.TH IPSEC.CONF 5 "2010-05-30" "@IPSEC_VERSION@" "strongSwan" .SH NAME ipsec.conf \- IPsec configuration and connections .SH DESCRIPTION The optional .I ipsec.conf file specifies most configuration and control information for the strongSwan IPsec subsystem. The major exception is secrets for authentication; see .IR ipsec.secrets (5). Its contents are not security-sensitive. .PP The file is a text file, consisting of one or more .IR sections . White space followed by .B # followed by anything to the end of the line is a comment and is ignored, as are empty lines which are not within a section. .PP A line which contains .B include and a file name, separated by white space, is replaced by the contents of that file, preceded and followed by empty lines. If the file name is not a full pathname, it is considered to be relative to the directory containing the including file. Such inclusions can be nested. Only a single filename may be supplied, and it may not contain white space, but it may include shell wildcards (see .IR sh (1)); for example: .PP .B include .B "ipsec.*.conf" .PP The intention of the include facility is mostly to permit keeping information on connections, or sets of connections, separate from the main configuration file. This permits such connection descriptions to be changed, copied to the other security gateways involved, etc., without having to constantly extract them from the configuration file and then insert them back into it. Note also the .B also parameter (described below) which permits splitting a single logical section (e.g. a connection description) into several actual sections. .PP A section begins with a line of the form: .PP .I type .I name .PP where .I type indicates what type of section follows, and .I name is an arbitrary name which distinguishes the section from others of the same type. Names must start with a letter and may contain only letters, digits, periods, underscores, and hyphens. All subsequent non-empty lines which begin with white space are part of the section; comments within a section must begin with white space too. There may be only one section of a given type with a given name. .PP Lines within the section are generally of the form .PP \ \ \ \ \ \fIparameter\fB=\fIvalue\fR .PP (note the mandatory preceding white space). There can be white space on either side of the .BR = . Parameter names follow the same syntax as section names, and are specific to a section type. Unless otherwise explicitly specified, no parameter name may appear more than once in a section. .PP An empty .I value stands for the system default value (if any) of the parameter, i.e. it is roughly equivalent to omitting the parameter line entirely. A .I value may contain white space only if the entire .I value is enclosed in double quotes (\fB"\fR); a .I value cannot itself contain a double quote, nor may it be continued across more than one line. .PP Numeric values are specified to be either an ``integer'' (a sequence of digits) or a ``decimal number'' (sequence of digits optionally followed by `.' and another sequence of digits). .PP There is currently one parameter which is available in any type of section: .TP .B also the value is a section name; the parameters of that section are appended to this section, as if they had been written as part of it. The specified section must exist, must follow the current one, and must have the same section type. (Nesting is permitted, and there may be more than one .B also in a single section, although it is forbidden to append the same section more than once.) .PP A section with name .B %default specifies defaults for sections of the same type. For each parameter in it, any section of that type which does not have a parameter of the same name gets a copy of the one from the .B %default section. There may be multiple .B %default sections of a given type, but only one default may be supplied for any specific parameter name, and all .B %default sections of a given type must precede all non-\c .B %default sections of that type. .B %default sections may not contain the .B also parameter. .PP Currently there are three types of sections: a .B config section specifies general configuration information for IPsec, a .B conn section specifies an IPsec connection, while a .B ca section specifies special properties of a certification authority. .SH "CONN SECTIONS" A .B conn section contains a .IR "connection specification" , defining a network connection to be made using IPsec. The name given is arbitrary, and is used to identify the connection. Here's a simple example: .PP .ne 10 .nf .ft B .ta 1c conn snt left=192.168.0.1 leftsubnet=10.1.0.0/16 right=192.168.0.2 rightsubnet=10.1.0.0/16 