aesni: Add a GCM AEAD based on the AES-NI key schedule

This commit is contained in:
Martin Willi 2015-03-30 17:58:29 +02:00
parent 4284660677
commit 313811b72d
4 changed files with 627 additions and 1 deletions

View File

@ -3,6 +3,7 @@ AM_CPPFLAGS = \
AM_CFLAGS = \
-maes \
-mpclmul \
-mssse3 \
$(PLUGIN_CFLAGS)
@ -17,6 +18,7 @@ libstrongswan_aesni_la_SOURCES = \
aesni_cbc.h aesni_cbc.c \
aesni_ctr.h aesni_ctr.c \
aesni_ccm.h aesni_ccm.c \
aesni_gcm.h aesni_gcm.c \
aesni_xcbc.h aesni_xcbc.c \
aesni_cmac.h aesni_cmac.c \
aesni_plugin.h aesni_plugin.c

View File

@ -0,0 +1,563 @@
/*
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "aesni_gcm.h"
#include "aesni_key.h"
#include <crypto/iv/iv_gen_seq.h>
#include <tmmintrin.h>
#define NONCE_SIZE 12
#define IV_SIZE 8
#define SALT_SIZE (NONCE_SIZE - IV_SIZE)
typedef struct private_aesni_gcm_t private_aesni_gcm_t;
/**
* GCM en/decryption method type
*/
typedef void (*aesni_gcm_fn_t)(private_aesni_gcm_t*, size_t, u_char*, u_char*,
u_char*, size_t, u_char*, u_char*);
/**
* Private data of an aesni_gcm_t object.
*/
struct private_aesni_gcm_t {
/**
* Public aesni_gcm_t interface.
*/
aesni_gcm_t public;
/**
* Encryption key schedule
*/
aesni_key_t *key;
/**
* IV generator.
*/
iv_gen_t *iv_gen;
/**
* Length of the integrity check value
*/
size_t icv_size;
/**
* Length of the key in bytes
*/
size_t key_size;
/**
* GCM encryption function
*/
aesni_gcm_fn_t encrypt;
/**
* GCM decryption function
*/
aesni_gcm_fn_t decrypt;
/**
* salt to add to nonce
*/
u_char salt[SALT_SIZE];
/**
* GHASH subkey H, big-endian
*/
__m128i h;
};
/**
* Byte-swap a 128-bit integer
*/
static inline __m128i swap128(__m128i x)
{
return _mm_shuffle_epi8(x,
_mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
}
/**
* Multiply two blocks in GF128
*/
static inline __m128i mult_block(__m128i h, __m128i y)
{
__m128i t1, t2, t3, t4, t5, t6;
y = swap128(y);
t1 = _mm_clmulepi64_si128(h, y, 0x00);
t2 = _mm_clmulepi64_si128(h, y, 0x01);
t3 = _mm_clmulepi64_si128(h, y, 0x10);
t4 = _mm_clmulepi64_si128(h, y, 0x11);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
t4 = _mm_xor_si128(t4, t2);
t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_slli_epi32(t1, 1);
t6 = _mm_srli_epi32(t4, 31);
t4 = _mm_slli_epi32(t4, 1);
t3 = _mm_srli_si128(t5, 12);
t6 = _mm_slli_si128(t6, 4);
t5 = _mm_slli_si128(t5, 4);
t1 = _mm_or_si128(t1, t5);
t4 = _mm_or_si128(t4, t6);
t4 = _mm_or_si128(t4, t3);
t5 = _mm_slli_epi32(t1, 31);
t6 = _mm_slli_epi32(t1, 30);
t3 = _mm_slli_epi32(t1, 25);
t5 = _mm_xor_si128(t5, t6);
t5 = _mm_xor_si128(t5, t3);
t6 = _mm_srli_si128(t5, 4);
t4 = _mm_xor_si128(t4, t6);
t5 = _mm_slli_si128(t5, 12);
t1 = _mm_xor_si128(t1, t5);
t4 = _mm_xor_si128(t4, t1);
t5 = _mm_srli_epi32(t1, 1);
t2 = _mm_srli_epi32(t1, 2);
t3 = _mm_srli_epi32(t1, 7);
t4 = _mm_xor_si128(t4, t2);
t4 = _mm_xor_si128(t4, t3);
t4 = _mm_xor_si128(t4, t5);
return swap128(t4);
}
/**
* GHASH on a single block
*/
static __m128i ghash(__m128i h, __m128i y, __m128i x)
{
return mult_block(h, _mm_xor_si128(y, x));
}
/**
* Start constructing the ICV for the associated data
*/
static __m128i icv_header(private_aesni_gcm_t *this, void *assoc, size_t alen)
{
u_int blocks, rem, i;
__m128i y, last, *ab;
y = _mm_setzero_si128();
ab = assoc;
blocks = alen / AES_BLOCK_SIZE;
rem = alen % AES_BLOCK_SIZE;
for (i = 0; i < blocks; i++)
{
y = ghash(this->h, y, _mm_loadu_si128(ab + i));
}
if (rem)
{
