srsRAN/srsenb/src/enb.cc

428 lines
12 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <boost/algorithm/string.hpp>
#include "srsenb/hdr/enb.h"
#include "srslte/build_info.h"
#include <iostream>
#include <sstream>
namespace srsenb {
enb* enb::instance = NULL;
pthread_mutex_t enb_instance_mutex = PTHREAD_MUTEX_INITIALIZER;
enb* enb::get_instance(void)
{
pthread_mutex_lock(&enb_instance_mutex);
if(NULL == instance) {
instance = new enb();
}
pthread_mutex_unlock(&enb_instance_mutex);
return(instance);
}
void enb::cleanup(void)
{
srslte_dft_exit();
pthread_mutex_lock(&enb_instance_mutex);
if(NULL != instance) {
delete instance;
instance = NULL;
}
srslte::byte_buffer_pool::cleanup(); // pool has to be cleaned after enb is deleted
pthread_mutex_unlock(&enb_instance_mutex);
}
enb::enb() : started(false) {
// print build info
std::cout << std::endl << get_build_string() << std::endl;
srslte_dft_load();
pool = srslte::byte_buffer_pool::get_instance(ENB_POOL_SIZE);
logger = NULL;
args = NULL;
bzero(&rf_metrics, sizeof(rf_metrics));
}
enb::~enb()
{
for (uint32_t i = 0; i < phy_log.size(); i++) {
delete (phy_log[i]);
}
}
bool enb::init(all_args_t *args_)
{
args = args_;
if (!args->log.filename.compare("stdout")) {
logger = &logger_stdout;
} else {
logger_file.init(args->log.filename, args->log.file_max_size);
logger_file.log("\n\n");
logger_file.log(get_build_string().c_str());
logger = &logger_file;
}
rf_log.init("RF ", logger);
// Create array of pointers to phy_logs
for (int i=0;i<args->expert.phy.nof_phy_threads;i++) {
srslte::log_filter *mylog = new srslte::log_filter;
char tmp[16];
sprintf(tmp, "PHY%d",i);
mylog->init(tmp, logger, true);
phy_log.push_back(mylog);
}
mac_log.init("MAC ", logger, true);
rlc_log.init("RLC ", logger);
pdcp_log.init("PDCP", logger);
rrc_log.init("RRC ", logger);
gtpu_log.init("GTPU", logger);
s1ap_log.init("S1AP", logger);
pool_log.init("POOL", logger);
pool_log.set_level(srslte::LOG_LEVEL_ERROR);
pool->set_log(&pool_log);
// Init logs
rf_log.set_level(srslte::LOG_LEVEL_INFO);
for (int i=0;i<args->expert.phy.nof_phy_threads;i++) {
((srslte::log_filter*) phy_log[i])->set_level(level(args->log.phy_level));
}
mac_log.set_level(level(args->log.mac_level));
rlc_log.set_level(level(args->log.rlc_level));
pdcp_log.set_level(level(args->log.pdcp_level));
rrc_log.set_level(level(args->log.rrc_level));
gtpu_log.set_level(level(args->log.gtpu_level));
s1ap_log.set_level(level(args->log.s1ap_level));
for (int i=0;i<args->expert.phy.nof_phy_threads;i++) {
((srslte::log_filter*) phy_log[i])->set_hex_limit(args->log.phy_hex_limit);
}
mac_log.set_hex_limit(args->log.mac_hex_limit);
rlc_log.set_hex_limit(args->log.rlc_hex_limit);
pdcp_log.set_hex_limit(args->log.pdcp_hex_limit);
rrc_log.set_hex_limit(args->log.rrc_hex_limit);
gtpu_log.set_hex_limit(args->log.gtpu_hex_limit);
s1ap_log.set_hex_limit(args->log.s1ap_hex_limit);
// Parse config files
srslte_cell_t cell_cfg;
phy_cfg_t phy_cfg;
rrc_cfg_t rrc_cfg;
if (parse_cell_cfg(args, &cell_cfg)) {
fprintf(stderr, "Error parsing Cell configuration\n");
return false;
}
if (parse_sibs(args, &rrc_cfg, &phy_cfg)) {
fprintf(stderr, "Error parsing SIB configuration\n");
return false;
}
if (parse_rr(args, &rrc_cfg)) {
fprintf(stderr, "Error parsing Radio Resources configuration\n");
return false;
}
if (parse_drb(args, &rrc_cfg)) {
fprintf(stderr, "Error parsing DRB configuration\n");
return false;
}
if (args->enb.transmission_mode == 1) {
phy_cfg.pdsch_cnfg.p_b = 0.0;
} else {
phy_cfg.pdsch_cnfg.p_b = 1.0;
}
uint32_t prach_freq_offset = rrc_cfg.sibs[1].sib2().rr_cfg_common.prach_cfg.prach_cfg_info.prach_freq_offset;
