extension this returns a pointer to the next extension also updates len (len in 64 bit words) */ #define PFKEY_EXT_NEXT_LEN(ext,len) ((len) -= (ext)->sadb_ext_len, PFKEY_EXT_NEXT(ext)) /** true if ext has a valid length and len is large enough to contain ext (assuming len in 64 bit words) */ #define PFKEY_EXT_OK(ext,len) ((len) >= PFKEY_LEN(sizeof(struct sadb_ext)) && \ (ext)->sadb_ext_len >= PFKEY_LEN(sizeof(struct sadb_ext)) && \ (ext)->sadb_ext_len <= (len)) typedef struct private_kernel_pfkey_ipsec_t private_kernel_pfkey_ipsec_t; /** * Private variables and functions of kernel_pfkey class. */ struct private_kernel_pfkey_ipsec_t { /** * Public part of the kernel_pfkey_t object. */ kernel_pfkey_ipsec_t public; /** * mutex to lock access to various lists */ mutex_t *mutex; /** * List of installed policies (policy_entry_t) */ linked_list_t *policies; /** * whether to install routes along policies */ bool install_routes; /** * job receiving PF_KEY events */ callback_job_t *job; /** * mutex to lock access to the PF_KEY socket */ mutex_t *mutex_pfkey; /** * PF_KEY socket to communicate with the kernel */ int socket; /** * PF_KEY socket to receive acquire and expire events */ int socket_events; /** * sequence number for messages sent to the kernel */ int seq; }; typedef struct route_entry_t route_entry_t; /** * installed routing entry */ struct route_entry_t { /** Name of the interface the route is bound to */ char *if_name; /** Source ip of the route */ host_t *src_ip; /** gateway for this route */ host_t *gateway; /** Destination net */ chunk_t dst_net; /** Destination net prefixlen */ u_int8_t prefixlen; }; /** * destroy an route_entry_t object */ static void route_entry_destroy(route_entry_t *this) { free(this->if_name); DESTROY_IF(this->src_ip); DESTROY_IF(this->gateway); chunk_free(&this->dst_net); free(this); } typedef struct policy_entry_t policy_entry_t; /** * installed kernel policy. */ struct policy_entry_t { /** reqid of this policy */ u_int32_t reqid; /** index assigned by the kernel */ u_int32_t index; /** direction of this policy: in, out, forward */ u_int8_t direction; /** parameters of installed policy */ struct { /** subnet and port */ host_t *net; /** subnet mask */ u_int8_t mask; /** protocol */ u_int8_t proto; } src, dst; /** associated route installed for this policy */ route_entry_t *route; /** by how many CHILD_SA's this policy is used */ u_int refcount; }; /** * create a policy_entry_t object */ static policy_entry_t *create_policy_entry(traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t dir, u_int32_t reqid) { policy_entry_t *policy = malloc_thing(policy_entry_t); policy->reqid = reqid; policy->index = 0; policy->direction = dir; policy->route = NULL; policy->refcount = 0; src_ts->to_subnet(src_ts, &policy->src.net, &policy->src.mask); dst_ts->to_subnet(dst_ts, &policy->dst.net, &policy->dst.mask); /* src or dest proto may be "any" (0), use more restrictive one */ policy->src.proto = max(src_ts->get_protocol(src_ts), dst_ts->get_protocol(dst_ts)); policy->src.proto = policy->src.proto ? policy->src.proto : IPSEC_PROTO_ANY; policy->dst.proto = policy->src.proto; return policy; } /** * destroy a policy_entry_t object */ static void policy_entry_destroy(policy_entry_t *this) { DESTROY_IF(this->src.net); DESTROY_IF(this->dst.net); if (this->route) { route_entry_destroy(this->route); } free(this); } /** * compares two policy_entry_t */ static inline bool policy_entry_equals(policy_entry_t *current, policy_entry_t *policy) { return current->direction == policy->direction && current->src.proto == policy->src.proto && current->dst.proto == policy->dst.proto && current->src.mask == policy->src.mask && current->dst.mask == policy->dst.mask && current->src.net->equals(current->src.net, policy->src.net) && current->dst.net->equals(current->dst.net, policy->dst.net); } /** * compare the given kernel index with that of a policy */ static inline bool policy_entry_match_byindex(policy_entry_t *current, u_int32_t *index) { return current->index == *index; } typedef struct pfkey_msg_t pfkey_msg_t; struct pfkey_msg_t { /** * PF_KEY message base */ struct sadb_msg *msg; /** * PF_KEY message extensions */ union { struct sadb_ext *ext[SADB_EXT_MAX + 1]; struct { struct sadb_ext *reserved; /* SADB_EXT_RESERVED */ struct sadb_sa *sa; /* SADB_EXT_SA */ struct sadb_lifetime *lft_current; /* SADB_EXT_LIFETIME_CURRENT */ struct sadb_lifetime *lft_hard; /* SADB_EXT_LIFETIME_HARD */ struct sadb_lifetime *lft_soft; /* SADB_EXT_LIFETIME_SOFT */ struct sadb_address *src; /* SADB_EXT_ADDRESS_SRC */ struct sadb_address *dst; /* SADB_EXT_ADDRESS_DST */ struct sadb_address *proxy; /* SADB_EXT_ADDRESS_PROXY */ struct sadb_key *key_auth; /* SADB_EXT_KEY_AUTH */ struct sadb_key *key_encr; /* SADB_EXT_KEY_ENCRYPT */ struct sadb_ident *id_src; /* SADB_EXT_IDENTITY_SRC */ struct sadb_ident *id_dst; /* SADB_EXT_IDENTITY_DST */ struct sadb_sens *sensitivity; /* SADB_EXT_SENSITIVITY */ struct sadb_prop *proposal; /* SADB_EXT_PROPOSAL */ struct sadb_supported *supported_auth; /* SADB_EXT_SUPPORTED_AUTH */ struct sadb_supported *supported_encr; /* SADB_EXT_SUPPORTED_ENCRYPT */ struct sadb_spirange *spirange; /* SADB_EXT_SPIRANGE */ struct sadb_x_kmprivate *x_kmprivate; /* SADB_X_EXT_KMPRIVATE */ struct sadb_x_policy *x_policy; /* SADB_X_EXT_POLICY */ struct sadb_x_sa2 *x_sa2; /* SADB_X_EXT_SA2 */ struct sadb_x_nat_t_type *x_natt_type; /* SADB_X_EXT_NAT_T_TYPE */ struct sadb_x_nat_t_port *x_natt_sport; /* SADB_X_EXT_NAT_T_SPORT */ struct sadb_x_nat_t_port *x_natt_dport; /* SADB_X_EXT_NAT_T_DPORT */ struct sadb_address *x_natt_oa; /* SADB_X_EXT_NAT_T_OA */ struct sadb_x_sec_ctx *x_sec_ctx; /* SADB_X_EXT_SEC_CTX */ struct sadb_x_kmaddress *x_kmaddress; /* SADB_X_EXT_KMADDRESS */ } __attribute__((__packed__)); }; }; ENUM(sadb_ext_type_names, SADB_EXT_RESERVED, SADB_EXT_MAX, "SADB_EXT_RESERVED", "SADB_EXT_SA", "SADB_EXT_LIFETIME_CURRENT", "SADB_EXT_LIFETIME_HARD", "SADB_EXT_LIFETIME_SOFT", "SADB_EXT_ADDRESS_SRC", "SADB_EXT_ADDRESS_DST", "SADB_EXT_ADDRESS_PROXY", "SADB_EXT_KEY_AUTH", "SADB_EXT_KEY_ENCRYPT", "SADB_EXT_IDENTITY_SRC", "SADB_EXT_IDENTITY_DST", "SADB_EXT_SENSITIVITY", "SADB_EXT_PROPOSAL", "SADB_EXT_SUPPORTED_AUTH", "SADB_EXT_SUPPORTED_ENCRYPT", "SADB_EXT_SPIRANGE", "SADB_X_EXT_KMPRIVATE", "SADB_X_EXT_POLICY", "SADB_X_EXT_SA2", "SADB_X_EXT_NAT_T_TYPE", "SADB_X_EXT_NAT_T_SPORT", "SADB_X_EXT_NAT_T_DPORT", "SADB_X_EXT_NAT_T_OA", "SADB_X_EXT_SEC_CTX", "SADB_X_EXT_KMADDRESS" ); /** * convert a IKEv2 specific protocol identifier to the PF_KEY sa type */ static u_int8_t proto_ike2satype(protocol_id_t proto) { switch (proto) { case PROTO_ESP: return SADB_SATYPE_ESP; case PROTO_AH: return SADB_SATYPE_AH; case IPPROTO_COMP: return SADB_X_SATYPE_IPCOMP; default: return proto; } } /** * convert a PF_KEY sa type to a IKEv2 specific protocol identifier */ static protocol_id_t proto_satype2ike(u_int8_t proto) { switch (proto) { case SADB_SATYPE_ESP: return PROTO_ESP; case SADB_SATYPE_AH: return PROTO_AH; case SADB_X_SATYPE_IPCOMP: return IPPROTO_COMP; default: return proto; } } /** * convert a IKEv2 specific protocol identifier to the IP protocol identifier */ static u_int8_t proto_ike2ip(protocol_id_t proto) { switch (proto) { case PROTO_ESP: return IPPROTO_ESP; case PROTO_AH: return IPPROTO_AH; default: return proto; } } /** * convert the general ipsec mode to the one defined in ipsec.h */ static u_int8_t mode2kernel(ipsec_mode_t mode) { switch (mode) { case MODE_TRANSPORT: return IPSEC_MODE_TRANSPORT; case MODE_TUNNEL: return IPSEC_MODE_TUNNEL; #ifdef HAVE_IPSEC_MODE_BEET case MODE_BEET: return IPSEC_MODE_BEET; #endif default: return mode; } } /** * convert the general policy direction to the one defined in ipsec.h */ static u_int8_t dir2kernel(policy_dir_t dir) { switch (dir) { case POLICY_IN: return IPSEC_DIR_INBOUND; case POLICY_OUT: return IPSEC_DIR_OUTBOUND; #ifdef HAVE_IPSEC_DIR_FWD case POLICY_FWD: return IPSEC_DIR_FWD; #endif default: return IPSEC_DIR_INVALID; } } #ifdef SADB_X_MIGRATE /** * convert the policy direction in ipsec.h to the general one. */ static policy_dir_t kernel2dir(u_int8_t dir) { switch (dir) { case IPSEC_DIR_INBOUND: return POLICY_IN; case IPSEC_DIR_OUTBOUND: return POLICY_OUT; #ifdef HAVE_IPSEC_DIR_FWD case IPSEC_DIR_FWD: return POLICY_FWD; #endif default: return dir; } } #endif /*SADB_X_MIGRATE*/ typedef struct kernel_algorithm_t kernel_algorithm_t; /** * Mapping of IKEv2 algorithms to PF_KEY algorithms */ struct kernel_algorithm_t { /** * Identifier specified in IKEv2 */ int ikev2; /** * Identifier as defined in pfkeyv2.h */ int kernel; }; #define END_OF_LIST -1 /** * Algorithms for encryption */ static kernel_algorithm_t encryption_algs[] = { /* {ENCR_DES_IV64, 0 }, */ {ENCR_DES, SADB_EALG_DESCBC }, {ENCR_3DES, SADB_EALG_3DESCBC }, /* {ENCR_RC5, 0 }, */ /* {ENCR_IDEA, 0 }, */ {ENCR_CAST, SADB_X_EALG_CASTCBC }, {ENCR_BLOWFISH, SADB_X_EALG_BLOWFISHCBC }, /* {ENCR_3IDEA, 0 }, */ /* {ENCR_DES_IV32, 0 }, */ {ENCR_NULL, SADB_EALG_NULL }, {ENCR_AES_CBC, SADB_X_EALG_AESCBC }, /* {ENCR_AES_CTR, SADB_X_EALG_AESCTR }, */ /* {ENCR_AES_CCM_ICV8, SADB_X_EALG_AES_CCM_ICV8 }, */ /* {ENCR_AES_CCM_ICV12, SADB_X_EALG_AES_CCM_ICV12 }, */ /* {ENCR_AES_CCM_ICV16, SADB_X_EALG_AES_CCM_ICV16 }, */ /* {ENCR_AES_GCM_ICV8, SADB_X_EALG_AES_GCM_ICV8 }, */ /* {ENCR_AES_GCM_ICV12, SADB_X_EALG_AES_GCM_ICV12 }, */ /* {ENCR_AES_GCM_ICV16, SADB_X_EALG_AES_GCM_ICV16 }, */ {END_OF_LIST, 0 }, }; /** * Algorithms for integrity protection */ static kernel_algorithm_t integrity_algs[] = { {AUTH_HMAC_MD5_96, SADB_AALG_MD5HMAC }, {AUTH_HMAC_SHA1_96, SADB_AALG_SHA1HMAC }, {AUTH_HMAC_SHA2_256_128, SADB_X_AALG_SHA2_256HMAC }, {AUTH_HMAC_SHA2_384_192, SADB_X_AALG_SHA2_384HMAC }, {AUTH_HMAC_SHA2_512_256, SADB_X_AALG_SHA2_512HMAC }, /* {AUTH_DES_MAC, 0, }, */ /* {AUTH_KPDK_MD5, 0, }, */ #ifdef SADB_X_AALG_AES_XCBC_MAC {AUTH_AES_XCBC_96, SADB_X_AALG_AES_XCBC_MAC, }, #endif {END_OF_LIST, 0, }, }; #if 0 /** * Algorithms for IPComp, unused yet */ static kernel_algorithm_t compression_algs[] = { /* {IPCOMP_OUI, 0 }, */ {IPCOMP_DEFLATE, SADB_X_CALG_DEFLATE }, {IPCOMP_LZS, SADB_X_CALG_LZS }, {IPCOMP_LZJH, SADB_X_CALG_LZJH }, {END_OF_LIST, 0 }, }; #endif /** * Look up a kernel algorithm ID and its key size */ static int lookup_algorithm(kernel_algorithm_t *list, int ikev2) { while (list->ikev2 != END_OF_LIST) { if (ikev2 == list->ikev2) { return list->kernel; } list++; } return 0; } /** * Copy a host_t as sockaddr_t to the given memory location. Ports are * reset to zero as per RFC 2367. * @return the number of bytes copied */ static size_t hostcpy(void *dest, host_t *host) { sockaddr_t *addr = host->get_sockaddr(host), *dest_addr = dest; socklen_t *len = host->get_sockaddr_len(host); memcpy(dest, addr, *len); #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN dest_addr->sa_len = *len; #endif switch (dest_addr->sa_family) { case AF_INET: { struct sockaddr_in *sin = dest; sin->sin_port = 0; break; } case AF_INET6: { struct sockaddr_in6 *sin6 = dest; sin6->sin6_port = 0; break; } } return *len; } /** * add a host behind an sadb_address extension */ static void host2ext(host_t *host, struct sadb_address *ext) { size_t len = hostcpy(ext + 1, host); ext->sadb_address_len = PFKEY_LEN(sizeof(*ext) + len); } /** * add a host to the given sadb_msg */ static void add_addr_ext(struct sadb_msg *msg, host_t *host, u_int16_t type, u_int8_t proto, u_int8_t prefixlen) { struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg); addr->sadb_address_exttype = type; addr->sadb_address_proto = proto; addr->sadb_address_prefixlen = prefixlen; host2ext(host, addr); PFKEY_EXT_ADD(msg, addr); } /** * adds an empty address extension to the given sadb_msg */ static void add_anyaddr_ext(struct sadb_msg *msg, int family, u_int8_t type) { socklen_t len = (family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6); struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg); addr->sadb_address_exttype = type; sockaddr_t *saddr = (sockaddr_t*)(addr + 1); saddr->sa_family = family; #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN saddr->sa_len = len; #endif addr->sadb_address_len = PFKEY_LEN(sizeof(*addr) + len); PFKEY_EXT_ADD(msg, addr); } #ifdef HAVE_NATT /** * add udp encap extensions to a sadb_msg */ static void add_encap_ext(struct sadb_msg *msg, host_t *src, host_t *dst) { struct sadb_x_nat_t_type* nat_type; struct sadb_x_nat_t_port* nat_port; nat_type = (struct sadb_x_nat_t_type*)PFKEY_EXT_ADD_NEXT(msg); nat_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; nat_type->sadb_x_nat_t_type_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_type)); nat_type->sadb_x_nat_t_type_type = UDP_ENCAP_ESPINUDP; PFKEY_EXT_ADD(msg, nat_type); nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg); nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port)); nat_port->sadb_x_nat_t_port_port = htons(src->get_port(src)); PFKEY_EXT_ADD(msg, nat_port); nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg); nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port)); nat_port->sadb_x_nat_t_port_port = htons(dst->get_port(dst)); PFKEY_EXT_ADD(msg, nat_port); } #endif /*HAVE_NATT*/ /** * Convert a sadb_address to a traffic_selector */ static traffic_selector_t* sadb_address2ts(struct sadb_address *address) { traffic_selector_t *ts; host_t *host; /* The Linux 2.6 kernel does not set the protocol and port information * in the src and dst sadb_address extensions of the SADB_ACQUIRE message. */ host = host_create_from_sockaddr((sockaddr_t*)&address[1]) ; ts = traffic_selector_create_from_subnet(host, address->sadb_address_prefixlen, address->sadb_address_proto, host->get_port(host)); return ts; } /** * Parses a pfkey message received from the kernel */ static status_t parse_pfkey_message(struct sadb_msg *msg, pfkey_msg_t *out) { struct sadb_ext* ext; size_t len; memset(out, 0, sizeof(pfkey_msg_t)); out->msg = msg; len = msg->sadb_msg_len; len -= PFKEY_LEN(sizeof(struct sadb_msg)); ext = (struct sadb_ext*)(((char*)msg) + sizeof(struct sadb_msg)); while (len >= PFKEY_LEN(sizeof(struct sadb_ext))) { DBG3(DBG_KNL, " %N", sadb_ext_type_names, ext->sadb_ext_type); if (ext->sadb_ext_len < PFKEY_LEN(sizeof(struct sadb_ext)) || ext->sadb_ext_len > len) { DBG1(DBG_KNL, "length of %N extension is invalid", sadb_ext_type_names, ext->sadb_ext_type); break; } if ((ext->sadb_ext_type > SADB_EXT_MAX) || (!ext->sadb_ext_type)) { DBG1(DBG_KNL, "type of PF_KEY extension (%d) is invalid", ext->sadb_ext_type); break; } if (out->ext[ext->sadb_ext_type]) { DBG1(DBG_KNL, "duplicate %N extension", sadb_ext_type_names, ext->sadb_ext_type); break; } out->ext[ext->sadb_ext_type] = ext; ext = PFKEY_EXT_NEXT_LEN(ext, len); } if (len) { DBG1(DBG_KNL, "PF_KEY message length is invalid"); return FAILED; } return SUCCESS; } /** * Send a message to a specific PF_KEY socket and handle the response. */ static status_t pfkey_send_socket(private_kernel_pfkey_ipsec_t *this, int socket, struct sadb_msg *in, struct sadb_msg **out, size_t *out_len) { unsigned char buf[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg; int in_len, len; this->mutex_pfkey->lock(this->mutex_pfkey); /* FIXME: our usage of sequence numbers is probably wrong. check RFC 2367, * in particular the behavior in response to an SADB_ACQUIRE. */ in->sadb_msg_seq = ++this->seq; in->sadb_msg_pid = getpid(); in_len = PFKEY_USER_LEN(in->sadb_msg_len); while (TRUE) { len = send(socket, in, in_len, 0); if (len != in_len) { if (errno == EINTR) { /* interrupted, try again */ continue; } this->mutex_pfkey->unlock(this->mutex_pfkey); DBG1(DBG_KNL, "error sending to PF_KEY socket: %s", strerror(errno)); return FAILED; } break; } while (TRUE) { msg = (struct sadb_msg*)buf; len = recv(socket, buf, sizeof(buf), 0); if (len < 0) { if (errno == EINTR) { DBG1(DBG_KNL, "got interrupted"); /* interrupted, try again */ continue; } DBG1(DBG_KNL, "error reading from PF_KEY socket: %s", strerror(errno)); this->mutex_pfkey->unlock(this->mutex_pfkey); return FAILED; } if (len < sizeof(struct sadb_msg) || msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg))) { DBG1(DBG_KNL, "received corrupted PF_KEY message"); this->mutex_pfkey->unlock(this->mutex_pfkey); return FAILED; } if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT) { DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message"); this->mutex_pfkey->unlock(this->mutex_pfkey); return FAILED; } if (msg->sadb_msg_pid != in->sadb_msg_pid) { DBG2(DBG_KNL, "received PF_KEY message is not intended for us"); continue; } if (msg->sadb_msg_seq != this->seq) { DBG1(DBG_KNL, "received PF_KEY message with unexpected sequence " "number, was %d expected %d", msg->sadb_msg_seq, this->seq); if (msg->sadb_msg_seq == 0) { /* FreeBSD and Mac OS X do this for the response to * SADB_X_SPDGET (but not for the response to SADB_GET). * FreeBSD: 'key_spdget' in /usr/src/sys/netipsec/key.c. */ } else if (msg->sadb_msg_seq < this->seq) { continue; } else { this->mutex_pfkey->unlock(this->mutex_pfkey); return FAILED; } } if (msg->sadb_msg_type != in->sadb_msg_type) { DBG2(DBG_KNL, "received PF_KEY message of wrong type, " "was %d expected %d, ignoring", msg->sadb_msg_type, in->sadb_msg_type); } break; } *out_len = len; *out = (struct sadb_msg*)malloc(len); memcpy(*out, buf, len); this->mutex_pfkey->unlock(this->mutex_pfkey); return SUCCESS; } /** * Send a message to the default PF_KEY socket and handle the response. */ static status_t pfkey_send(private_kernel_pfkey_ipsec_t *this, struct sadb_msg *in, struct sadb_msg **out, size_t *out_len) { return pfkey_send_socket(this, this->socket, in, out, out_len); } /** * Process a SADB_ACQUIRE message from the kernel */ static void process_acquire(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg) { pfkey_msg_t response; u_int32_t index, reqid = 0; traffic_selector_t *src_ts, *dst_ts; policy_entry_t *policy; job_t *job; switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: case SADB_SATYPE_ESP: case SADB_SATYPE_AH: break; default: /* acquire for AH/ESP only */ return; } DBG2(DBG_KNL, "received an SADB_ACQUIRE"); if (parse_pfkey_message(msg, &response) != SUCCESS) { DBG1(DBG_KNL, "parsing SADB_ACQUIRE