strongswan/src/libhydra/kernel/kernel_ipsec.h

305 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006-2012 Tobias Brunner
* Copyright (C) 2006 Daniel Roethlisberger
* Copyright (C) 2005-2006 Martin Willi
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/**
* @defgroup kernel_ipsec kernel_ipsec
2010-07-12 08:57:46 +00:00
* @{ @ingroup hkernel
*/
#ifndef KERNEL_IPSEC_H_
#define KERNEL_IPSEC_H_
typedef struct kernel_ipsec_t kernel_ipsec_t;
#include <networking/host.h>
#include <ipsec/ipsec_types.h>
2010-07-12 08:57:46 +00:00
#include <selectors/traffic_selector.h>
#include <plugins/plugin.h>
#include <kernel/kernel_interface.h>
/**
* Interface to the ipsec subsystem of the kernel.
*
* The kernel ipsec interface handles the communication with the kernel
* for SA and policy management. It allows setup of these, and provides
* further the handling of kernel events.
* Policy information are cached in the interface. This is necessary to do
* reference counting. The Linux kernel does not allow the same policy
* installed twice, but we need this as CHILD_SA exist multiple times
* when rekeying. Thats why we do reference counting of policies.
*/
struct kernel_ipsec_t {
/**
* Get the feature set supported by this kernel backend.
*
* @return ORed feature-set of backend
*/
kernel_feature_t (*get_features)(kernel_ipsec_t *this);
/**
* Get a SPI from the kernel.
*
* @param src source address of SA
* @param dst destination address of SA
* @param protocol protocol for SA (ESP/AH)
* @param reqid unique ID for this SA
* @param spi allocated spi
* @return SUCCESS if operation completed
*/
status_t (*get_spi)(kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi);
/**
* Get a Compression Parameter Index (CPI) from the kernel.
*
* @param src source address of SA
* @param dst destination address of SA
* @param reqid unique ID for the corresponding SA
* @param cpi allocated cpi
* @return SUCCESS if operation completed
*/
status_t (*get_cpi)(kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi);
/**
* Add an SA to the SAD.
*
* add_sa() may update an already allocated
* SPI (via get_spi). In this case, the replace
* flag must be set.
* This function does install a single SA for a
* single protocol in one direction.
*
* @param src source address for this SA
* @param dst destination address for this SA
* @param spi SPI allocated by us or remote peer
* @param protocol protocol for this SA (ESP/AH)
* @param reqid unique ID for this SA
2010-07-02 21:45:57 +00:00
* @param mark mark for this SA
* @param tfc Traffic Flow Confidentiality padding for this SA
* @param lifetime lifetime_cfg_t for this SA
* @param enc_alg Algorithm to use for encryption (ESP only)
* @param enc_key key to use for encryption
* @param int_alg Algorithm to use for integrity protection
* @param int_key key to use for integrity protection
* @param mode mode of the SA (tunnel, transport)
* @param ipcomp IPComp transform to use
* @param cpi CPI for IPComp
* @param replay_window anti-replay window size
kernel-interface: add an exchange initiator parameter to add_sa() This new flag gives the kernel-interface a hint how it should priorize the use of newly installed SAs during rekeying. Consider the following rekey procedure in IKEv2: Initiator --- Responder I1 -------CREATE-------> R1 I2 <------CREATE-------- -------DELETE-------> R2 I3 <------DELETE-------- SAs are always handled as pairs, the following happens at the SA level: * Initiator starts the exchange at I1 * Responder installs new SA pair at R1 * Initiator installs new SA pair at I2 * Responder removes old SA pair at R2 * Initiator removes old SA pair at I3 This makes sure SAs get installed/removed overlapping during rekeying. However, to avoid any packet loss, it is crucial that the new outbound SA gets activated at the correct position: * as exchange initiator, in I2 * as exchange responder, in R2 This should guarantee that we don't use the new outbound SA before the peer could install its corresponding inbound SA. The new parameter allows the kernel backend to install the new SA with appropriate priorities, i.e. it should: * as exchange inititator, have the new outbound SA installed with higher priority than the old SA * as exchange responder, have the new outbound SA installed with lower priority than the old SA While we could split up the SA installation at the responder, this approach has another advantage: it allows the kernel backend to switch SAs based on other criteria, for example when receiving traffic on the new inbound SA.