last = _mm_setzero_si128();
memcpy(&last, ab + blocks, rem);
y = ghash(this->h, y, last);
}
return y;
}
/**
* Complete the ICV by hashing a assoc/data length block
*/
static __m128i icv_tailer(private_aesni_gcm_t *this, __m128i y,
size_t alen, size_t dlen)
{
__m128i b;
htoun64(&b, alen * 8);
htoun64((u_char*)&b + sizeof(u_int64_t), dlen * 8);
return ghash(this->h, y, b);
}
/**
* En-/Decrypt the ICV, trim and store it
*/
static void icv_crypt(private_aesni_gcm_t *this, __m128i y, __m128i j,
u_char *icv)
{
__m128i t, b;
u_int round;
t = _mm_xor_si128(j, this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, this->key->schedule[round]);
}
t = _mm_aesenclast_si128(t, this->key->schedule[this->key->rounds]);
t = _mm_xor_si128(y, t);
_mm_storeu_si128(&b, t);
memcpy(icv, &b, this->icv_size);
}
/**
* Do big-endian increment on x
*/
static inline __m128i increment_be(__m128i x)
{
x = swap128(x);
x = _mm_add_epi64(x, _mm_set_epi32(0, 0, 0, 1));
x = swap128(x);
return x;
}
/**
* Generate the block J0
*/
static inline __m128i create_j(private_aesni_gcm_t *this, u_char *iv)
{
u_char j[AES_BLOCK_SIZE];
memcpy(j, this->salt, SALT_SIZE);
memcpy(j + SALT_SIZE, iv, IV_SIZE);
htoun32(j + SALT_SIZE + IV_SIZE, 1);
return _mm_loadu_si128((__m128i*)j);
}
/**
* Encrypt a remaining incomplete block, return updated Y
*/
static __m128i encrypt_gcm_rem(private_aesni_gcm_t *this, u_int rem,
void *in, void *out, __m128i cb, __m128i y)
{
__m128i t, b;
u_int round;
memset(&b, 0, sizeof(b));
memcpy(&b, in, rem);
t = _mm_xor_si128(cb, this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, this->key->schedule[round]);
}
t = _mm_aesenclast_si128(t, this->key->schedule[this->key->rounds]);
b = _mm_xor_si128(t, b);
memcpy(out, &b, rem);
memset((u_char*)&b + rem, 0, AES_BLOCK_SIZE - rem);
return ghash(this->h, y, b);
}
/**
* Decrypt a remaining incomplete block, return updated Y
*/
static __m128i decrypt_gcm_rem(private_aesni_gcm_t *this, u_int rem,
void *in, void *out, __m128i cb, __m128i y)
{
__m128i t, b;
u_int round;
memset(&b, 0, sizeof(b));
memcpy(&b, in, rem);
y = ghash(this->h, y, b);
t = _mm_xor_si128(cb, this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, this->key->schedule[round]);
}
t = _mm_aesenclast_si128(t, this->key->schedule[this->key->rounds]);
b = _mm_xor_si128(t, b);
memcpy(out, &b, rem);
return y;
}
/**
* Generic GCM encryption/ICV generation
*/
static void encrypt_gcm(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d, t, y, j, cb, *bi, *bo;
u_int round, blocks, rem, i;
j = create_j(this, iv);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
cb = increment_be(j);
for (i = 0; i < blocks; i++)
{
d = _mm_loadu_si128(bi + i);
t = _mm_xor_si128(cb, this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, this->key->schedule[round]);
}
t = _mm_aesenclast_si128(t, this->key->schedule[this->key->rounds]);
t = _mm_xor_si128(t, d);
_mm_storeu_si128(bo + i, t);
y = ghash(this->h, y, t);
cb = increment_be(cb);
}
if (rem)
{
y = encrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* Generic GCM decryption/ICV generation
*/
static void decrypt_gcm(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d, t, y, j, cb, *bi, *bo;
u_int round, blocks, rem, i;
j = create_j(this, iv);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
cb = increment_be(j);
for (i = 0; i < blocks; i++)
{
d = _mm_loadu_si128(bi + i);
y = ghash(this->h, y, d);