from kernel failed"); return; } index = response.x_policy->sadb_x_policy_id; this->mutex->lock(this->mutex); if (this->policies->find_first(this->policies, (linked_list_match_t)policy_entry_match_byindex, (void**)&policy, &index) == SUCCESS) { reqid = policy->reqid; } else { DBG1(DBG_KNL, "received an SADB_ACQUIRE with policy id %d but no matching policy found", index); } src_ts = sadb_address2ts(response.src); dst_ts = sadb_address2ts(response.dst); this->mutex->unlock(this->mutex); DBG1(DBG_KNL, "creating acquire job for policy %R === %R with reqid {%u}", src_ts, dst_ts, reqid); job = (job_t*)acquire_job_create(reqid, src_ts, dst_ts); hydra->processor->queue_job(hydra->processor, job); } /** * Process a SADB_EXPIRE message from the kernel */ static void process_expire(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg) { pfkey_msg_t response; protocol_id_t protocol; u_int32_t spi, reqid; bool hard; job_t *job; DBG2(DBG_KNL, "received an SADB_EXPIRE"); if (parse_pfkey_message(msg, &response) != SUCCESS) { DBG1(DBG_KNL, "parsing SADB_EXPIRE from kernel failed"); return; } protocol = proto_satype2ike(msg->sadb_msg_satype); spi = response.sa->sadb_sa_spi; reqid = response.x_sa2->sadb_x_sa2_reqid; hard = response.lft_hard != NULL; if (protocol != PROTO_ESP && protocol != PROTO_AH) { DBG2(DBG_KNL, "ignoring SADB_EXPIRE for SA with SPI %.8x and reqid {%u} " "which is not a CHILD_SA", ntohl(spi), reqid); return; } DBG1(DBG_KNL, "creating %s job for %N CHILD_SA with SPI %.8x and reqid {%u}", hard ? "delete" : "rekey", protocol_id_names, protocol, ntohl(spi), reqid); if (hard) { job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi); } else { job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi); } hydra->processor->queue_job(hydra->processor, job); } #ifdef SADB_X_MIGRATE /** * Process a SADB_X_MIGRATE message from the kernel */ static void process_migrate(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg) { pfkey_msg_t response; traffic_selector_t *src_ts, *dst_ts; policy_dir_t dir; u_int32_t reqid = 0; host_t *local = NULL, *remote = NULL; job_t *job; DBG2(DBG_KNL, "received an SADB_X_MIGRATE"); if (parse_pfkey_message(msg, &response) != SUCCESS) { DBG1(DBG_KNL, "parsing SADB_X_MIGRATE from kernel failed"); return; } src_ts = sadb_address2ts(response.src); dst_ts = sadb_address2ts(response.dst); dir = kernel2dir(response.x_policy->sadb_x_policy_dir); DBG2(DBG_KNL, " policy %R === %R %N, id %u", src_ts, dst_ts, policy_dir_names, dir); /* SADB_X_EXT_KMADDRESS is not present in unpatched kernels < 2.6.28 */ if (response.x_kmaddress) { sockaddr_t *local_addr, *remote_addr; u_int32_t local_len; local_addr = (sockaddr_t*)&response.x_kmaddress[1]; local = host_create_from_sockaddr(local_addr); local_len = (local_addr->sa_family == AF_INET6)? sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in); remote_addr = (sockaddr_t*)((u_int8_t*)local_addr + local_len); remote = host_create_from_sockaddr(remote_addr); DBG2(DBG_KNL, " kmaddress: %H...%H", local, remote); } if (src_ts && dst_ts && local && remote) { DBG1(DBG_KNL, "creating migrate job for policy %R === %R %N with reqid {%u}", src_ts, dst_ts, policy_dir_names, dir, reqid, local); job = (job_t*)migrate_job_create(reqid, src_ts, dst_ts, dir, local, remote); hydra->processor->queue_job(hydra->processor, job); } else { DESTROY_IF(src_ts); DESTROY_IF(dst_ts); DESTROY_IF(local); DESTROY_IF(remote); } } #endif /*SADB_X_MIGRATE*/ #ifdef SADB_X_NAT_T_NEW_MAPPING /** * Process a SADB_X_NAT_T_NEW_MAPPING message from the kernel */ static void process_mapping(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg) { pfkey_msg_t response; u_int32_t spi, reqid; host_t *host; job_t *job; DBG2(DBG_KNL, "received an SADB_X_NAT_T_NEW_MAPPING"); if (parse_pfkey_message(msg, &response) != SUCCESS) { DBG1(DBG_KNL, "parsing SADB_X_NAT_T_NEW_MAPPING from kernel failed"); return; } if (!response.x_sa2) { DBG1(DBG_KNL, "received SADB_X_NAT_T_NEW_MAPPING is missing required information"); return; } spi = response.sa->sadb_sa_spi; reqid = response.x_sa2->sadb_x_sa2_reqid; if (proto_satype2ike(msg->sadb_msg_satype) == PROTO_ESP) { sockaddr_t *sa = (sockaddr_t*)(response.dst + 1); switch (sa->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in*)sa; sin->sin_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port); } case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)sa; sin6->sin6_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port); } default: break; } host = host_create_from_sockaddr(sa); if (host) { DBG1(DBG_KNL, "NAT mappings of ESP CHILD_SA with SPI %.8x and " "reqid {%u} changed, queuing update job", ntohl(spi), reqid); job = (job_t*)update_sa_job_create(reqid, host); hydra->processor->queue_job(hydra->processor, job); } } } #endif /*SADB_X_NAT_T_NEW_MAPPING*/ /** * Receives events from kernel */ static job_requeue_t receive_events(private_kernel_pfkey_ipsec_t *this) { unsigned char buf[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg = (struct sadb_msg*)buf; int len; bool oldstate; oldstate = thread_cancelability(TRUE); len = recvfrom(this->socket_events, buf, sizeof(buf), 0, NULL, 0); thread_cancelability(oldstate); if (len < 0) { switch (errno) { case EINTR: /* interrupted, try again */ return JOB_REQUEUE_DIRECT; case EAGAIN: /* no data ready, select again */ return JOB_REQUEUE_DIRECT; default: DBG1(DBG_KNL, "unable to receive from PF_KEY event socket"); sleep(1); return JOB_REQUEUE_FAIR; } } if (len < sizeof(struct sadb_msg) || msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg))) { DBG2(DBG_KNL, "received corrupted PF_KEY message"); return JOB_REQUEUE_DIRECT; } if (msg->sadb_msg_pid != 0) { /* not from kernel. not interested, try another one */ return JOB_REQUEUE_DIRECT; } if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT) { DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message"); return JOB_REQUEUE_DIRECT; } switch (msg->sadb_msg_type) { case SADB_ACQUIRE: process_acquire(this, msg); break; case SADB_EXPIRE: process_expire(this, msg); break; #ifdef