keyingtries=%forever auto=add .ft .fi .PP A note on terminology: There are two kinds of communications going on: transmission of user IP packets, and gateway-to-gateway negotiations for keying, rekeying, and general control. The path to control the connection is called 'ISAKMP SA' in IKEv1 and 'IKE SA' in the IKEv2 protocol. That what is being negotiated, the kernel level data path, is called 'IPsec SA' or 'Child SA'. strongSwan currently uses two separate keying daemons. \fIpluto\fP handles all IKEv1 connections, \fIcharon\fP is the daemon handling the IKEv2 protocol. .PP To avoid trivial editing of the configuration file to suit it to each system involved in a connection, connection specifications are written in terms of .I left and .I right participants, rather than in terms of local and remote. Which participant is considered .I left or .I right is arbitrary; for every connection description an attempt is made to figure out whether the local endpoint should act as the .I left or .I right endpoint. This is done by matching the IP addresses defined for both endpoints with the IP addresses assigned to local network interfaces. If a match is found then the role (left or right) that matches is going to be considered local. If no match is found during startup, .I left is considered local. This permits using identical connection specifications on both ends. There are cases where there is no symmetry; a good convention is to use .I left for the local side and .I right for the remote side (the first letters are a good mnemonic). .PP Many of the parameters relate to one participant or the other; only the ones for .I left are listed here, but every parameter whose name begins with .B left has a .B right counterpart, whose description is the same but with .B left and .B right reversed. .PP Parameters are optional unless marked '(required)'. .SS "CONN PARAMETERS" Unless otherwise noted, for a connection to work, in general it is necessary for the two ends to agree exactly on the values of these parameters. .TP 14 .B aaa_identity defines the identity of the AAA backend used during IKEv2 EAP authentication. This is required if the EAP client uses a method that verifies the server identity (such as EAP-TLS), but it does not match the IKEv2 gateway identity. .TP .B ah AH authentication algorithm to be used for the connection, e.g. .B hmac-md5. .TP .B auth whether authentication should be done as part of ESP encryption, or separately using the AH protocol; acceptable values are .B esp (the default) and .BR ah . .br The IKEv2 daemon currently supports ESP only. .TP .B authby how the two security gateways should authenticate each other; acceptable values are .B secret or .B psk for pre-shared secrets, .B pubkey (the default) for public key signatures as well as the synonyms .B rsasig for RSA digital signatures and .B ecdsasig for Elliptic Curve DSA signatures. .B never can be used if negotiation is never to be attempted or accepted (useful for shunt-only conns). Digital signatures are superior in every way to shared secrets. IKEv1 additionally supports the values .B xauthpsk and .B xauthrsasig that will enable eXtended AUTHentication (XAUTH) in addition to IKEv1 main mode based on shared secrets or digital RSA signatures, respectively. IKEv2 additionally supports the value .BR eap , which indicates an initiator to request EAP authentication. The EAP method to use is selected by the server (see .BR eap ). This parameter is deprecated for IKEv2 connections, as two peers do not need to agree on an authentication method. Use the .B leftauth parameter instead to define authentication methods in IKEv2. .TP .B auto what operation, if any, should be done automatically at IPsec startup; currently-accepted values are .BR add , .BR route , .B start and .B ignore (the default). .B add loads a connection without starting it. .B route loads a connection and installs kernel traps. If traffic is detected between .B leftsubnet and .B rightsubnet , a connection is established. .B start loads a connection and brings it up immediatly. .B ignore ignores the connection. This is equal to delete a connection from the config file. Relevant only locally, other end need not agree on it (but in general, for an intended-to-be-permanent connection, both ends should use .B auto=start to ensure that any reboot causes immediate renegotiation). .TP .B compress whether IPComp compression of content is proposed on the connection (link-level compression does not work on encrypted data, so to be effective, compression must be done \fIbefore\fR encryption); acceptable values are .B yes and .B no (the default). A value of .B yes causes IPsec to propose both compressed and