2013-05-08 08:31:06 +00:00
* @param initiator TRUE if initiator of the exchange creating this SA
* @param encap enable UDP encapsulation for NAT traversal
* @param esn TRUE to use Extended Sequence Numbers
* @param inbound TRUE if this is an inbound SA
* @param src_ts traffic selector with BEET source address
* @param dst_ts traffic selector with BEET destination address
* @return SUCCESS if operation completed
*/
status_t (*add_sa) (kernel_ipsec_t *this,
host_t *src, host_t *dst, u_int32_t spi,
u_int8_t protocol, u_int32_t reqid,
mark_t mark, u_int32_t tfc, lifetime_cfg_t *lifetime,
u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key,
ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi,
u_int32_t replay_window,
kernel-interface: add an exchange initiator parameter to add_sa() This new flag gives the kernel-interface a hint how it should priorize the use of newly installed SAs during rekeying. Consider the following rekey procedure in IKEv2: Initiator --- Responder I1 -------CREATE-------> R1 I2 <------CREATE-------- -------DELETE-------> R2 I3 <------DELETE-------- SAs are always handled as pairs, the following happens at the SA level: * Initiator starts the exchange at I1 * Responder installs new SA pair at R1 * Initiator installs new SA pair at I2 * Responder removes old SA pair at R2 * Initiator removes old SA pair at I3 This makes sure SAs get installed/removed overlapping during rekeying. However, to avoid any packet loss, it is crucial that the new outbound SA gets activated at the correct position: * as exchange initiator, in I2 * as exchange responder, in R2 This should guarantee that we don't use the new outbound SA before the peer could install its corresponding inbound SA. The new parameter allows the kernel backend to install the new SA with appropriate priorities, i.e. it should: * as exchange inititator, have the new outbound SA installed with higher priority than the old SA * as exchange responder, have the new outbound SA installed with lower priority than the old SA While we could split up the SA installation at the responder, this approach has another advantage: it allows the kernel backend to switch SAs based on other criteria, for example when receiving traffic on the new inbound SA.
2013-05-08 08:31:06 +00:00
bool initiator, bool encap, bool esn, bool inbound,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts);
/**
* Update the hosts on an installed SA.
*
* We cannot directly update the destination address as the kernel
* requires the spi, the protocol AND the destination address (and family)
* to identify SAs. Therefore if the destination address changed we
* create a new SA and delete the old one.
*
* @param spi SPI of the SA
* @param protocol protocol for this SA (ESP/AH)
* @param cpi CPI for IPComp, 0 if no IPComp is used
* @param src current source address
* @param dst current destination address
* @param new_src new source address
* @param new_dst new destination address
* @param encap current use of UDP encapsulation
* @param new_encap new use of UDP encapsulation
2010-07-02 21:45:57 +00:00
* @param mark optional mark for this SA
* @return SUCCESS if operation completed, NOT_SUPPORTED if
* the kernel interface can't update the SA
*/
status_t (*update_sa)(kernel_ipsec_t *this,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi,
host_t *src, host_t *dst,
host_t *new_src, host_t *new_dst,
2010-07-02 21:45:57 +00:00
bool encap, bool new_encap, mark_t mark);
2009-07-30 19:33:19 +00:00
/**
* Query the number of bytes processed by an SA from the SAD.
*
2009-07-30 19:33:19 +00:00
* @param src source address for this SA
* @param dst destination address for this SA
* @param spi SPI allocated by us or remote peer
* @param protocol protocol for this SA (ESP/AH)
2010-07-02 21:45:57 +00:00
* @param mark optional mark for this SA
2009-07-30 19:33:19 +00:00
* @param[out] bytes the number of bytes processed by SA
* @param[out] packets number of packets processed by SA
* @param[out] time last (monotonic) time of SA use
2009-07-30 19:33:19 +00:00
* @return SUCCESS if operation completed
*/
status_t (*query_sa) (kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark,
u_int64_t *bytes, u_int64_t *packets, time_t *time);
/**
* Delete a previusly installed SA from the SAD.