t = _mm_xor_si128(cb, this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, this->key->schedule[round]);
}
t = _mm_aesenclast_si128(t, this->key->schedule[this->key->rounds]);
t = _mm_xor_si128(t, d);
_mm_storeu_si128(bo + i, t);
cb = increment_be(cb);
}
if (rem)
{
y = decrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
METHOD(aead_t, encrypt, bool,
private_aesni_gcm_t *this, chunk_t plain, chunk_t assoc, chunk_t iv,
chunk_t *encr)
{
u_char *out;
if (!this->key || iv.len != IV_SIZE)
{
return FALSE;
}
out = plain.ptr;
if (encr)
{
*encr = chunk_alloc(plain.len + this->icv_size);
out = encr->ptr;
}
this->encrypt(this, plain.len, plain.ptr, out, iv.ptr,
assoc.len, assoc.ptr, out + plain.len);
return TRUE;
}
METHOD(aead_t, decrypt, bool,
private_aesni_gcm_t *this, chunk_t encr, chunk_t assoc, chunk_t iv,
chunk_t *plain)
{
u_char *out, icv[this->icv_size];
if (!this->key || iv.len != IV_SIZE || encr.len < this->icv_size)
{
return FALSE;
}
encr.len -= this->icv_size;
out = encr.ptr;
if (plain)
{
*plain = chunk_alloc(encr.len);
out = plain->ptr;
}
this->decrypt(this, encr.len, encr.ptr, out, iv.ptr,
assoc.len, assoc.ptr, icv);
return memeq_const(icv, encr.ptr + encr.len, this->icv_size);
}
METHOD(aead_t, get_block_size, size_t,
private_aesni_gcm_t *this)
{
return 1;
}
METHOD(aead_t, get_icv_size, size_t,
private_aesni_gcm_t *this)
{
return this->icv_size;
}
METHOD(aead_t, get_iv_size, size_t,
private_aesni_gcm_t *this)
{
return IV_SIZE;
}
METHOD(aead_t, get_iv_gen, iv_gen_t*,
private_aesni_gcm_t *this)
{
return this->iv_gen;
}
METHOD(aead_t, get_key_size, size_t,
private_aesni_gcm_t *this)
{
return this->key_size + SALT_SIZE;
}
METHOD(aead_t, set_key, bool,
private_aesni_gcm_t *this, chunk_t key)
{
u_int round;
__m128i h;
if (key.len != this->key_size + SALT_SIZE)
{
return FALSE;
}
memcpy(this->salt, key.ptr + key.len - SALT_SIZE, SALT_SIZE);
key.len -= SALT_SIZE;
DESTROY_IF(this->key);
this->key = aesni_key_create(TRUE, key);
h = _mm_xor_si128(_mm_setzero_si128(), this->key->schedule[0]);
for (round = 1; round < this->key->rounds; round++)
{
h = _mm_aesenc_si128(h, this->key->schedule[round]);
}
h = _mm_aesenclast_si128(h, this->key->schedule[this->key->rounds]);
this->h = swap128(h);
return TRUE;
}
METHOD(aead_t, destroy, void,
private_aesni_gcm_t *this)
{
DESTROY_IF(this->key);
memwipe(&this->h, sizeof(this->h));
this->iv_gen->destroy(this->iv_gen);
free(this);
}
/**
* See header
*/
aesni_gcm_t *aesni_gcm_create(encryption_algorithm_t algo,
size_t key_size, size_t salt_size)
{
private_aesni_gcm_t *this;
size_t icv_size;
switch (key_size)
{
case 0:
key_size = 16;
break;
case 16:
case 24:
case 32:
break;
default:
return NULL;
}
if (salt_size && salt_size != SALT_SIZE)
{
/* currently not supported */
return NULL;
}
switch (algo)
{
case ENCR_AES_GCM_ICV8:
algo = ENCR_AES_CBC;
icv_size = 8;
break;
case ENCR_AES_GCM_ICV12:
algo = ENCR_AES_CBC;
icv_size = 12;
break;
case ENCR_AES_GCM_ICV16:
algo = ENCR_AES_CBC;
icv_size = 16;
break;
default:
return NULL;
}
INIT(this,
.public = {
.aead = {
.encrypt = _encrypt,
.decrypt = _decrypt,
.get_block_size = _get_block_size,
.get_icv_size = _get_icv_size,
.get_iv_size = _get_iv_size,
.get_iv_gen = _get_iv_gen,
.get_key_size = _get_key_size,
.set_key = _set_key,
.destroy = _destroy,
},
},
.key_size = key_size,
.iv_gen = iv_gen_seq_create(),
.icv_size = icv_size,
.encrypt = encrypt_gcm,
.decrypt = decrypt_gcm,
);
return &this->public;
}