uncompressed, and prefer compressed. A value of .B no prevents IPsec from proposing compression; a proposal to compress will still be accepted. .TP .B dpdaction controls the use of the Dead Peer Detection protocol (DPD, RFC 3706) where R_U_THERE notification messages (IKEv1) or empty INFORMATIONAL messages (IKEv2) are periodically sent in order to check the liveliness of the IPsec peer. The values .BR clear , .BR hold , and .B restart all activate DPD. If no activity is detected, all connections with a dead peer are stopped and unrouted .RB ( clear ), put in the hold state .RB ( hold ) or restarted .RB ( restart ). For IKEv1, the default is .B none which disables the active sending of R_U_THERE notifications. Nevertheless pluto will always send the DPD Vendor ID during connection set up in order to signal the readiness to act passively as a responder if the peer wants to use DPD. For IKEv2, .B none does't make sense, since all messages are used to detect dead peers. If specified, it has the same meaning as the default .RB ( clear ). .TP .B dpddelay defines the period time interval with which R_U_THERE messages/INFORMATIONAL exchanges are sent to the peer. These are only sent if no other traffic is received. In IKEv2, a value of 0 sends no additional INFORMATIONAL messages and uses only standard messages (such as those to rekey) to detect dead peers. .TP .B dpdtimeout defines the timeout interval, after which all connections to a peer are deleted in case of inactivity. This only applies to IKEv1, in IKEv2 the default retransmission timeout applies, as every exchange is used to detect dead peers. .TP .B inactivity defines the timeout interval, after which a CHILD_SA is closed if it did not send or receive any traffic. Currently supported in IKEv2 connections only. .TP .B eap defines the EAP type to propose as server if the client requests EAP authentication. Currently supported values are .B aka for EAP-AKA, .B gtc for EAP-GTC, .B md5 for EAP-MD5, .B mschapv2 for EAP-MS-CHAPv2, .B radius for the EAP-RADIUS proxy and .B sim for EAP-SIM. Additionally, IANA assigned EAP method numbers are accepted, or a definition in the form .B eap=type-vendor (e.g. eap=7-12345) can be used to specify vendor specific EAP types. This parameter is deprecated in the favour of .B leftauth. To forward EAP authentication to a RADIUS server using the EAP-RADIUS plugin, set .BR eap=radius . .TP .B eap_identity defines the identity the client uses to reply to a EAP Identity request. If defined on the EAP server, the defined identity will be used as peer identity during EAP authentication. The special value .B %identity uses the EAP Identity method to ask the client for an EAP identity. If not defined, the IKEv2 identity will be used as EAP identity. .TP .B esp comma-separated list of ESP encryption/authentication algorithms to be used for the connection, e.g. .BR 3des-md5 . The notation is .BR encryption-integrity-[dh-group] . .br If .B dh-group is specified, CHILD_SA setup and rekeying include a separate diffe hellman exchange (IKEv2 only). .TP .B forceencaps Force UDP encapsulation for ESP packets even if no NAT situation is detected. This may help to surmount restrictive firewalls. In order to force the peer to encapsulate packets, NAT detection payloads are faked (IKEv2 only). .TP .B ike comma-separated list of IKE/ISAKMP SA encryption/authentication algorithms to be used, e.g. .BR aes128-sha1-modp2048 . The notation is .BR encryption-integrity-dhgroup . In IKEv2, multiple algorithms and proposals may be included, such as .B aes128-aes256-sha1-modp1536-modp2048,3des-sha1-md5-modp1024. .TP .B ikelifetime how long the keying channel of a connection (ISAKMP or IKE SA) should last before being renegotiated. .TP .B installpolicy decides whether IPsec policies are installed in the kernel by the IKEv2 charon daemon for a given connection. Allows peaceful cooperation e.g. with the Mobile IPv6 daemon mip6d who wants to control the kernel policies. Acceptable values are .B yes (the default) and .BR no . .TP .B keyexchange method of key exchange; which protocol should be used to initialize the connection. Connections marked with .B ikev1 are initiated with pluto, those marked with .B ikev2 with charon. An incoming request from the remote peer is handled by the correct daemon, unaffected from the .B keyexchange setting. The default value .B ike currently is a synonym for .BR ikev1 . .TP .B keyingtries how many attempts (a whole number or \fB%forever\fP) should be made to negotiate a connection, or a replacement for one, before giving up (default .BR %forever ). The value \fB%forever\fP means 'never give up'. Relevant only locally, other end need not agree on it. .TP .B keylife synonym for .BR lifetime . .TP .B left (required) the IP address of the left participant's public-network interface or one of several magic values. If it is .BR %defaultroute , .B left will be filled in automatically with the local address of the default-route interface (as determined at IPsec startup time and during configuration update). Either .B left or .B right may be .BR %defaultroute , but not both. The prefix .B % in front of a fully-qualified domain name or an IP address will implicitly set .B leftallowany=yes. If the domain name cannot be resolved into an IP address at IPsec startup or update time then .B left=%any and .B leftallowany=no will be assumed. In case of an IKEv2 connection, the value .B %any for the local endpoint signifies an address to be filled in (by automatic keying) during negotiation. If the local peer initiates the connection setup the routing table will be queried to determine the correct local IP address. In case the local peer is responding to a connection setup then any IP address that is assigned to a local interface will be accepted. .br Note that specifying .B %any for the local endpoint is not supported by the IKEv1 pluto daemon. If .B %any is used for the remote endpoint it literally means any IP address. Please note that with the usage of wildcards multiple connection descriptions might match a given incoming connection attempt. The most specific description is used in that case. .TP .B leftallowany a modifier for .B left , making it behave as .B %any although a concrete IP address has been assigned. Recommended for dynamic IP addresses that can be resolved by DynDNS at IPsec startup or update time. Acceptable values are .B yes and .B no (the default). .TP .B leftauth Authentication method to use locally (left) or require from the remote (right) side. This parameter is supported in IKEv2 only. Acceptable values are .B pubkey for public key authentication (RSA/ECDSA), .B psk for pre-shared key authentication and .B eap to (require the) use of the Extensible Authentication Protocol. In the case of .B eap, an optional EAP method can be appended. Currently defined methods are .BR eap-aka , .BR eap-gtc , .BR eap-md5 , .BR eap-tls , .B eap-mschapv2 and .BR eap-sim . Alternatively, IANA assigned EAP method numbers are accepted. Vendor specific EAP methods are defined in the form .B eap-type-vendor .RB "(e.g. " eap-7-12345 ). .TP .B leftauth2 Same as .BR leftauth , but defines an additional authentication exchange. IKEv2 supports multiple authentication rounds using "Multiple Authentication Exchanges" defined in RFC4739. This allows, for example, separated authentication of host and user (IKEv2 only). .TP .B leftca the distinguished name of a certificate authority which is required to lie in the trust path going from the left participant's certificate up to the root certification authority. .TP .B leftca2 Same as .B leftca, but for the second authentication round (IKEv2 only). .TP .B leftcert the path to the left participant's X.509 certificate. The file can be encoded either in PEM or DER format. OpenPGP certificates are supported as well. Both absolute paths or paths relative to \fI/etc/ipsec.d/certs\fP are accepted. By default .B leftcert sets .B leftid to the distinguished name of the certificate's subject and .B leftca to the distinguished name of the certificate's issuer. The left participant's ID can be overriden by specifying a .B leftid value which must be certified by the certificate, though. .TP .B leftcert2 Same as .B leftcert, but for the second authentication round (IKEv2 only). .TP .B leftfirewall whether the left participant is doing forwarding-firewalling (including masquerading) using iptables for traffic from \fIleftsubnet\fR, which should be turned off (for traffic to the other subnet) once the connection is established; acceptable values are .B yes and .B no (the default). May not be used in the same connection description with .BR leftupdown . Implemented as a parameter to the default \fBipsec _updown\fR script. See notes below. Relevant only locally, other end need not agree on it. If one or both security gateways are doing forwarding firewalling (possibly including masquerading), and this is specified using the firewall parameters, tunnels established with IPsec are exempted from it so that packets can flow unchanged through the tunnels. (This means that all subnets connected in this manner must have distinct, non-overlapping subnet address blocks.) This is done by the default \fBipsec _updown\fR script (see .IR pluto (8)). In situations calling for more control, it may be preferable for the user to supply his own .I updown script, which makes the appropriate