srsRAN/lib/src/phy/utils/convolution.c

232 lines
6.7 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdlib.h>
#include <string.h>
#include <srslte/srslte.h>
#include "srslte/phy/dft/dft.h"
#include "srslte/phy/utils/vector.h"
#include "srslte/phy/utils/convolution.h"
int srslte_conv_fft_cc_init(srslte_conv_fft_cc_t *q, uint32_t input_len, uint32_t filter_len) {
bzero(q, sizeof(srslte_conv_fft_cc_t));
q->input_len = input_len;
q->filter_len = filter_len;
q->output_len = input_len+filter_len;
q->max_filter_len = filter_len;
q->max_input_len = input_len;
q->input_fft = srslte_vec_malloc(sizeof(cf_t)*q->output_len);
q->filter_fft = srslte_vec_malloc(sizeof(cf_t)*q->output_len);
q->output_fft = srslte_vec_malloc(sizeof(cf_t)*q->output_len);
if (!q->input_fft || !q->filter_fft || !q->output_fft) {
return SRSLTE_ERROR;
}
if (srslte_dft_plan(&q->input_plan,q->output_len,SRSLTE_DFT_FORWARD,SRSLTE_DFT_COMPLEX)) {
fprintf(stderr, "Error initiating input plan\n");
return SRSLTE_ERROR;
}
if (srslte_dft_plan(&q->filter_plan,q->output_len,SRSLTE_DFT_FORWARD,SRSLTE_DFT_COMPLEX)) {
fprintf(stderr, "Error initiating filter plan\n");
return SRSLTE_ERROR;
}
if (srslte_dft_plan(&q->output_plan,q->output_len,SRSLTE_DFT_BACKWARD,SRSLTE_DFT_COMPLEX)) {
fprintf(stderr, "Error initiating output plan\n");
return SRSLTE_ERROR;
}
srslte_dft_plan_set_norm(&q->input_plan, true);
srslte_dft_plan_set_norm(&q->filter_plan, true);
srslte_dft_plan_set_norm(&q->output_plan, false);
return SRSLTE_SUCCESS;
}
int srslte_conv_fft_cc_replan(srslte_conv_fft_cc_t *q, uint32_t input_len, uint32_t filter_len) {
if (input_len > q->max_input_len || filter_len > q->max_filter_len) {
fprintf(stderr, "Error in conv_fft_cc_replan(): input_len and filter_len must be lower than initialized\n");
return -1;
}
q->input_len = input_len;
q->filter_len = filter_len;
q->output_len = input_len+filter_len;
if (!q->input_fft || !q->filter_fft || !q->output_fft) {
return SRSLTE_ERROR;
}
if (srslte_dft_replan(&q->input_plan,q->output_len)) {
fprintf(stderr, "Error initiating input plan\n");
return SRSLTE_ERROR;
}
if (srslte_dft_replan(&q->filter_plan,q->output_len)) {
fprintf(stderr, "Error initiating filter plan\n");
return SRSLTE_ERROR;
}
if (srslte_dft_replan(&q->output_plan,q->output_len)) {
fprintf(stderr, "Error initiating output plan\n");
return SRSLTE_ERROR;
}
return SRSLTE_SUCCESS;
}
void srslte_conv_fft_cc_free(srslte_conv_fft_cc_t *q) {
if (q->input_fft) {
free(q->input_fft);
}
if (q->filter_fft) {
free(q->filter_fft);
}
if (q->output_fft) {
free(q->output_fft);
}
srslte_dft_plan_free(&q->input_plan);
srslte_dft_plan_free(&q->filter_plan);
srslte_dft_plan_free(&q->output_plan);
bzero(q, sizeof(srslte_conv_fft_cc_t));
}
uint32_t srslte_conv_fft_cc_run_opt(srslte_conv_fft_cc_t *q, cf_t *input, cf_t *filter_freq, cf_t *output)
{
srslte_dft_run_c(&q->input_plan, input, q->input_fft);
srslte_vec_prod_ccc(q->input_fft, filter_freq, q->output_fft, q->output_len);
srslte_dft_run_c(&q->output_plan, q->output_fft, output);
return (q->output_len-1); // divide output length by dec factor
}
uint32_t srslte_conv_fft_cc_run(srslte_conv_fft_cc_t *q, cf_t *input, cf_t *filter, cf_t *output) {
srslte_dft_run_c(&q->filter_plan, filter, q->filter_fft);
return srslte_conv_fft_cc_run_opt(q, input, q->filter_fft, output);
}
uint32_t srslte_conv_cc(cf_t *input, cf_t *filter, cf_t *output, uint32_t input_len, uint32_t filter_len) {
uint32_t i;
uint32_t M = filter_len;
uint32_t N = input_len;
for (i=0;i<M;i++) {
output[i]=srslte_vec_dot_prod_ccc(&input[i],&filter[i],i);
}
for (;i<M+N-1;i++) {
output[i] = srslte_vec_dot_prod_ccc(&input[i-M], filter, M);
}
return M+N-1;
}
/* Centered convolution. Returns the same number of input elements. Equivalent to conv(x,h,'same') in matlab.
