strongswan/src/charon-tkm/src/tkm/tkm_kernel_ipsec.c

395 lines
9.8 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 Reto Buerki
* Copyright (C) 2012 Adrian-Ken Rueegsegger
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <errno.h>
#include <netinet/udp.h>
#include <linux/xfrm.h>
#include <utils/debug.h>
#include <utils/chunk.h>
#include <tkm/constants.h>
#include <tkm/client.h>
#include "tkm.h"
#include "tkm_utils.h"
#include "tkm_types.h"
#include "tkm_keymat.h"
#include "tkm_kernel_sad.h"
#include "tkm_kernel_ipsec.h"
2013-01-17 09:01:31 +00:00
/** From linux/in.h */
#ifndef IP_XFRM_POLICY
#define IP_XFRM_POLICY 17
#endif
typedef struct private_tkm_kernel_ipsec_t private_tkm_kernel_ipsec_t;
/**
* Private variables and functions of TKM kernel ipsec instance.
*/
struct private_tkm_kernel_ipsec_t {
/**
* Public tkm_kernel_ipsec interface.
*/
tkm_kernel_ipsec_t public;
2012-09-12 09:52:08 +00:00
/**
* RNG used for SPI generation.
*/
rng_t *rng;
/**
* CHILD/ESP SA database.
*/
tkm_kernel_sad_t *sad;
};
METHOD(kernel_ipsec_t, get_spi, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi)
{
2013-03-18 17:47:16 +00:00
bool result;
if (!this->rng)
{
this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (!this->rng)
{
DBG1(DBG_KNL, "unable to create RNG");
return FAILED;
}
}
DBG1(DBG_KNL, "getting SPI for reqid {%u}", reqid);
2013-03-18 17:47:16 +00:00
result = this->rng->get_bytes(this->rng, sizeof(u_int32_t),
(u_int8_t *)spi);
2012-09-12 09:52:08 +00:00
return result ? SUCCESS : FAILED;
}
METHOD(kernel_ipsec_t, get_cpi, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
return NOT_SUPPORTED;
}
METHOD(kernel_ipsec_t, add_sa, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int32_t reqid, mark_t mark,
u_int32_t tfc, lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode,
u_int16_t ipcomp, u_int16_t cpi, u_int32_t replay_window,
bool _initiator, bool encap, bool esn, bool inbound,
traffic_selector_t* src_ts, traffic_selector_t* dst_ts)
{
2013-03-18 17:47:16 +00:00
esa_info_t esa;
bool initiator;
esp_spi_type spi_loc, spi_rem;
host_t *local, *peer;
chunk_t *nonce_loc, *nonce_rem;
nc_id_type nonce_loc_id;
esa_id_type esa_id;
nonce_type nc_rem;
if (enc_key.ptr == NULL)
{
DBG1(DBG_KNL, "Unable to get ESA information");
return FAILED;
}
2013-03-18 17:47:16 +00:00
esa = *(esa_info_t *)(enc_key.ptr);
/* only handle the case where we have both distinct ESP spi's available */
if (esa.spi_r == spi)
{
chunk_free(&esa.nonce_i);
chunk_free(&esa.nonce_r);
return SUCCESS;
}
/* Initiator if encr_r is passed as enc_key to the inbound add_sa call */
kernel-interface: add an exchange initiator parameter to add_sa() This new flag gives the kernel-interface a hint how it should priorize the use of newly installed SAs during rekeying. Consider the following rekey procedure in IKEv2: Initiator --- Responder I1 -------CREATE-------> R1 I2 <------CREATE-------- -------DELETE-------> R2 I3 <------DELETE-------- SAs are always handled as pairs, the following happens at the SA level: * Initiator starts the exchange at I1 * Responder installs new SA pair at R1 * Initiator installs new SA pair at I2 * Responder removes old SA pair at R2 * Initiator removes old SA pair at I3 This makes sure SAs get installed/removed overlapping during rekeying. However, to avoid any packet loss, it is crucial that the new outbound SA gets activated at the correct position: * as exchange initiator, in I2 * as exchange responder, in R2 This should guarantee that we don't use the new outbound SA before the peer could install its corresponding inbound SA. The new parameter allows the kernel backend to install the new SA with appropriate priorities, i.e. it should: * as exchange inititator, have the new outbound SA installed with higher priority than the old SA * as exchange responder, have the new outbound SA installed with lower priority than the old SA While we could split up the SA installation at the responder, this approach has another advantage: it allows the kernel backend to switch SAs based on other criteria, for example when receiving traffic on the new inbound SA.