*
* @param src source address for this SA
* @param dst destination address for this SA
* @param spi SPI allocated by us or remote peer
* @param protocol protocol for this SA (ESP/AH)
* @param cpi CPI for IPComp or 0
2010-07-02 21:45:57 +00:00
* @param mark optional mark for this SA
* @return SUCCESS if operation completed
*/
status_t (*del_sa) (kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi,
2010-07-02 21:45:57 +00:00
mark_t mark);
/**
* Flush all SAs from the SAD.
*
* @return SUCCESS if operation completed
*/
status_t (*flush_sas) (kernel_ipsec_t *this);
/**
* Add a policy to the SPD.
*
* A policy is always associated to an SA. Traffic which matches a
* policy is handled by the SA with the same reqid.
*
* @param src source address of SA
* @param dst dest address of SA
* @param src_ts traffic selector to match traffic source
* @param dst_ts traffic selector to match traffic dest
2010-07-05 16:52:50 +00:00
* @param direction direction of traffic, POLICY_(IN|OUT|FWD)
* @param type type of policy, POLICY_(IPSEC|PASS|DROP)
* @param sa details about the SA(s) tied to this policy
2010-07-02 21:45:57 +00:00
* @param mark mark for this policy
* @param priority priority of this policy
* @return SUCCESS if operation completed
*/
status_t (*add_policy) (kernel_ipsec_t *this,
host_t *src, host_t *dst,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type,
ipsec_sa_cfg_t *sa, mark_t mark,
policy_priority_t priority);
/**
* Query the use time of a policy.
*
* The use time of a policy is the time the policy was used for the last
* time. It is not the system time, but a monotonic timestamp as returned
* by time_monotonic.
*
* @param src_ts traffic selector to match traffic source
* @param dst_ts traffic selector to match traffic dest
2010-07-05 16:52:50 +00:00
* @param direction direction of traffic, POLICY_(IN|OUT|FWD)
2010-07-02 21:45:57 +00:00
* @param mark optional mark
* @param[out] use_time the monotonic timestamp of this SA's last use
* @return SUCCESS if operation completed
*/
status_t (*query_policy) (kernel_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
2010-07-02 21:45:57 +00:00
policy_dir_t direction, mark_t mark,
time_t *use_time);
/**
* Remove a policy from the SPD.
*
* The kernel interface implements reference counting for policies.
* If the same policy is installed multiple times (in the case of rekeying),
* the reference counter is increased. del_policy() decreases the ref counter
* and removes the policy only when no more references are available.
*
* @param src_ts traffic selector to match traffic source
* @param dst_ts traffic selector to match traffic dest
2010-07-05 16:52:50 +00:00
* @param direction direction of traffic, POLICY_(IN|OUT|FWD)
* @param reqid unique ID of the associated SA
2010-07-02 21:45:57 +00:00
* @param mark optional mark
* @param priority priority of the policy
* @return SUCCESS if operation completed
*/
status_t (*del_policy) (kernel_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, u_int32_t reqid,
mark_t mark, policy_priority_t priority);
/**
* Flush all policies from the SPD.
*
* @return SUCCESS if operation completed
*/
status_t (*flush_policies) (kernel_ipsec_t *this);
/**
* Install a bypass policy for the given socket.
*
* @param fd socket file descriptor to setup policy for
* @param family protocol family of the socket
* @return TRUE of policy set up successfully
*/
bool (*bypass_socket)(kernel_ipsec_t *this, int fd, int family);
/**
* Enable decapsulation of ESP-in-UDP packets for the given port/socket.
*
* @param fd socket file descriptor
* @param family protocol family of the socket
* @param port the UDP port
* @return TRUE if UDP decapsulation was enabled successfully
*/
bool (*enable_udp_decap)(kernel_ipsec_t *this, int fd, int family,
u_int16_t port);
/**
* Destroy the implementation.
*/
void (*destroy) (kernel_ipsec_t *this);
};
/**
* Helper function to (un-)register IPsec kernel interfaces from plugin features.
*
* This function is a plugin_feature_callback_t and can be used with the
* PLUGIN_CALLBACK macro to register an IPsec kernel interface constructor.
*
* @param plugin plugin registering the kernel interface
* @param feature associated plugin feature
* @param reg TRUE to register, FALSE to unregister
* @param data data passed to callback, an kernel_ipsec_constructor_t
*/
bool kernel_ipsec_register(plugin_t *plugin, plugin_feature_t *feature,
bool reg, void *data);
#endif /** KERNEL_IPSEC_H_ @}*/