SADB_X_MIGRATE case SADB_X_MIGRATE: process_migrate(this, msg); break; #endif /*SADB_X_MIGRATE*/ #ifdef SADB_X_NAT_T_NEW_MAPPING case SADB_X_NAT_T_NEW_MAPPING: process_mapping(this, msg); break; #endif /*SADB_X_NAT_T_NEW_MAPPING*/ default: break; } return JOB_REQUEUE_DIRECT; } METHOD(kernel_ipsec_t, get_spi, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, protocol_id_t protocol, u_int32_t reqid, u_int32_t *spi) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_x_sa2 *sa2; struct sadb_spirange *range; pfkey_msg_t response; u_int32_t received_spi = 0; size_t len; memset(&request, 0, sizeof(request)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_GETSPI; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg); sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange)); sa2->sadb_x_sa2_reqid = reqid; PFKEY_EXT_ADD(msg, sa2); add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0); add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0); range = (struct sadb_spirange*)PFKEY_EXT_ADD_NEXT(msg); range->sadb_spirange_exttype = SADB_EXT_SPIRANGE; range->sadb_spirange_len = PFKEY_LEN(sizeof(struct sadb_spirange)); range->sadb_spirange_min = 0xc0000000; range->sadb_spirange_max = 0xcFFFFFFF; PFKEY_EXT_ADD(msg, range); if (pfkey_send(this, msg, &out, &len) == SUCCESS) { if (out->sadb_msg_errno) { DBG1(DBG_KNL, "allocating SPI failed: %s (%d)", strerror(out->sadb_msg_errno), out->sadb_msg_errno); } else if (parse_pfkey_message(out, &response) == SUCCESS) { received_spi = response.sa->sadb_sa_spi; } free(out); } if (received_spi == 0) { return FAILED; } *spi = received_spi; return SUCCESS; } METHOD(kernel_ipsec_t, get_cpi, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, u_int32_t reqid, u_int16_t *cpi) { return FAILED; } METHOD(kernel_ipsec_t, add_sa, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi, protocol_id_t protocol, u_int32_t reqid, mark_t mark, lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key, u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi, bool encap, bool inbound, traffic_selector_t *src_ts, traffic_selector_t *dst_ts) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_sa *sa; struct sadb_x_sa2 *sa2; struct sadb_lifetime *lft; struct sadb_key *key; size_t len; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%u}", ntohl(spi), reqid); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = inbound ? SADB_UPDATE : SADB_ADD; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); #ifdef __APPLE__ if (encap) { struct sadb_sa_2 *sa_2; sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg); sa_2->sadb_sa_natt_port = dst->get_port(dst); sa = &sa_2->sa; sa->sadb_sa_flags |= SADB_X_EXT_NATT; len = sizeof(struct sadb_sa_2); } else #endif { sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg); len = sizeof(struct sadb_sa); } sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_len = PFKEY_LEN(len); sa->sadb_sa_spi = spi; sa->sadb_sa_replay = (protocol == IPPROTO_COMP) ? 0 : 32; sa->sadb_sa_auth = lookup_algorithm(integrity_algs, int_alg); sa->sadb_sa_encrypt = lookup_algorithm(encryption_algs, enc_alg); PFKEY_EXT_ADD(msg, sa); sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg); sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange)); sa2->sadb_x_sa2_mode = mode2kernel(mode); sa2->sadb_x_sa2_reqid = reqid; PFKEY_EXT_ADD(msg, sa2); add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0); add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0); lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg); lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime)); lft->sadb_lifetime_allocations = lifetime->packets.rekey; lft->sadb_lifetime_bytes = lifetime->bytes.rekey; lft->sadb_lifetime_addtime = lifetime->time.rekey; lft->sadb_lifetime_usetime = 0; /* we only use addtime */ PFKEY_EXT_ADD(msg, lft); lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg); lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime)); lft->sadb_lifetime_allocations = lifetime->packets.life; lft->sadb_lifetime_bytes = lifetime->bytes.life; lft->sadb_lifetime_addtime = lifetime->time.life; lft->sadb_lifetime_usetime = 0; /* we only use addtime */ PFKEY_EXT_ADD(msg, lft); if (enc_alg != ENCR_UNDEFINED) { if (!sa->sadb_sa_encrypt) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", encryption_algorithm_names, enc_alg); return FAILED; } DBG2(DBG_KNL, " using encryption algorithm %N with key size %d", encryption_algorithm_names, enc_alg, enc_key.len * 8); key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg); key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; key->sadb_key_bits = enc_key.len * 8; key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + enc_key.len); memcpy(key + 1, enc_key.ptr, enc_key.len); PFKEY_EXT_ADD(msg, key); } if (int_alg != AUTH_UNDEFINED) { if (!sa->sadb_sa_auth) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", integrity_algorithm_names, int_alg); return FAILED; } DBG2(DBG_KNL, " using integrity algorithm %N with key size %d", integrity_algorithm_names, int_alg, int_key.len * 8); key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg); key->sadb_key_exttype = SADB_EXT_KEY_AUTH; key->sadb_key_bits = int_key.len * 8; key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + int_key.len); memcpy(key + 1, int_key.ptr, int_key.len); PFKEY_EXT_ADD(msg, key); } if (ipcomp != IPCOMP_NONE) { /*TODO*/ } #ifdef HAVE_NATT if (encap) { add_encap_ext(msg, src, dst); } #endif /*HAVE_NATT*/ if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x: %s (%d)", ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } free(out); return SUCCESS; } METHOD(kernel_ipsec_t, update_sa, status_t, private_kernel_pfkey_ipsec_t *this, u_int32_t spi, protocol_id_t protocol, u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst, bool encap, bool new_encap, mark_t mark) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_sa *sa; pfkey_msg_t response; size_t len; /* we can't update the SA if any of the ip addresses have changed. * that's because we can't use SADB_UPDATE and by deleting and