2013-05-08 08:31:06 +00:00
/* TODO: does the new _initiator parameter have the same meaning? */
2013-03-18 17:47:16 +00:00
initiator = esa.is_encr_r && inbound;
if (initiator)
{
spi_loc = spi;
spi_rem = esa.spi_r;
local = dst;
peer = src;
nonce_loc = &esa.nonce_i;
nonce_rem = &esa.nonce_r;
}
else
{
spi_loc = esa.spi_r;
spi_rem = spi;
local = src;
peer = dst;
nonce_loc = &esa.nonce_r;
nonce_rem = &esa.nonce_i;
}
2013-03-18 17:47:16 +00:00
esa_id = tkm->idmgr->acquire_id(tkm->idmgr, TKM_CTX_ESA);
if (!this->sad->insert(this->sad, esa_id, peer, local, spi_loc, protocol))
{
DBG1(DBG_KNL, "unable to add entry (%llu) to SAD", esa_id);
goto sad_failure;
}
/*
* creation of first CHILD SA:
* no nonce and no dh contexts because the ones from the IKE SA are re-used
*/
2013-03-18 17:47:16 +00:00
nonce_loc_id = tkm->chunk_map->get_id(tkm->chunk_map, nonce_loc);
if (nonce_loc_id == 0 && esa.dh_id == 0)
{
2013-03-04 10:23:22 +00:00
if (ike_esa_create_first(esa_id, esa.isa_id, reqid, 1, spi_loc, spi_rem)
!= TKM_OK)
{
DBG1(DBG_KNL, "child SA (%llu, first) creation failed", esa_id);
goto failure;
}
}
/* creation of child SA without PFS: no dh context */
else if (nonce_loc_id != 0 && esa.dh_id == 0)
{
chunk_to_sequence(nonce_rem, &nc_rem, sizeof(nonce_type));
if (ike_esa_create_no_pfs(esa_id, esa.isa_id, reqid, 1, nonce_loc_id,
2013-03-04 10:23:22 +00:00
nc_rem, initiator, spi_loc, spi_rem)
!= TKM_OK)
{
DBG1(DBG_KNL, "child SA (%llu, no PFS) creation failed", esa_id);
goto failure;
}
tkm->idmgr->release_id(tkm->idmgr, TKM_CTX_NONCE, nonce_loc_id);
}
/* creation of subsequent child SA with PFS: nonce and dh context are set */
else
{
chunk_to_sequence(nonce_rem, &nc_rem, sizeof(nonce_type));
if (ike_esa_create(esa_id, esa.isa_id, reqid, 1, esa.dh_id, nonce_loc_id,
2013-03-04 10:23:22 +00:00
nc_rem, initiator, spi_loc, spi_rem) != TKM_OK)
{
DBG1(DBG_KNL, "child SA (%llu) creation failed", esa_id);
goto failure;
}
tkm->idmgr->release_id(tkm->idmgr, TKM_CTX_NONCE, nonce_loc_id);
}
if (ike_esa_select(esa_id) != TKM_OK)
{
DBG1(DBG_KNL, "error selecting new child SA (%llu)", esa_id);
if (ike_esa_reset(esa_id) != TKM_OK)
{
DBG1(DBG_KNL, "child SA (%llu) deletion failed", esa_id);
}
goto failure;
}
DBG1(DBG_KNL, "added child SA (esa: %llu, isa: %llu, esp_spi_loc: %x, "
"esp_spi_rem: %x, role: %s)", esa_id, esa.isa_id, ntohl(spi_loc),
ntohl(spi_rem), initiator ? "initiator" : "responder");
chunk_free(&esa.nonce_i);
chunk_free(&esa.nonce_r);
return SUCCESS;
failure:
this->sad->remove(this->sad, esa_id);
sad_failure:
tkm->idmgr->release_id(tkm->idmgr, TKM_CTX_ESA, esa_id);
chunk_free(&esa.nonce_i);
chunk_free(&esa.nonce_r);
return FAILED;
}
METHOD(kernel_ipsec_t, query_sa, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark, u_int64_t *bytes,
u_int64_t *packets, time_t *time)
{
return NOT_SUPPORTED;
}
METHOD(kernel_ipsec_t, del_sa, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi, mark_t mark)
{
2013-03-18 17:47:16 +00:00
esa_id_type esa_id;
esa_id = this->sad->get_esa_id(this->sad, src, dst, spi, protocol);
if (esa_id)
{
DBG1(DBG_KNL, "deleting child SA (esa: %llu, spi: %x)", esa_id,
ntohl(spi));