adjustments for his system. .TP .B leftgroups a comma separated list of group names. If the .B leftgroups parameter is present then the peer must be a member of at least one of the groups defined by the parameter. Group membership must be certified by a valid attribute certificate stored in \fI/etc/ipsec.d/acerts/\fP thas has been issued to the peer by a trusted Authorization Authority stored in \fI/etc/ipsec.d/aacerts/\fP. .br Attribute certificates are not supported in IKEv2 yet. .TP .B lefthostaccess inserts a pair of INPUT and OUTPUT iptables rules using the default \fBipsec _updown\fR script, thus allowing access to the host itself in the case where the host's internal interface is part of the negotiated client subnet. Acceptable values are .B yes and .B no (the default). .TP .B leftid how the left participant should be identified for authentication; defaults to .BR left . Can be an IP address or a fully-qualified domain name preceded by .B @ (which is used as a literal string and not resolved). .TP .B leftid2 identity to use for a second authentication for the left participant (IKEv2 only); defaults to .BR leftid . .TP .B leftikeport UDP port the left participant uses for IKE communication. Currently supported in IKEv2 connections only. If unspecified, port 500 is used with the port floating to 4500 if a NAT is detected or MOBIKE is enabled. Specifying a local IKE port different from the default additionally requires a socket implementation that listens to this port. .TP .B leftnexthop this parameter is usually not needed any more because the NETKEY IPsec stack does not require explicit routing entries for the traffic to be tunneled. If .B leftsourceip is used with IKEv1 then .B leftnexthop must still be set in order for the source routes to work properly. .TP .B leftprotoport restrict the traffic selector to a single protocol and/or port. Examples: .B leftprotoport=tcp/http or .B leftprotoport=6/80 or .B leftprotoport=udp .TP .B leftrsasigkey the left participant's public key for RSA signature authentication, in RFC 2537 format using .IR ttodata (3) encoding. The magic value .B %none means the same as not specifying a value (useful to override a default). The value .B %cert (the default) means that the key is extracted from a certificate. The identity used for the left participant must be a specific host, not .B %any or another magic value. .B Caution: if two connection descriptions specify different public keys for the same .BR leftid , confusion and madness will ensue. .TP .B leftsendcert Accepted values are .B never or .BR no , .B always or .BR yes , and .BR ifasked , the latter meaning that the peer must send a certificate request payload in order to get a certificate in return. .TP .B leftsourceip The internal source IP to use in a tunnel, also known as virtual IP. If the value is one of the synonyms .BR %modeconfig , .BR %modecfg , .BR %config , or .BR %cfg , an address is requested from the peer. In IKEv2, a statically defined address is also requested, since the server may change it. .TP .B rightsourceip The internal source IP to use in a tunnel for the remote peer. If the value is .B %config on the responder side, the initiator must propose an address which is then echoed back. Also supported are address pools expressed as \fInetwork\fB/\fInetmask\fR or the use of an external IP address pool using %\fIpoolname\fR, where \fIpoolname\fR is the name of the IP address pool used for the lookup. .TP .B leftsubnet private subnet behind the left participant, expressed as \fInetwork\fB/\fInetmask\fR; if omitted, essentially assumed to be \fIleft\fB/32\fR, signifying that the left end of the connection goes to the left participant only. When using IKEv2, the configured subnet of the peers may differ, the protocol narrows it to the greatest common subnet. Further, IKEv2 supports multiple subnets separated by commas. IKEv1 only interprets the first subnet of such a definition. .TP .B leftsubnetwithin the peer can propose any subnet or single IP address that fits within the range defined by .BR leftsubnetwithin. Not relevant for IKEv2, as subnets are narrowed. .TP .B leftupdown what ``updown'' script to run to adjust routing and/or firewalling when the status of the connection changes (default .BR "ipsec _updown" ). May include positional parameters separated by white space (although this requires enclosing the whole string in quotes); including shell metacharacters is unwise. See .IR pluto (8) for details. Relevant only locally, other end need not agree on it. IKEv2 uses the updown script to insert firewall rules only, since routing has been implemented directly into charon. .TP .B lifebytes the number of bytes