readding the * SA the sequence numbers would get lost */ if (!src->ip_equals(src, new_src) || !dst->ip_equals(dst, new_dst)) { DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: address changes" " are not supported", ntohl(spi)); return NOT_SUPPORTED; } memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_GET; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa)); sa->sadb_sa_spi = spi; PFKEY_EXT_ADD(msg, sa); /* the kernel wants a SADB_EXT_ADDRESS_SRC to be present even though * it is not used for anything. */ add_anyaddr_ext(msg, dst->get_family(dst), SADB_EXT_ADDRESS_SRC); add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)", ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } else if (parse_pfkey_message(out, &response) != SUCCESS) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: parsing response " "from kernel failed", ntohl(spi)); free(out); return FAILED; } DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H", ntohl(spi), src, dst, new_src, new_dst); memset(&request, 0, sizeof(request)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_UPDATE; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); #ifdef __APPLE__ { struct sadb_sa_2 *sa_2; sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg); sa_2->sa.sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa_2)); memcpy(&sa_2->sa, response.sa, sizeof(struct sadb_sa)); if (encap) { sa_2->sadb_sa_natt_port = new_dst->get_port(new_dst); sa_2->sa.sadb_sa_flags |= SADB_X_EXT_NATT; } } #else PFKEY_EXT_COPY(msg, response.sa); #endif PFKEY_EXT_COPY(msg, response.x_sa2); PFKEY_EXT_COPY(msg, response.src); PFKEY_EXT_COPY(msg, response.dst); PFKEY_EXT_COPY(msg, response.lft_soft); PFKEY_EXT_COPY(msg, response.lft_hard); if (response.key_encr) { PFKEY_EXT_COPY(msg, response.key_encr); } if (response.key_auth) { PFKEY_EXT_COPY(msg, response.key_auth); } #ifdef HAVE_NATT if (new_encap) { add_encap_ext(msg, new_src, new_dst); } #endif /*HAVE_NATT*/ free(out); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: %s (%d)", ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } free(out); return SUCCESS; } METHOD(kernel_ipsec_t, query_sa, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi, protocol_id_t protocol, mark_t mark, u_int64_t *bytes) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_sa *sa; pfkey_msg_t response; size_t len; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_GET; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa)); sa->sadb_sa_spi = spi; PFKEY_EXT_ADD(msg, sa); /* the Linux Kernel doesn't care for the src address, but other systems do * (e.g. FreeBSD) */ add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0); add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)", ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } else if (parse_pfkey_message(out, &response) != SUCCESS) { DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi)); free(out); return FAILED; } *bytes = response.lft_current->sadb_lifetime_bytes; free(out); return SUCCESS; } METHOD(kernel_ipsec_t, del_sa, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi, protocol_id_t protocol, u_int16_t cpi, mark_t mark) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_sa *sa; size_t len; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_DELETE; msg->sadb_msg_satype = proto_ike2satype(protocol); msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg); sa->sadb_sa_exttype = SADB_EXT_SA; sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa)); sa->sadb_sa_spi = spi; PFKEY_EXT_ADD(msg, sa); /* the Linux Kernel doesn't care for the src address, but other systems do * (e.g. FreeBSD) */ add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0); add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi)); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x: %s (%d)", ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi)); free(out); return SUCCESS; } METHOD(kernel_ipsec_t, add_policy, status_t, private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t spi, protocol_id_t protocol, u_int32_t reqid, mark_t mark, ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi, bool routed) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_x_policy *pol; struct sadb_x_ipsecrequest *req; policy_entry_t *policy, *found = NULL; pfkey_msg_t response; size_t len; if (dir2kernel(direction) == IPSEC_DIR_INVALID) { /* FWD policies are not supported on all platforms */ return SUCCESS; } /* create a policy */ policy = create_policy_entry(src_ts, dst_ts, direction, reqid); /* find a matching policy */ this->mutex->lock(this->mutex); if (this->policies->find_first(this->policies, (linked_list_match_t)policy_entry_equals, (void**)&found, policy) == SUCCESS) { /* use existing policy */ found->refcount++; DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing " "refcount", src_ts, dst_ts, policy_dir_names, direction); policy_entry_destroy(policy); policy = found; } else { /* apply the new one, if we have no such policy */ this->policies->insert_last(this->policies, policy); policy->refcount = 1; } memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "adding policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = found ? SADB_X_SPDUPDATE : SADB_X_SPDADD; msg->sadb_msg_satype = 0; msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy)); pol->sadb_x_policy_id = 0; pol->sadb_x_policy_dir = dir2kernel(direction); pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; #ifdef HAVE_STRUCT_SADB_X_POLICY_SADB_X_POLICY_PRIORITY /* calculate priority based on source selector size, small size = high prio */ pol->sadb_x_policy_priority = routed ? PRIO_LOW : PRIO_HIGH; pol->sadb_x_policy_priority -= policy->src.mask * 10; pol->sadb_x_policy_priority -= policy->src.proto != IPSEC_PROTO_ANY ? 2 : 0; pol->sadb_x_policy_priority -= policy->src.net->get_port(policy->src.net) ? 