srsRAN/lib/include/srslte/common/timers.h

336 lines
9.1 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/******************************************************************************
* File: timers.h
* Description: Manually incremented timers. Call a callback function upon
* expiry.
* Reference:
*****************************************************************************/
#ifndef SRSLTE_TIMERS_H
#define SRSLTE_TIMERS_H
#include <algorithm>
#include <functional>
#include <limits>
#include <mutex>
#include <queue>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include <vector>
#include "srslte/srslte.h"
namespace srslte {
class timer_callback
{
public:
virtual void timer_expired(uint32_t timer_id) = 0;
};
class timer_handler
{
constexpr static uint32_t MAX_TIMER_DURATION = std::numeric_limits<uint32_t>::max() / 4;
constexpr static uint32_t MAX_TIMER_VALUE = std::numeric_limits<uint32_t>::max() / 2;
struct timer_impl {
timer_handler* parent;
uint32_t duration = 0, timeout = 0;
bool running = false;
bool active = false;
std::function<void(uint32_t)> callback;
explicit timer_impl(timer_handler* parent_) : parent(parent_) {}
uint32_t id() const { return std::distance((const timer_handler::timer_impl*)&parent->timer_list[0], this); }
bool is_running() const { return active and running and timeout > 0; }
bool is_expired() const { return active and not running and timeout > 0 and timeout <= parent->cur_time; }
uint32_t time_elapsed() const { return std::min(duration, parent->cur_time - (timeout - duration)); }
bool set(uint32_t duration_)
{
if (duration_ > MAX_TIMER_DURATION) {
ERROR("Error: timer durations above %u are not supported\n", MAX_TIMER_DURATION);
return false;
}
if (not active) {
ERROR("Error: setting inactive timer id=%d\n", id());
return false;
}
duration = duration_;
if (is_running()) {
// if already running, just extends timer lifetime
run();
}
return true;
}
bool set(uint32_t duration_, std::function<void(int)> callback_)
{
if (set(duration_)) {
callback = std::move(callback_);
return true;
}
return false;
}
void run()
{
std::unique_lock<std::mutex> lock(parent->mutex);
if (not active) {
ERROR("Error: calling run() for inactive timer id=%d\n", id());
return;
}
timeout = parent->cur_time + duration;
parent->running_timers.emplace(id(), timeout);
running = true;
}
void stop()
{
running = false; // invalidates trigger
if (not is_expired()) {
timeout = 0; // if it has already expired, then do not alter is_expired() state
}
}
void clear()
{
stop();
duration = 0;
active = false;
callback = std::function<void(uint32_t)>();
// leave run_id unchanged. Since the timeout was changed, we shall not get spurious triggering
}
void trigger()
{
if (is_running()) {
running = false;
if (callback) {
callback(id());
}
}
}
};
public:
class unique_timer
{
public:
unique_timer() : timer_id(std::numeric_limits<decltype(timer_id)>::max()) {}
explicit unique_timer(timer_handler* parent_, uint32_t timer_id_) : parent(parent_), timer_id(timer_id_) {}
unique_timer(const unique_timer&) = delete;
unique_timer(unique_timer&& other) noexcept : parent(other.parent), timer_id(other.timer_id)
{
other.parent = nullptr;
}
~unique_timer()
{
if (parent != nullptr) {
// does not call callback
impl()->clear();
}
}
unique_timer& operator=(const unique_timer&) = delete;
unique_timer& operator=(unique_timer&& other) noexcept
{
if (this != &other) {
timer_id = other.timer_id;
parent = other.parent;
other.parent = nullptr;
}
return *this;
}
bool is_valid() const { return parent != nullptr; }
void set(uint32_t duration_, const std::function<void(int)>& callback_) { impl()->set(duration_, callback_); }
