gmp: Don't parse PKCS1 v1.5 RSA signatures to verify them

Instead we generate the expected signature encoding and compare it to the
decrypted value.

Due to the lenient nature of the previous parsing code (minimum padding
length was not enforced, the algorithmIdentifier/OID parser accepts arbitrary
data after OIDs and in the parameters field etc.) it was susceptible to
Daniel Bleichenbacher's low-exponent attack (from 2006!), which allowed
forging signatures for keys that use low public exponents (i.e. e=3).

Since the public exponent is usually set to 0x10001 (65537) since quite a
while, the flaws in the previous code should not have had that much of a
practical impact in recent years.

Fixes: CVE-2018-16151, CVE-2018-16152
This commit is contained in:
Tobias Brunner 2018-08-28 11:26:24 +02:00
parent 64d88efac5
commit 5955db5b12
2 changed files with 56 additions and 174 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2017 Tobias Brunner
* Copyright (C) 2017-2018 Tobias Brunner
* Copyright (C) 2005 Jan Hutter
* Copyright (C) 2005-2009 Martin Willi
* Copyright (C) 2012 Andreas Steffen
@ -264,14 +264,15 @@ static chunk_t rsasp1(private_gmp_rsa_private_key_t *this, chunk_t data)
}
/**
* Build a signature using the PKCS#1 EMSA scheme
* Hashes the data and builds the plaintext signature value with EMSA
* PKCS#1 v1.5 padding.
*
* Allocates the signature data.
*/
static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this,
hash_algorithm_t hash_algorithm,
chunk_t data, chunk_t *signature)
bool gmp_emsa_pkcs1_signature_data(hash_algorithm_t hash_algorithm,
chunk_t data, size_t keylen, chunk_t *em)
{
chunk_t digestInfo = chunk_empty;
chunk_t em;
if (hash_algorithm != HASH_UNKNOWN)
{
@ -295,43 +296,56 @@ static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this,
/* build DER-encoded digestInfo */
digestInfo = asn1_wrap(ASN1_SEQUENCE, "mm",
asn1_algorithmIdentifier(hash_oid),
asn1_simple_object(ASN1_OCTET_STRING, hash)
);
chunk_free(&hash);
asn1_wrap(ASN1_OCTET_STRING, "m", hash));
data = digestInfo;
}
if (data.len > this->k - 3)
if (data.len > keylen - 11)
{
free(digestInfo.ptr);
DBG1(DBG_LIB, "unable to sign %d bytes using a %dbit key", data.len,
mpz_sizeinbase(this->n, 2));
chunk_free(&digestInfo);
DBG1(DBG_LIB, "signature value of %zu bytes is too long for key of "
"%zu bytes", data.len, keylen);
return FALSE;
}
/* build chunk to rsa-decrypt:
* EM = 0x00 || 0x01 || PS || 0x00 || T.
* PS = 0xFF padding, with length to fill em
/* EM = 0x00 || 0x01 || PS || 0x00 || T.
* PS = 0xFF padding, with length to fill em (at least 8 bytes)
* T = encoded_hash
*/
em.len = this->k;
em.ptr = malloc(em.len);
*em = chunk_alloc(keylen);
/* fill em with padding */
memset(em.ptr, 0xFF, em.len);
memset(em->ptr, 0xFF, em->len);
/* set magic bytes */
*(em.ptr) = 0x00;
*(em.ptr+1) = 0x01;
*(em.ptr + em.len - data.len - 1) = 0x00;
/* set DER-encoded hash */
memcpy(em.ptr + em.len - data.len, data.ptr, data.len);
*(em->ptr) = 0x00;
*(em->ptr+1) = 0x01;
*(em->ptr + em->len - data.len - 1) = 0x00;
/* set encoded hash */
memcpy(em->ptr + em->len - data.len, data.ptr, data.len);
chunk_clear(&digestInfo);
return TRUE;
}
/**
* Build a signature using the PKCS#1 EMSA scheme
*/
static bool build_emsa_pkcs1_signature(private_gmp_rsa_private_key_t *this,
hash_algorithm_t hash_algorithm,
chunk_t data, chunk_t *signature)
{
chunk_t em;
if (!gmp_emsa_pkcs1_signature_data(hash_algorithm, data, this->k, &em))
{
return FALSE;
}
/* build signature */
*signature = rsasp1(this, em);
free(digestInfo.ptr);
free(em.ptr);
chunk_free(&em);
return TRUE;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2017 Tobias Brunner
* Copyright (C) 2017-2018 Tobias Brunner
* Copyright (C) 2005-2009 Martin Willi
* Copyright (C) 2005 Jan Hutter
* HSR Hochschule fuer Technik Rapperswil
@ -70,7 +70,9 @@ struct private_gmp_rsa_public_key_t {
/**
* Shared functions defined in gmp_rsa_private_key.c
*/
extern chunk_t gmp_mpz_to_chunk(const mpz_t value);
chunk_t gmp_mpz_to_chunk(const mpz_t value);