1 : 0; #endif /* one or more sadb_x_ipsecrequest extensions are added to the sadb_x_policy extension */ req = (struct sadb_x_ipsecrequest*)(pol + 1); req->sadb_x_ipsecrequest_proto = proto_ike2ip(protocol); /* !!! the length of this struct MUST be in octets instead of 64 bit words */ req->sadb_x_ipsecrequest_len = sizeof(struct sadb_x_ipsecrequest); req->sadb_x_ipsecrequest_mode = mode2kernel(mode); req->sadb_x_ipsecrequest_reqid = reqid; req->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; if (mode == MODE_TUNNEL) { len = hostcpy(req + 1, src); req->sadb_x_ipsecrequest_len += len; len = hostcpy((char*)(req + 1) + len, dst); req->sadb_x_ipsecrequest_len += len; } pol->sadb_x_policy_len += PFKEY_LEN(req->sadb_x_ipsecrequest_len); PFKEY_EXT_ADD(msg, pol); add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto, policy->src.mask); add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto, policy->dst.mask); #ifdef __FreeBSD__ { /* on FreeBSD a lifetime has to be defined to be able to later query * the current use time. */ struct sadb_lifetime *lft; lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg); lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime)); lft->sadb_lifetime_addtime = LONG_MAX; PFKEY_EXT_ADD(msg, lft); } #endif this->mutex->unlock(this->mutex); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to add policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to add policy %R === %R %N: %s (%d)", src_ts, dst_ts, policy_dir_names, direction, strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } else if (parse_pfkey_message(out, &response) != SUCCESS) { DBG1(DBG_KNL, "unable to add policy %R === %R %N: parsing response " "from kernel failed", src_ts, dst_ts, policy_dir_names, direction); free(out); return FAILED; } this->mutex->lock(this->mutex); /* we try to find the policy again and update the kernel index */ if (this->policies->find_last(this->policies, NULL, (void**)&policy) != SUCCESS) { DBG2(DBG_KNL, "unable to update index, the policy %R === %R %N is " "already gone, ignoring", src_ts, dst_ts, policy_dir_names, direction); this->mutex->unlock(this->mutex); free(out); return SUCCESS; } policy->index = response.x_policy->sadb_x_policy_id; free(out); /* install a route, if: * - we are NOT updating a policy * - this is a forward policy (to just get one for each child) * - we are in tunnel mode * - we are not using IPv6 (does not work correctly yet!) * - routing is not disabled via strongswan.conf */ if (policy->route == NULL && direction == POLICY_FWD && mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 && this->install_routes) { route_entry_t *route = malloc_thing(route_entry_t); if (charon->kernel_interface->get_address_by_ts(charon->kernel_interface, dst_ts, &route->src_ip) == SUCCESS) { /* get the nexthop to src (src as we are in POLICY_FWD).*/ route->gateway = charon->kernel_interface->get_nexthop( charon->kernel_interface, src); route->if_name = charon->kernel_interface->get_interface( charon->kernel_interface, dst); route->dst_net = chunk_clone(policy->src.net->get_address(policy->src.net)); route->prefixlen = policy->src.mask; if (route->if_name) { switch (charon->kernel_interface->add_route( charon->kernel_interface, route->dst_net, route->prefixlen, route->gateway, route->src_ip, route->if_name)) { default: DBG1(DBG_KNL, "unable to install source route for %H", route->src_ip); /* FALL */ case ALREADY_DONE: /* route exists, do not uninstall */ route_entry_destroy(route); break; case SUCCESS: /* cache the installed route */ policy->route = route; break; } } else { route_entry_destroy(route); } } else { free(route); } } this->mutex->unlock(this->mutex); return SUCCESS; } METHOD(kernel_ipsec_t, query_policy, status_t, private_kernel_pfkey_ipsec_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark, u_int32_t *use_time) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_x_policy *pol; policy_entry_t *policy, *found = NULL; pfkey_msg_t response; size_t len; if (dir2kernel(direction) == IPSEC_DIR_INVALID) { /* FWD policies are not supported on all platforms */ return NOT_FOUND; } DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); /* create a policy */ policy = create_policy_entry(src_ts, dst_ts, direction, 0); /* find a matching policy */ this->mutex->lock(this->mutex); if (this->policies->find_first(this->policies, (linked_list_match_t)policy_entry_equals, (void**)&found, policy) != SUCCESS) { DBG1(DBG_KNL, "querying policy %R === %R %N failed, not found", src_ts, dst_ts, policy_dir_names, direction); policy_entry_destroy(policy); this->mutex->unlock(this->mutex); return NOT_FOUND; } policy_entry_destroy(policy); policy = found; memset(&request, 0, sizeof(request)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_X_SPDGET; msg->sadb_msg_satype = 0; msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_id = policy->index; pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy)); pol->sadb_x_policy_dir = dir2kernel(direction); pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; PFKEY_EXT_ADD(msg, pol); add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto, policy->src.mask); add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto, policy->dst.mask); this->mutex->unlock(this->mutex); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to query policy %R === %R %N: %s (%d)", src_ts, dst_ts, policy_dir_names, direction, strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } else if (parse_pfkey_message(out, &response) != SUCCESS) { DBG1(DBG_KNL, "unable to query policy %R === %R %N: parsing response " "from kernel failed", src_ts, dst_ts, policy_dir_names, direction); free(out); return FAILED; } else if (response.lft_current == NULL) { DBG1(DBG_KNL, "unable to query policy %R === %R %N: kernel reports no " "use time", src_ts, dst_ts, policy_dir_names, direction); free(out); return FAILED; } /* we need the monotonic time, but the kernel returns system time. */ if (response.lft_current->sadb_lifetime_usetime) { *use_time = time_monotonic(NULL) - (time(NULL) - response.lft_current->sadb_lifetime_usetime); } else { *use_time = 0; } free(out); return SUCCESS; } METHOD(kernel_ipsec_t, del_policy, status_t, private_kernel_pfkey_ipsec_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark, bool