transmitted over an IPsec SA before it expires (IKEv2 only). .TP .B lifepackets the number of packets transmitted over an IPsec SA before it expires (IKEv2 only). .TP .B lifetime how long a particular instance of a connection (a set of encryption/authentication keys for user packets) should last, from successful negotiation to expiry; acceptable values are an integer optionally followed by .BR s (a time in seconds) or a decimal number followed by .BR m , .BR h , or .B d (a time in minutes, hours, or days respectively) (default .BR 1h , maximum .BR 24h ). Normally, the connection is renegotiated (via the keying channel) before it expires (see .BR margintime ). The two ends need not exactly agree on .BR lifetime , although if they do not, there will be some clutter of superseded connections on the end which thinks the lifetime is longer. .TP .B marginbytes how many bytes before IPsec SA expiry (see .BR lifebytes ) should attempts to negotiate a replacement begin (IKEv2 only). .TP .B marginpackets how many packets before IPsec SA expiry (see .BR lifepackets ) should attempts to negotiate a replacement begin (IKEv2 only). .TP .B margintime how long before connection expiry or keying-channel expiry should attempts to negotiate a replacement begin; acceptable values as for .B lifetime (default .BR 9m ). Relevant only locally, other end need not agree on it. .TP .B mark sets an XFRM mark of the form [/] in the inbound and outbound IPsec SAs and policies (IKEv2 only). If the mask is missing then a default mask of .B 0xffffffff is assumed. .TP .B mark_in sets an XFRM mark of the form [/] in the inbound IPsec SA and policy (IKEv2 only). If the mask is missing then a default mask of .B 0xffffffff is assumed. .TP .B mark_out sets an XFRM mark of the form [/] in the outbound IPsec SA and policy (IKEv2 only). If the mask is missing then a default mask of .B 0xffffffff is assumed. .TP .B mobike enables the IKEv2 MOBIKE protocol defined by RFC 4555. Accepted values are .B yes (the default) and .BR no . If set to .BR no , the IKEv2 charon daemon will not actively propose MOBIKE as initiator and ignore the MOBIKE_SUPPORTED notify as responder. .TP .B modeconfig defines which mode is used to assign a virtual IP. Accepted values are .B push and .B pull (the default). Currently relevant for IKEv1 only since IKEv2 always uses the configuration payload in pull mode. Cisco VPN gateways usually operate in .B push mode. .TP .B pfs whether Perfect Forward Secrecy of keys is desired on the connection's keying channel (with PFS, penetration of the key-exchange protocol does not compromise keys negotiated earlier); acceptable values are .B yes (the default) and .BR no. IKEv2 always uses PFS for IKE_SA rekeying whereas for CHILD_SA rekeying PFS is enforced by defining a Diffie-Hellman modp group in the .B esp parameter. .TP .B pfsgroup defines a Diffie-Hellman group for perfect forward secrecy in IKEv1 Quick Mode differing from the DH group used for IKEv1 Main Mode (IKEv1 only). .TP .B reauth whether rekeying of an IKE_SA should also reauthenticate the peer. In IKEv1, reauthentication is always done. In IKEv2, a value of .B no rekeys without uninstalling the IPsec SAs, a value of .B yes (the default) creates a new IKE_SA from scratch and tries to recreate all IPsec SAs. .TP .B rekey whether a connection should be renegotiated when it is about to expire; acceptable values are .B yes (the default) and .BR no . The two ends need not agree, but while a value of .B no prevents pluto/charon from requesting renegotiation, it does not prevent responding to renegotiation requested from the other end, so .B no will be largely ineffective unless both ends agree on it. .TP .B rekeyfuzz maximum percentage by which .BR marginbytes , .B marginpackets and .B margintime should be randomly increased to randomize rekeying intervals (important for hosts with many connections); acceptable values are an integer, which may exceed 100, followed by a `%' (defaults to .BR 100% ). The value of .BR marginTYPE , after this random increase, must not exceed .B lifeTYPE (where TYPE is one of .IR bytes , .I packets or .IR time ). The value .B 0% will suppress randomization. Relevant only locally, other end need not agree on it. .TP .B rekeymargin synonym for .BR margintime . .TP .B reqid sets the reqid for a given connection to a pre-configured fixed value. .TP .B type the type of the connection; currently the accepted values are .B tunnel (the default) signifying a host-to-host, host-to-subnet, or subnet-to-subnet tunnel; .BR transport , signifying host-to-host transport mode; .BR transport_proxy , signifying the special Mobile IPv6 transport proxy mode; .BR passthrough , signifying that