View File

@ -0,0 +1,50 @@
/*
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/**
* @defgroup aesni_gcm aesni_gcm
* @{ @ingroup aesni
*/
#ifndef AESNI_GCM_H_
#define AESNI_GCM_H_
#include <library.h>
typedef struct aesni_gcm_t aesni_gcm_t;
/**
* GCM mode AEAD using AES-NI
*/
struct aesni_gcm_t {
/**
* Implements aead_t interface
*/
aead_t aead;
};
/**
* Create a aesni_gcm instance.
*
* @param algo encryption algorithm, ENCR_AES_GCM*
* @param key_size AES key size, in bytes
* @param salt_size size of salt value
* @return AES-GCM AEAD, NULL if not supported
*/
aesni_gcm_t *aesni_gcm_create(encryption_algorithm_t algo,
size_t key_size, size_t salt_size);
#endif /** AESNI_GCM_H_ @}*/

View File

@ -17,6 +17,7 @@
#include "aesni_cbc.h"
#include "aesni_ctr.h"
#include "aesni_ccm.h"
#include "aesni_gcm.h"
#include "aesni_xcbc.h"
#include "aesni_cmac.h"
@ -68,6 +69,16 @@ METHOD(plugin_t, get_features, int,
PLUGIN_PROVIDE(AEAD, ENCR_AES_CCM_ICV8, 32),
PLUGIN_PROVIDE(AEAD, ENCR_AES_CCM_ICV12, 32),
PLUGIN_PROVIDE(AEAD, ENCR_AES_CCM_ICV16, 32),
PLUGIN_REGISTER(AEAD, aesni_gcm_create),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV8, 16),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV12, 16),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV16, 16),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV8, 24),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV12, 24),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV16, 24),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV8, 32),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV12, 32),
PLUGIN_PROVIDE(AEAD, ENCR_AES_GCM_ICV16, 32),
PLUGIN_REGISTER(PRF, aesni_xcbc_prf_create),
PLUGIN_PROVIDE(PRF, PRF_AES128_XCBC),
PLUGIN_REGISTER(SIGNER, aesni_xcbc_signer_create),
@ -79,7 +90,7 @@ METHOD(plugin_t, get_features, int,
};
*features = f;
if (cpu_feature_available(CPU_FEATURE_AESNI))
if (cpu_feature_available(CPU_FEATURE_AESNI | CPU_FEATURE_PCLMULQDQ))
{
return countof(f);
}