bool gmp_emsa_pkcs1_signature_data(hash_algorithm_t hash_algorithm,
chunk_t data, size_t keylen, chunk_t *em);
/**
* RSAEP algorithm specified in PKCS#1.
@ -114,19 +116,6 @@ static chunk_t rsavp1(private_gmp_rsa_public_key_t *this, chunk_t data)
return rsaep(this, data);
}
/**
* ASN.1 definition of digestInfo
*/
static const asn1Object_t digestInfoObjects[] = {
{ 0, "digestInfo", ASN1_SEQUENCE, ASN1_OBJ }, /* 0 */
{ 1, "digestAlgorithm", ASN1_EOC, ASN1_RAW }, /* 1 */
{ 1, "digest", ASN1_OCTET_STRING, ASN1_BODY }, /* 2 */
{ 0, "exit", ASN1_EOC, ASN1_EXIT }
};
#define DIGEST_INFO 0
#define DIGEST_INFO_ALGORITHM 1
#define DIGEST_INFO_DIGEST 2
/**
* Verification of an EMSA PKCS1 signature described in PKCS#1
*/
@ -134,7 +123,7 @@ static bool verify_emsa_pkcs1_signature(private_gmp_rsa_public_key_t *this,
hash_algorithm_t algorithm,
chunk_t data, chunk_t signature)
{
chunk_t em_ori, em;
chunk_t em_expected, em;
bool success = FALSE;
/* remove any preceding 0-bytes from signature */
@ -148,140 +137,19 @@ static bool verify_emsa_pkcs1_signature(private_gmp_rsa_public_key_t *this,
return FALSE;
}
/* generate expected signature value */
if (!gmp_emsa_pkcs1_signature_data(algorithm, data, this->k, &em_expected))
{
return FALSE;
}
/* unpack signature */
em_ori = em = rsavp1(this, signature);
em = rsavp1(this, signature);
/* result should look like this:
* EM = 0x00 || 0x01 || PS || 0x00 || T.
* PS = 0xFF padding, with length to fill em
* T = oid || hash
*/
success = chunk_equals_const(em_expected, em);
/* check magic bytes */
if (em.len < 2 || *(em.ptr) != 0x00 || *(em.ptr+1) != 0x01)
{
goto end;
}
em = chunk_skip(em, 2);
/* find magic 0x00 */
while (em.len > 0)
{
if (*em.ptr == 0x00)
{
/* found magic byte, stop */
em = chunk_skip(em, 1);
break;
}
else if (*em.ptr != 0xFF)
{
/* bad padding, decryption failed ?!*/
goto end;
}
em = chunk_skip(em, 1);
}
if (em.len == 0)
{
/* no digestInfo found */
goto end;
}
if (algorithm == HASH_UNKNOWN)
{ /* IKEv1 signatures without digestInfo */
if (em.len != data.len)
{
DBG1(DBG_LIB, "hash size in signature is %u bytes instead of"
" %u bytes", em.len, data.len);
goto end;
}
success = memeq_const(em.ptr, data.ptr, data.len);
}
else
{ /* IKEv2 and X.509 certificate signatures */
asn1_parser_t *parser;
chunk_t object;
int objectID;
hash_algorithm_t hash_algorithm = HASH_UNKNOWN;
DBG2(DBG_LIB, "signature verification:");
parser = asn1_parser_create(digestInfoObjects, em);
while (parser->iterate(parser, &objectID, &object))
{
switch (objectID)
{
case DIGEST_INFO:
{
if (em.len > object.len)
{
DBG1(DBG_LIB, "digestInfo field in signature is"
" followed by %u surplus bytes",
em.len - object.len);
goto end_parser;
}
break;
}
case DIGEST_INFO_ALGORITHM:
{
int hash_oid = asn1_parse_algorithmIdentifier(object,
parser->get_level(parser)+1, NULL);
hash_algorithm = hasher_algorithm_from_oid(hash_oid);
if (hash_algorithm == HASH_UNKNOWN || hash_algorithm != algorithm)
{
DBG1(DBG_LIB, "expected hash algorithm %N, but found"
" %N (OID: %#B)", hash_algorithm_names, algorithm,
hash_algorithm_names, hash_algorithm, &object);
goto end_parser;
}
break;
}
case DIGEST_INFO_DIGEST:
{
chunk_t hash;
hasher_t *hasher;
hasher = lib->crypto->create_hasher(lib->crypto, hash_algorithm);
if (hasher == NULL)
{
DBG1(DBG_LIB, "hash algorithm %N not supported",
hash_algorithm_names, hash_algorithm);
goto end_parser;
}
if (object.len != hasher->get_hash_size(hasher))
{
DBG1(DBG_LIB, "hash size in signature is %u bytes"
" instead of %u bytes", object.len,
hasher->get_hash_size(hasher));
hasher->destroy(hasher);
goto end_parser;
}
/* build our own hash and compare */
if (!hasher->allocate_hash(hasher, data, &hash))
{
hasher->destroy(hasher);
goto end_parser;
}
hasher->destroy(hasher);
success = memeq_const(object.ptr, hash.ptr, hash.len);
free(hash.ptr);
break;
}
default:
break;
}
}
end_parser:
success &= parser->success(parser);
parser->destroy(parser);
}
end:
free(em_ori.ptr);
chunk_free(&em_expected);
chunk_free(&em);
return success;
}