unrouted) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; struct sadb_x_policy *pol; policy_entry_t *policy, *found = NULL; route_entry_t *route; size_t len; if (dir2kernel(direction) == IPSEC_DIR_INVALID) { /* FWD policies are not supported on all platforms */ return SUCCESS; } DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); /* create a policy */ policy = create_policy_entry(src_ts, dst_ts, direction, 0); /* find a matching policy */ this->mutex->lock(this->mutex); if (this->policies->find_first(this->policies, (linked_list_match_t)policy_entry_equals, (void**)&found, policy) == SUCCESS) { if (--found->refcount > 0) { /* is used by more SAs, keep in kernel */ DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed"); policy_entry_destroy(policy); this->mutex->unlock(this->mutex); return SUCCESS; } /* remove if last reference */ this->policies->remove(this->policies, found, NULL); policy_entry_destroy(policy); policy = found; } else { DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts, dst_ts, policy_dir_names, direction); policy_entry_destroy(policy); this->mutex->unlock(this->mutex); return NOT_FOUND; } this->mutex->unlock(this->mutex); memset(&request, 0, sizeof(request)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_X_SPDDELETE; msg->sadb_msg_satype = 0; msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg); pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy)); pol->sadb_x_policy_dir = dir2kernel(direction); pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; PFKEY_EXT_ADD(msg, pol); add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto, policy->src.mask); add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto, policy->dst.mask); route = policy->route; policy->route = NULL; policy_entry_destroy(policy); if (pfkey_send(this, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to delete policy %R === %R %N: %s (%d)", src_ts, dst_ts, policy_dir_names, direction, strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } free(out); if (route) { if (charon->kernel_interface->del_route(charon->kernel_interface, route->dst_net, route->prefixlen, route->gateway, route->src_ip, route->if_name) != SUCCESS) { DBG1(DBG_KNL, "error uninstalling route installed with " "policy %R === %R %N", src_ts, dst_ts, policy_dir_names, direction); } route_entry_destroy(route); } return SUCCESS; } /** * Register a socket for AQUIRE/EXPIRE messages */ static status_t register_pfkey_socket(private_kernel_pfkey_ipsec_t *this, u_int8_t satype) { unsigned char request[PFKEY_BUFFER_SIZE]; struct sadb_msg *msg, *out; size_t len; memset(&request, 0, sizeof(request)); msg = (struct sadb_msg*)request; msg->sadb_msg_version = PF_KEY_V2; msg->sadb_msg_type = SADB_REGISTER; msg->sadb_msg_satype = satype; msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg)); if (pfkey_send_socket(this, this->socket_events, msg, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "unable to register PF_KEY socket"); return FAILED; } else if (out->sadb_msg_errno) { DBG1(DBG_KNL, "unable to register PF_KEY socket: %s (%d)", strerror(out->sadb_msg_errno), out->sadb_msg_errno); free(out); return FAILED; } free(out); return SUCCESS; } METHOD(kernel_ipsec_t, bypass_socket, bool, private_kernel_pfkey_ipsec_t *this, int fd, int family) { struct sadb_x_policy policy; u_int sol, ipsec_policy; switch (family) { case AF_INET: { sol = SOL_IP; ipsec_policy = IP_IPSEC_POLICY; break; } case AF_INET6: { sol = SOL_IPV6; ipsec_policy = IPV6_IPSEC_POLICY; break; } default: return FALSE; } memset(&policy, 0, sizeof(policy)); policy.sadb_x_policy_len = sizeof(policy) / sizeof(u_int64_t); policy.sadb_x_policy_exttype = SADB_X_EXT_POLICY; policy.sadb_x_policy_type = IPSEC_POLICY_BYPASS; policy.sadb_x_policy_dir = IPSEC_DIR_OUTBOUND; if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0) { DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s", strerror(errno)); return FALSE; } policy.sadb_x_policy_dir = IPSEC_DIR_INBOUND; if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0) { DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s", strerror(errno)); return FALSE; } return TRUE; } METHOD(kernel_ipsec_t, destroy, void, private_kernel_pfkey_ipsec_t *this) { if (this->job) { this->job->cancel(this->job); } if (this->socket > 0) { close(this->socket); } if (this->socket_events > 0) { close(this->socket_events); } this->policies->destroy_function(this->policies, (void*)policy_entry_destroy); this->mutex->destroy(this->mutex); this->mutex_pfkey->destroy(this->mutex_pfkey); free(this); } /* * Described in header. */ kernel_pfkey_ipsec_t *kernel_pfkey_ipsec_create() { private_kernel_pfkey_ipsec_t *this; INIT(this, .public = { .interface = { .get_spi = _get_spi, .get_cpi = _get_cpi, .add_sa = _add_sa, .update_sa = _update_sa, .query_sa = _query_sa, .del_sa = _del_sa, .add_policy = _add_policy, .query_policy = _query_policy, .del_policy = _del_policy, .bypass_socket = _bypass_socket, .destroy = _destroy, }, }, .policies = linked_list_create(), .mutex = mutex_create(MUTEX_TYPE_DEFAULT), .mutex_pfkey = mutex_create(MUTEX_TYPE_DEFAULT), .install_routes = lib->settings->get_bool(lib->settings, "charon.install_routes", TRUE), ); /* create a PF_KEY socket to communicate with the kernel */ this->socket = socket(PF_KEY, SOCK_RAW, PF_KEY_V2); if (this->socket <= 0) { DBG1(DBG_KNL, "unable to create PF_KEY socket"); destroy(this); return NULL; } /* create a PF_KEY socket for ACQUIRE & EXPIRE */ this->socket_events = socket(PF_KEY, SOCK_RAW, PF_KEY_V2); if (this->socket_events <= 0) { DBG1(DBG_KNL, "unable to create PF_KEY event socket"); destroy(this); return NULL; } /* register the event socket */ if (register_pfkey_socket(this, SADB_SATYPE_ESP) != SUCCESS || register_pfkey_socket(this, SADB_SATYPE_AH) != SUCCESS) { DBG1(DBG_KNL, "unable to register PF_KEY event socket"); destroy(this); return NULL; } this->job = callback_job_create((callback_job_cb_t)receive_events, this, NULL, NULL); hydra->processor->queue_job(hydra->processor, (job_t*)this->job); return &this->public; }