if (cell_cfg.nof_prb > 10) {
uint32_t lower_bound = SRSLTE_MAX(rrc_cfg.sr_cfg.nof_prb, rrc_cfg.cqi_cfg.nof_prb);
uint32_t upper_bound = cell_cfg.nof_prb - lower_bound;
if (prach_freq_offset + 6 > upper_bound or prach_freq_offset < lower_bound) {
fprintf(stderr,
"ERROR: Invalid PRACH configuration - prach_freq_offset=%d collides with PUCCH.\n",
prach_freq_offset);
fprintf(stderr,
" Consider changing \"prach_freq_offset\" in sib.conf to a value between %d and %d.\n",
lower_bound,
upper_bound);
return false;
}
} else { // 6 PRB case
if (prach_freq_offset + 6 > cell_cfg.nof_prb) {
fprintf(stderr,
"ERROR: Invalid PRACH configuration - prach=(%d, %d) does not fit into the eNB PRBs=(0, %d).\n",
prach_freq_offset,
prach_freq_offset + 6,
cell_cfg.nof_prb);
fprintf(
stderr,
" Consider changing the \"prach_freq_offset\" value to 0 in the sib.conf file when using 6 PRBs.\n");
return false;
}
}
rrc_cfg.inactivity_timeout_ms = args->expert.rrc_inactivity_timer;
rrc_cfg.enable_mbsfn = args->expert.enable_mbsfn;
// Check number of control symbols
if (cell_cfg.nof_prb < 50 && args->expert.mac.sched.nof_ctrl_symbols != 3) {
args->expert.mac.sched.nof_ctrl_symbols = 3;
mac_log.info("Setting number of control symbols to %d for %d PRB cell.\n",
args->expert.mac.sched.nof_ctrl_symbols,
cell_cfg.nof_prb);
}
// Parse EEA preference list
std::vector<std::string> eea_pref_list;
boost::split(eea_pref_list, args->expert.eea_pref_list,
boost::is_any_of(","));
int i = 0;
for (std::vector<std::string>::iterator it = eea_pref_list.begin();
it != eea_pref_list.end() && i < srslte::CIPHERING_ALGORITHM_ID_N_ITEMS;
it++) {
boost::trim_left(*it);
if ((*it).compare("EEA0") == 0) {
rrc_cfg.eea_preference_list[i] = srslte::CIPHERING_ALGORITHM_ID_EEA0;
i++;
} else if ((*it).compare("EEA1") == 0) {
rrc_cfg.eea_preference_list[i] = srslte::CIPHERING_ALGORITHM_ID_128_EEA1;
i++;
} else if ((*it).compare("EEA2") == 0) {
rrc_cfg.eea_preference_list[i] = srslte::CIPHERING_ALGORITHM_ID_128_EEA2;
i++;
} else {
fprintf(stderr, "Failed to parse EEA prefence list %s \n",
args->expert.eea_pref_list.c_str());
return false;
}
}
// Parse EIA preference list
std::vector<std::string> eia_pref_list;
boost::split(eia_pref_list, args->expert.eia_pref_list,
boost::is_any_of(","));
i = 0;
for (std::vector<std::string>::iterator it = eia_pref_list.begin();
it != eia_pref_list.end() && i < srslte::INTEGRITY_ALGORITHM_ID_N_ITEMS;
it++) {
boost::trim_left(*it);
if ((*it).compare("EIA0") == 0) {
rrc_cfg.eia_preference_list[i] = srslte::INTEGRITY_ALGORITHM_ID_EIA0;
i++;
} else if ((*it).compare("EIA1") == 0) {
rrc_cfg.eia_preference_list[i] = srslte::INTEGRITY_ALGORITHM_ID_128_EIA1;
i++;
} else if ((*it).compare("EIA2") == 0) {
rrc_cfg.eia_preference_list[i] = srslte::INTEGRITY_ALGORITHM_ID_128_EIA2;
i++;
} else {
fprintf(stderr, "Failed to parse EIA prefence list %s \n",
args->expert.eia_pref_list.c_str());
return false;
}
}
// Copy cell struct to rrc and phy
memcpy(&rrc_cfg.cell, &cell_cfg, sizeof(srslte_cell_t));
memcpy(&phy_cfg.cell, &cell_cfg, sizeof(srslte_cell_t));
// Set up pcap and trace
if(args->pcap.enable)
{
mac_pcap.open(args->pcap.filename.c_str());
mac.start_pcap(&mac_pcap);
}
// Init layers
/* Start Radio */
char *dev_name = NULL;
if (args->rf.device_name.compare("auto")) {
dev_name = (char*) args->rf.device_name.c_str();
}
char *dev_args = NULL;
if (args->rf.device_args.compare("auto")) {
dev_args = (char*) args->rf.device_args.c_str();
}
if (!radio.init(phy_log[0], dev_args, dev_name, args->enb.nof_ports)) {
phy_log[0]->console(
"Failed to find device %s with args %s\n", args->rf.device_name.c_str(), args->rf.device_args.c_str());
return false;