void set(uint32_t duration_) { impl()->set(duration_); }
bool is_set() const { return (impl()->duration != 0); }
bool is_running() const { return impl()->is_running(); }
bool is_expired() const { return impl()->is_expired(); }
uint32_t time_elapsed() const { return impl()->time_elapsed(); }
void run() { impl()->run(); }
void stop() { impl()->stop(); }
void clear() { impl()->clear(); }
void release()
{
impl()->clear();
parent = nullptr;
}
uint32_t id() const { return timer_id; }
uint32_t duration() const { return impl()->duration; }
private:
timer_impl* impl() { return &parent->timer_list[timer_id]; }
const timer_impl* impl() const { return &parent->timer_list[timer_id]; }
timer_handler* parent = nullptr;
uint32_t timer_id;
};
explicit timer_handler(uint32_t capacity = 64)
{
timer_list.reserve(capacity);
// reserve a priority queue using a vector
std::vector<timer_run> v;
v.reserve(capacity);
std::priority_queue<timer_run> q(std::less<timer_run>(), std::move(v));
running_timers = std::move(q);
}
void step_all()
{
std::unique_lock<std::mutex> lock(mutex);
cur_time++;
while (not running_timers.empty()) {
uint32_t next_timeout = running_timers.top().timeout;
timer_impl* ptr = &timer_list[running_timers.top().timer_id];
if (not ptr->is_running() or next_timeout != ptr->timeout) {
// remove timers that were explicitly stopped, or re-run, to avoid unnecessary priority_queue growth
running_timers.pop();
continue;
}
if (cur_time < next_timeout) {
break;
}
// if the timer_run and timer_impl timeouts do not match, it means that timer_impl::timeout was overwritten.
// in such case, do not trigger
uint32_t timeout = running_timers.top().timeout;
running_timers.pop();
if (ptr->timeout == timeout) {
// unlock mutex, it could be that the callback tries to run a timer too
lock.unlock();
// Call callback
ptr->trigger();
// Lock again to keep protecting the queue
lock.lock();
}
}
}
void stop_all()
{
// does not call callback
while (not running_timers.empty()) {
running_timers.pop();
}
for (auto& i : timer_list) {
i.running = false;
}
}
unique_timer get_unique_timer() { return unique_timer(this, alloc_timer()); }
uint32_t get_cur_time() const { return cur_time; }
uint32_t nof_timers() const
{
return std::count_if(timer_list.begin(), timer_list.end(), [](const timer_impl& t) { return t.active; });
}
uint32_t nof_running_timers() const
{
return std::count_if(timer_list.begin(), timer_list.end(), [](const timer_impl& t) { return t.is_running(); });
}
template <typename F>
void defer_callback(uint32_t duration, const F& func)
{
uint32_t id = alloc_timer();
std::function<void(uint32_t)> c = [func, this, id](uint32_t tid) {
func();
// auto-deletes timer
timer_list[id].clear();
};
timer_list[id].set(duration, std::move(c));
timer_list[id].run();
}
private:
struct timer_run {
uint32_t timer_id;
uint32_t timeout;
timer_run(uint32_t timer_id_, uint32_t timeout_) : timer_id(timer_id_), timeout(timeout_) {}
bool operator<(const timer_run& other) const
{
// returns true, if other.timeout is lower than timeout, accounting for wrap around
if (timeout > other.timeout) {
return (timeout - other.timeout) < MAX_TIMER_VALUE / 2;
}
return (other.timeout - timeout) > MAX_TIMER_VALUE / 2;
}
};
uint32_t alloc_timer()
{
uint32_t i = 0;
for (; i < timer_list.size(); ++i) {
if (not timer_list[i].active) {
break;
}
}
if (i == timer_list.size()) {
timer_list.emplace_back(this);
}
timer_list[i].active = true;
return i;
}
std::vector<timer_impl> timer_list;
std::priority_queue<timer_run> running_timers;
uint32_t cur_time = 0;
std::mutex mutex; // Protect priority queue
};
} // namespace srslte
#endif // SRSLTE_TIMERS_H