no IPsec processing should be done at all; .BR drop , signifying that packets should be discarded; and .BR reject , signifying that packets should be discarded and a diagnostic ICMP returned. The IKEv2 daemon charon currently supports .BR tunnel , .BR transport , and .BR tunnel_proxy connection types, only. .TP .B xauth specifies the role in the XAUTH protocol if activated by .B authby=xauthpsk or .B authby=xauthrsasig. Accepted values are .B server and .B client (the default). .SS "CONN PARAMETERS: IKEv2 MEDIATION EXTENSION" The following parameters are relevant to IKEv2 Mediation Extension operation only. .TP 14 .B mediation whether this connection is a mediation connection, ie. whether this connection is used to mediate other connections. Mediation connections create no child SA. Acceptable values are .B no (the default) and .BR yes . .TP .B mediated_by the name of the connection to mediate this connection through. If given, the connection will be mediated through the named mediation connection. The mediation connection must set .BR mediation=yes . .TP .B me_peerid ID as which the peer is known to the mediation server, ie. which the other end of this connection uses as its .B leftid on its connection to the mediation server. This is the ID we request the mediation server to mediate us with. If .B me_peerid is not given, the .B rightid of this connection will be used as peer ID. .SH "CA SECTIONS" This are optional sections that can be used to assign special parameters to a Certification Authority (CA). .TP 10 .B auto currently can have either the value .B ignore or .B add . .TP .B cacert defines a path to the CA certificate either relative to \fI/etc/ipsec.d/cacerts\fP or as an absolute path. .TP .B crluri defines a CRL distribution point (ldap, http, or file URI) .TP .B crluri1 synonym for .B crluri. .TP .B crluri2 defines an alternative CRL distribution point (ldap, http, or file URI) .TP .B ldaphost defines an ldap host. Currently used by IKEv1 only. .TP .B ocspuri defines an OCSP URI. .TP .B ocspuri1 synonym for .B ocspuri. .TP .B ocspuri2 defines an alternative OCSP URI. Currently used by IKEv2 only. .TP .B certuribase defines the base URI for the Hash and URL feature supported by IKEv2. Instead of exchanging complete certificates, IKEv2 allows to send an URI that resolves to the DER encoded certificate. The certificate URIs are built by appending the SHA1 hash of the DER encoded certificates to this base URI. .SH "CONFIG SECTIONS" At present, the only .B config section known to the IPsec software is the one named .BR setup , which contains information used when the software is being started. Here's an example: .PP .ne 8 .nf .ft B .ta 1c config setup plutodebug=all crlcheckinterval=10m strictcrlpolicy=yes .ft .fi .PP Parameters are optional unless marked ``(required)''. The currently-accepted .I parameter names in a .B config .B setup section affecting both daemons are: .TP 14 .B cachecrls certificate revocation lists (CRLs) fetched via http or ldap will be cached in \fI/etc/ipsec.d/crls/\fR under a unique file name derived from the certification authority's public key. Accepted values are .B yes and .B no (the default). .TP .B charonstart whether to start the IKEv2 Charon daemon or not. Accepted values are .B yes or .BR no . The default is .B yes if starter was compiled with IKEv2 support. .TP .B dumpdir in what directory should things started by \fBipsec starter\fR (notably the Pluto and Charon daemons) be allowed to dump core? The empty value (the default) means they are not allowed to. This feature is currently not yet supported by \fBipsec starter\fR. .TP .B plutostart whether to start the IKEv1 Pluto daemon or not. Accepted values are .B yes or .BR no . The default is .B yes if starter was compiled with IKEv1 support. .TP .B strictcrlpolicy defines if a fresh CRL must be available in order for the peer authentication based on RSA signatures to succeed. Accepted values are .B yes and .B no (the default). IKEv2 additionally recognizes .B ifuri which reverts to .B yes if at least one CRL URI is defined and to .B no if no URI is known. .TP .B uniqueids whether a particular participant ID should be kept unique, with any new (automatically keyed) connection using an ID from a different IP address deemed to replace all old ones using that ID; acceptable values are .B yes (the default) and .BR no . Participant IDs normally \fIare\fR unique, so a new (automatically-keyed) connection using the same ID is almost invariably intended to replace an old one. The IKEv2 daemon also accepts the value .B replace wich is identical to .B yes and the value .B keep to reject new IKE_SA setups and keep the duplicate established