/** * @file child_rekey.c * * @brief Implementation of the child_rekey task. * */ /* * Copyright (C) 2005-2007 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "child_rekey.h" #include #include #include #include #include typedef struct private_child_rekey_t private_child_rekey_t; /** * Private members of a child_rekey_t task. */ struct private_child_rekey_t { /** * Public methods and task_t interface. */ child_rekey_t public; /** * Assigned IKE_SA. */ ike_sa_t *ike_sa; /** * Are we the initiator? */ bool initiator; /** * the CHILD_CREATE task which is reused to simplify rekeying */ child_create_t *child_create; /** * CHILD_SA which gets rekeyed */ child_sa_t *child_sa; /** * redundandt CHILD_SA created simultaneously */ child_sa_t *simultaneous; /** * the lowest nonce compared so far */ chunk_t nonce; /** * TRUE if we have the lower nonce */ bool winner; }; /** * get the nonce from a message, return TRUE if it was lower than this->nonce */ static bool get_nonce(private_child_rekey_t *this, message_t *message) { nonce_payload_t *payload; chunk_t nonce; payload = (nonce_payload_t*)message->get_payload(message, NONCE); if (payload == NULL) { return FALSE; } nonce = payload->get_nonce(payload); if (this->nonce.ptr && memcmp(nonce.ptr, this->nonce.ptr, min(nonce.len, this->nonce.len)) > 0) { chunk_free(&nonce); return FALSE; } chunk_free(&this->nonce); this->nonce = nonce; return TRUE; } /** * find a child using the REKEY_SA notify */ static void find_child(private_child_rekey_t *this, message_t *message) { iterator_t *iterator; payload_t *payload; iterator = message->get_payload_iterator(message); while (iterator->iterate(iterator, (void**)&payload)) { notify_payload_t *notify; u_int32_t spi; protocol_id_t protocol; if (payload->get_type(payload) != NOTIFY) { continue; } notify = (notify_payload_t*)payload; protocol = notify->get_protocol_id(notify); spi = notify->get_spi(notify); if (protocol != PROTO_ESP && protocol != PROTO_AH) { continue; } this->child_sa = this->ike_sa->get_child_sa(this->ike_sa, protocol, spi, FALSE); break; } iterator->destroy(iterator); } #if 0 /** * handle a detected simultaneous rekeying situation as responder */ static void simultaneous_r(private_child_rekey_t *this, message_t *message) { private_child_rekey_t *other = NULL; task_t *task; iterator_t *iterator; this->ike_sa->create_task_iterator(this->ike_sa); while (iterator->iterate(iterator, (void**)&task)) { if (task->get_type(task) == CHILD_REKEY) { other = (private_child_rekey_t*)task; break; } } iterator->destroy(iterator); if (other) { other->simultaneous = this->child_create->get_child(this->child_create); if (!get_nonce(other, message)) { /* this wins the race, other lost */ other->winner = FALSE; } } } /** * was there a simultaneous rekeying, did we win the nonce compare? */ static bool simultaneous_i(private_child_rekey_t *this, message_t *message) { if (this->winner || get_nonce(this, message)) { /* we have the lower nonce and win */ return TRUE; } return FALSE; } #endif /** * Implementation of task_t.build for initiator */ static status_t build_i(private_child_rekey_t *this, message_t *message) { notify_payload_t *notify; protocol_id_t protocol; u_int32_t spi, reqid; /* our CHILD_CREATE task does the hard work for us... */ reqid = this->child_sa->get_reqid(this->child_sa); this->child_create->use_reqid(this->child_create, reqid); this->child_create->task.build(&this->child_create->task, message); get_nonce(this, message); /* ... we just need the rekey notify */ protocol = this->child_sa->get_protocol(this->child_sa); spi = this->child_sa->get_spi(this->child_sa, TRUE); notify = notify_payload_create_from_protocol_and_type(protocol, REKEY_SA); notify->set_spi(notify, spi); message->add_payload(message, (payload_t*)notify); this->child_sa->set_state(this->child_sa, CHILD_REKEYING); return NEED_MORE; } /** * Implementation of task_t.process for initiator */ static status_t process_r(private_child_rekey_t *this, message_t *message) { /* let the CHILD_CREATE task process the message */ this->child_create->task.process(&this->child_create->task, message); get_nonce(this, message); find_child(this, message); return NEED_MORE; } /** * Implementation of task_t.build for responder */ static status_t build_r(private_child_rekey_t *this, message_t *message) { u_int32_t reqid; if (this->child_sa == NULL || this->child_sa->get_state(this->child_sa) == CHILD_DELETING) { message->add_notify(message, TRUE, NO_PROPOSAL_CHOSEN, chunk_empty); return SUCCESS; } /* let the CHILD_CREATE task build the response */ reqid = this->child_sa->get_reqid(this->child_sa); this->child_create->use_reqid(this->child_create, reqid); this->child_create->task.build(&this->child_create->task, message); get_nonce(this, message); if (this->child_sa->get_state(this->child_sa) == CHILD_REKEYING) { /* simultaneous_detected(this); */ } this->child_sa->set_state(this->child_sa, CHILD_REKEYING); return SUCCESS; } /** * Implementation of task_t.process for initiator */ static status_t process_i(private_child_rekey_t *this, message_t *message) { protocol_id_t protocol; u_int32_t spi; this->child_create->task.process(&this->child_create->task, message); /*if (!simultaneous_won(this, message)) { * delete the redundant CHILD_SA, instead of the rekeyed * this->child_sa = this->create_child->get_child(this->create_child); }*/ spi = this->child_sa->get_spi(this->child_sa, TRUE); protocol = this->child_sa->get_protocol(this->child_sa); /* TODO: don't delete when rekeying failed */ if (this->ike_sa->delete_child_sa(this->ike_sa, protocol, spi) != SUCCESS) { return FAILED; } return SUCCESS; } /** * Implementation of task_t.get_type */ static task_type_t get_type(private_child_rekey_t *this) { return CHILD_REKEY; } /** * Implementation of task_t.migrate */ static void migrate(private_child_rekey_t *this, ike_sa_t *ike_sa) { this->child_create->task.migrate(&this->child_create->task, ike_sa); chunk_free(&this->nonce); this->ike_sa = ike_sa; this->winner = TRUE; this->simultaneous = NULL; } /** * Implementation of task_t.destroy */ static void destroy(private_child_rekey_t *this) { this->child_create->task.destroy(&this->child_create->task); chunk_free(&this->nonce); free(this); } /* * Described in header. */ child_rekey_t *child_rekey_create(ike_sa_t *ike_sa, child_sa_t *child_sa) { private_child_rekey_t *this = malloc_thing(private_child_rekey_t); policy_t *policy; this->public.task.get_type = (task_type_t(*)(task_t*))get_type; this->public.task.migrate = (void(*)(task_t*,ike_sa_t*))migrate; this->public.task.destroy = (void(*)(task_t*))destroy; if (child_sa != NULL) { this->public.task.build = (status_t(*)(task_t*,message_t*))build_i; this->public.task.process = (status_t(*)(task_t*,message_t*))process_i; this->initiator = TRUE; policy = child_sa->get_policy(child_sa); this->child_create = child_create_create(ike_sa, policy); } else { this->public.task.build = (status_t(*)(task_t*,message_t*))build_r; this->public.task.process = (status_t(*)(task_t*,message_t*))process_r; this->initiator = FALSE; this->child_create = child_create_create(ike_sa, NULL); } this->ike_sa = ike_sa; this->child_sa = child_sa; this->nonce = chunk_empty; this->winner = TRUE; this->simultaneous = NULL; return &this->public; }