}
// Set RF options
if (args->rf.time_adv_nsamples.compare("auto")) {
radio.set_tx_adv(atoi(args->rf.time_adv_nsamples.c_str()));
}
if (args->rf.burst_preamble.compare("auto")) {
radio.set_burst_preamble(atof(args->rf.burst_preamble.c_str()));
}
radio.set_rx_gain(args->rf.rx_gain);
radio.set_tx_gain(args->rf.tx_gain);
((srslte::log_filter*) phy_log[0])->console("Setting frequency: DL=%.1f Mhz, UL=%.1f MHz\n", args->rf.dl_freq/1e6, args->rf.ul_freq/1e6);
radio.set_tx_freq(args->enb.nof_ports, args->rf.dl_freq);
radio.set_rx_freq(args->enb.nof_ports, args->rf.ul_freq);
radio.register_error_handler(rf_msg);
// Init all layers
phy.init(&args->expert.phy, &phy_cfg, &radio, &mac, phy_log);
mac.init(&args->expert.mac, &cell_cfg, &phy, &rlc, &rrc, &mac_log);
rlc.init(&pdcp, &rrc, &mac, &mac, &rlc_log);
pdcp.init(&rlc, &rrc, &gtpu, &pdcp_log);
rrc.init(&rrc_cfg, &phy, &mac, &rlc, &pdcp, &s1ap, &gtpu, &rrc_log);
s1ap.init(args->enb.s1ap, &rrc, &s1ap_log);
gtpu.init(args->enb.s1ap.gtp_bind_addr, args->enb.s1ap.mme_addr, args->expert.m1u_multiaddr, args->expert.m1u_if_addr, &pdcp, &gtpu_log, args->expert.enable_mbsfn);
started = true;
return true;
}
void enb::pregenerate_signals(bool enable)
{
//phy.enable_pregen_signals(enable);
}
void enb::stop()
{
if(started)
{
s1ap.stop();
gtpu.stop();
phy.stop();
mac.stop();
usleep(50000);
rlc.stop();
pdcp.stop();
rrc.stop();
usleep(10000);
if(args->pcap.enable)
{
mac_pcap.close();
}
radio.stop();
started = false;
}
}
void enb::start_plot() {
phy.start_plot();
}
void enb::print_pool() {
srslte::byte_buffer_pool::get_instance()->print_all_buffers();
}
bool enb::get_metrics(enb_metrics_t &m)
{
m.rf = rf_metrics;
bzero(&rf_metrics, sizeof(rf_metrics_t));
rf_metrics.rf_error = false; // Reset error flag
phy.get_metrics(m.phy);
mac.get_metrics(m.mac);
rrc.get_metrics(m.rrc);
s1ap.get_metrics(m.s1ap);
m.running = started;
return true;
}
void enb::rf_msg(srslte_rf_error_t error)
{
enb *u = enb::get_instance();
u->handle_rf_msg(error);
}
void enb::handle_rf_msg(srslte_rf_error_t error)
{
if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OVERFLOW) {
rf_metrics.rf_o++;
rf_metrics.rf_error = true;
rf_log.warning("Overflow\n");
}else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_UNDERFLOW) {
rf_metrics.rf_u++;
rf_metrics.rf_error = true;
rf_log.warning("Underflow\n");
} else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_LATE) {
rf_metrics.rf_l++;
rf_metrics.rf_error = true;
rf_log.warning("Late\n");
} else if (error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OTHER) {
std::string str(error.msg);
str.erase(std::remove(str.begin(), str.end(), '\n'), str.end());
str.erase(std::remove(str.begin(), str.end(), '\r'), str.end());
str.push_back('\n');
rf_log.info("%s\n", str.c_str());
}
}
srslte::LOG_LEVEL_ENUM enb::level(std::string l)
{
boost::to_upper(l);
if("NONE" == l){
return srslte::LOG_LEVEL_NONE;
}else if("ERROR" == l){
return srslte::LOG_LEVEL_ERROR;
}else if("WARNING" == l){
return srslte::LOG_LEVEL_WARNING;
}else if("INFO" == l){
return srslte::LOG_LEVEL_INFO;
}else if("DEBUG" == l){
return srslte::LOG_LEVEL_DEBUG;
}else{
return srslte::LOG_LEVEL_NONE;
}
}
std::string enb::get_build_mode()
{
return std::string(srslte_get_build_mode());
}
std::string enb::get_build_info()
{
if (std::string(srslte_get_build_info()).find(" ") != std::string::npos) {
return std::string(srslte_get_version());
}
return std::string(srslte_get_build_info());
}
std::string enb::get_build_string()
{
std::stringstream ss;
ss << "Built in " << get_build_mode() << " mode using " << get_build_info() << "." << std::endl;
return ss.str();
}
} // namespace srsenb