* y(n)=sum_i x(n+i-M/2)*h(i) for n=1..N with N input samples and M filter len
*/
uint32_t srslte_conv_same_cc(cf_t *input, cf_t *filter, cf_t *output, uint32_t input_len, uint32_t filter_len) {
uint32_t i;
uint32_t M = filter_len;
uint32_t N = input_len;
for (i=0;i<M/2;i++) {
output[i]=srslte_vec_dot_prod_ccc(&input[i],&filter[M/2-i],M-M/2+i);
}
for (;i<N-M/2;i++) {
output[i]=srslte_vec_dot_prod_ccc(&input[i-M/2],filter,M);
}
for (;i<N;i++) {
output[i]=srslte_vec_dot_prod_ccc(&input[i-M/2],filter,N-i+M/2);
}
return N;
}
#define conv_same_extrapolates_extremes
#ifdef conv_same_extrapolates_extremes
uint32_t srslte_conv_same_cf(cf_t *input, float *filter, cf_t *output,
uint32_t input_len, uint32_t filter_len) {
uint32_t i;
uint32_t M = filter_len;
uint32_t N = input_len;
cf_t first[filter_len+filter_len/2];
cf_t last[filter_len+filter_len/2];
for (i=0;i<M+M/2;i++) {
if (i<M/2) {
first[i] = (2+M/2-i)*input[1]-(1+M/2-i)*input[0];
} else {
first[i] = input[i-M/2];
}
}
for (i=0;i<M+M/2;i++) {
if (i>=M-1) {
last[i] = (2+i-M/2)*input[N-1]-(1+i-M/2)*input[N-2];
} else {
last[i] = input[N-M+i+1];
}
}
for (i=0;i<M/2;i++) {
output[i]=srslte_vec_dot_prod_cfc(&first[i],filter,M);
}
for (;i<N-M/2;i++) {
output[i]=srslte_vec_dot_prod_cfc(&input[i-M/2],filter,M);
}
int j=0;
for (;i<N;i++) {
output[i]=srslte_vec_dot_prod_cfc(&last[j++],filter,M);
}
return N;
}
#else
uint32_t srslte_conv_same_cf(cf_t *input, float *filter, cf_t *output,
uint32_t input_len, uint32_t filter_len) {
uint32_t i;
uint32_t M = filter_len;
uint32_t N = input_len;
for (i=0;i<M/2;i++) {
output[i]=srslte_vec_dot_prod_cfc(&input[i],&filter[M/2-i],M-M/2+i);
}
for (;i<N-M/2;i++) {
output[i]=srslte_vec_dot_prod_cfc(&input[i-M/2],filter,M);
}
for (;i<N;i++) {
output[i]=srslte_vec_dot_prod_cfc(&input[i-M/2],filter,N-i+M/2);
}
return N;
}
#endif