if (ike_esa_reset(esa_id) != TKM_OK)
{
DBG1(DBG_KNL, "child SA (%llu) deletion failed", esa_id);
return FAILED;
}
this->sad->remove(this->sad, esa_id);
tkm->idmgr->release_id(tkm->idmgr, TKM_CTX_ESA, esa_id);
}
return SUCCESS;
}
METHOD(kernel_ipsec_t, update_sa, status_t,
private_tkm_kernel_ipsec_t *this, u_int32_t spi, u_int8_t protocol,
u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
bool old_encap, bool new_encap, mark_t mark)
{
return NOT_SUPPORTED;
}
METHOD(kernel_ipsec_t, flush_sas, status_t,
private_tkm_kernel_ipsec_t *this)
{
DBG1(DBG_KNL, "flushing child SA entries");
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_policy, status_t,
private_tkm_kernel_ipsec_t *this, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type, ipsec_sa_cfg_t *sa,
mark_t mark, policy_priority_t priority)
{
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_policy, status_t,
private_tkm_kernel_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark,
time_t *use_time)
{
return NOT_SUPPORTED;
}
METHOD(kernel_ipsec_t, del_policy, status_t,
private_tkm_kernel_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t reqid,
mark_t mark, policy_priority_t prio)
{
return SUCCESS;
}
METHOD(kernel_ipsec_t, flush_policies, status_t,
private_tkm_kernel_ipsec_t *this)
{
return SUCCESS;
}
METHOD(kernel_ipsec_t, bypass_socket, bool,
private_tkm_kernel_ipsec_t *this, int fd, int family)
{
struct xfrm_userpolicy_info policy;
u_int sol, ipsec_policy;
switch (family)
{
case AF_INET:
sol = SOL_IP;
ipsec_policy = IP_XFRM_POLICY;
break;
case AF_INET6:
sol = SOL_IPV6;
ipsec_policy = IPV6_XFRM_POLICY;
break;
default:
return FALSE;
}
memset(&policy, 0, sizeof(policy));
policy.action = XFRM_POLICY_ALLOW;
policy.sel.family = family;
policy.dir = XFRM_POLICY_OUT;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
2013-03-18 17:47:16 +00:00
strerror(errno));
return FALSE;
}
policy.dir = XFRM_POLICY_IN;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
2013-03-18 17:47:16 +00:00
strerror(errno));
return FALSE;
}
return TRUE;
}
METHOD(kernel_ipsec_t, enable_udp_decap, bool,
private_tkm_kernel_ipsec_t *this, int fd, int family, u_int16_t port)
{
int type = UDP_ENCAP_ESPINUDP;
if (setsockopt(fd, SOL_UDP, UDP_ENCAP, &type, sizeof(type)) < 0)
{
DBG1(DBG_KNL, "unable to set UDP_ENCAP: %s", strerror(errno));
return FALSE;
}
return TRUE;
}
METHOD(kernel_ipsec_t, destroy, void,
private_tkm_kernel_ipsec_t *this)
{
2012-09-12 09:52:08 +00:00
DESTROY_IF(this->rng);
DESTROY_IF(this->sad);
free(this);
}
/*
* Described in header.
*/
tkm_kernel_ipsec_t *tkm_kernel_ipsec_create()
{
private_tkm_kernel_ipsec_t *this;
INIT(this,
.public = {
.interface = {
.get_spi = _get_spi,
.get_cpi = _get_cpi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.flush_sas = _flush_sas,
.add_policy = _add_policy,
.query_policy = _query_policy,
.del_policy = _del_policy,
.flush_policies = _flush_policies,
.bypass_socket = _bypass_socket,
.enable_udp_decap = _enable_udp_decap,
.destroy = _destroy,
},
},
.sad = tkm_kernel_sad_create(),
);
if (!this->sad)
{
DBG1(DBG_KNL, "unable to create SAD");
destroy(this);
return NULL;
}
2012-09-12 09:52:08 +00:00
return &this->public;
}