earlier. .PP The following .B config section parameters are used by the IKEv1 Pluto daemon only: .TP .B crlcheckinterval interval in seconds. CRL fetching is enabled if the value is greater than zero. Asynchronous, periodic checking for fresh CRLs is currently done by the IKEv1 Pluto daemon only. .TP .B keep_alive interval in seconds between NAT keep alive packets, the default being 20 seconds. .TP .B nat_traversal activates NAT traversal by accepting source ISAKMP ports different from udp/500 and being able of floating to udp/4500 if a NAT situation is detected. Accepted values are .B yes and .B no (the default). Used by IKEv1 only, NAT traversal always being active in IKEv2. .TP .B nocrsend no certificate request payloads will be sent. Accepted values are .B yes and .B no (the default). .TP .B pkcs11initargs non-standard argument string for PKCS#11 C_Initialize() function; required by NSS softoken. .TP .B pkcs11module defines the path to a dynamically loadable PKCS #11 library. .TP .B pkcs11keepstate PKCS #11 login sessions will be kept during the whole lifetime of the keying daemon. Useful with pin-pad smart card readers. Accepted values are .B yes and .B no (the default). .TP .B pkcs11proxy Pluto will act as a PKCS #11 proxy accessible via the whack interface. Accepted values are .B yes and .B no (the default). .TP .B plutodebug how much Pluto debugging output should be logged. An empty value, or the magic value .BR none , means no debugging output (the default). The magic value .B all means full output. Otherwise only the specified types of output (a quoted list, names without the .B \-\-debug\- prefix, separated by white space) are enabled; for details on available debugging types, see .IR pluto (8). .TP .B plutostderrlog Pluto will not use syslog, but rather log to stderr, and redirect stderr to the argument file. .TP .B postpluto shell command to run after starting Pluto (e.g., to remove a decrypted copy of the .I ipsec.secrets file). It's run in a very simple way; complexities like I/O redirection are best hidden within a script. Any output is redirected for logging, so running interactive commands is difficult unless they use .I /dev/tty or equivalent for their interaction. Default is none. .TP .B prepluto shell command to run before starting Pluto (e.g., to decrypt an encrypted copy of the .I ipsec.secrets file). It's run in a very simple way; complexities like I/O redirection are best hidden within a script. Any output is redirected for logging, so running interactive commands is difficult unless they use .I /dev/tty or equivalent for their interaction. Default is none. .TP .B virtual_private defines private networks using a wildcard notation. .PP The following .B config section parameters are used by the IKEv2 Charon daemon only: .TP .B charondebug how much Charon debugging output should be logged. A comma separated list containing type level/pairs may be specified, e.g: .B dmn 3, ike 1, net -1. Acceptable values for types are .B dmn, mgr, ike, chd, job, cfg, knl, net, enc, lib and the level is one of .B -1, 0, 1, 2, 3, 4 (for silent, audit, control, controlmore, raw, private). .PP The following .B config section parameters only make sense if the KLIPS IPsec stack is used instead of the default NETKEY stack of the Linux 2.6 kernel: .TP .B fragicmp whether a tunnel's need to fragment a packet should be reported back with an ICMP message, in an attempt to make the sender lower his PMTU estimate; acceptable values are .B yes (the default) and .BR no . .TP .B hidetos whether a tunnel packet's TOS field should be set to .B 0 rather than copied from the user packet inside; acceptable values are .B yes (the default) and .BR no .TP .B interfaces virtual and physical interfaces for IPsec to use: a single \fIvirtual\fB=\fIphysical\fR pair, a (quoted!) list of pairs separated by white space, or .BR %none . One of the pairs may be written as .BR %defaultroute , which means: find the interface \fId\fR that the default route points to, and then act as if the value was ``\fBipsec0=\fId\fR''. .B %defaultroute is the default; .B %none must be used to denote no interfaces. .TP .B overridemtu value that the MTU of the ipsec\fIn\fR interface(s) should be set to, overriding IPsec's (large) default. .SH FILES .nf /etc/ipsec.conf /etc/ipsec.d/aacerts /etc/ipsec.d/acerts /etc/ipsec.d/cacerts /etc/ipsec.d/certs /etc/ipsec.d/crls .SH SEE ALSO ipsec(8), pluto(8), starter(8) .SH HISTORY Originally written for the FreeS/WAN project by Henry Spencer. Updated and extended for the strongSwan project by Tobias Brunner, Andreas Steffen and Martin Willi. .SH BUGS .PP If conns are to be added before DNS is available, \fBleft=\fP\fIFQDN\fP will fail.