srsRAN/lib/src/phy/phch/sch.c

821 lines
25 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <math.h>
#include "srslte/phy/phch/pdsch.h"
#include "srslte/phy/phch/pusch.h"
#include "srslte/phy/phch/sch.h"
#include "srslte/phy/phch/uci.h"
#include "srslte/phy/common/phy_common.h"
#include "srslte/phy/utils/bit.h"
#include "srslte/phy/utils/debug.h"
#include "srslte/phy/utils/vector.h"
#define SRSLTE_PDSCH_MAX_TDEC_ITERS 4
/* 36.213 Table 8.6.3-1: Mapping of HARQ-ACK offset values and the index signalled by higher layers */
float beta_harq_offset[16] = {2.0, 2.5, 3.125, 4.0, 5.0, 6.250, 8.0, 10.0,
12.625, 15.875, 20.0, 31.0, 50.0, 80.0, 126.0, -1.0};
/* 36.213 Table 8.6.3-2: Mapping of RI offset values and the index signalled by higher layers */
float beta_ri_offset[16] = {1.25, 1.625, 2.0, 2.5, 3.125, 4.0, 5.0, 6.25, 8.0, 10.0,
12.625, 15.875, 20.0, -1.0, -1.0, -1.0};
/* 36.213 Table 8.6.3-3: Mapping of CQI offset values and the index signalled by higher layers */
float beta_cqi_offset[16] = {-1.0, -1.0, 1.125, 1.25, 1.375, 1.625, 1.750, 2.0, 2.25, 2.5, 2.875,
3.125, 3.5, 4.0, 5.0, 6.25};
float srslte_sch_beta_cqi(uint32_t I_cqi) {
if (I_cqi < 16) {
return beta_cqi_offset[I_cqi];
} else {
return 0;
}
}
uint32_t srslte_sch_find_Ioffset_ack(float beta) {
for (int i=0;i<16;i++) {
if (beta_harq_offset[i] >= beta) {
return i;
}
}
return 0;
}
uint32_t srslte_sch_find_Ioffset_ri(float beta) {
for (int i=0;i<16;i++) {
if (beta_ri_offset[i] >= beta) {
return i;
}
}
return 0;
}
uint32_t srslte_sch_find_Ioffset_cqi(float beta) {
for (int i=0;i<16;i++) {
if (beta_cqi_offset[i] >= beta) {
return i;
}
}
return 0;
}
int srslte_sch_init(srslte_sch_t *q) {
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q) {
bzero(q, sizeof(srslte_sch_t));
if (srslte_crc_init(&q->crc_tb, SRSLTE_LTE_CRC24A, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
if (srslte_crc_init(&q->crc_cb, SRSLTE_LTE_CRC24B, 24)) {
fprintf(stderr, "Error initiating CRC\n");
goto clean;
}
if (srslte_tcod_init(&q->encoder, SRSLTE_TCOD_MAX_LEN_CB)) {
fprintf(stderr, "Error initiating Turbo Coder\n");
goto clean;
}
if (srslte_tdec_init(&q->decoder, SRSLTE_TCOD_MAX_LEN_CB)) {
fprintf(stderr, "Error initiating Turbo Decoder\n");
goto clean;
}
q->max_iterations = SRSLTE_PDSCH_MAX_TDEC_ITERS;
srslte_rm_turbo_gentables();
// Allocate int16 for reception (LLRs)
q->cb_in = srslte_vec_malloc(sizeof(uint8_t) * (SRSLTE_TCOD_MAX_LEN_CB+8)/8);
if (!q->cb_in) {
goto clean;
}
q->parity_bits = srslte_vec_malloc(sizeof(uint8_t) * (3 * SRSLTE_TCOD_MAX_LEN_CB + 16) / 8);
if (!q->parity_bits) {
goto clean;
}
q->temp_g_bits = srslte_vec_malloc(sizeof(uint8_t)*SRSLTE_MAX_PRB*12*12*12);
if (!q->temp_g_bits) {
goto clean;
}
bzero(q->temp_g_bits, SRSLTE_MAX_PRB*12*12*12);
q->ul_interleaver = srslte_vec_malloc(sizeof(uint16_t)*SRSLTE_MAX_PRB*12*12*12);
if (!q->ul_interleaver) {
goto clean;
}
if (srslte_uci_cqi_init(&q->uci_cqi)) {
goto clean;
}
ret = SRSLTE_SUCCESS;
}
clean:
if (ret == SRSLTE_ERROR) {
srslte_sch_free(q);
}
return ret;
}
void srslte_sch_free(srslte_sch_t *q) {
if (q->cb_in) {
free(q->cb_in);
}
if (q->parity_bits) {
free(q->parity_bits);
}
if (q->temp_g_bits) {
free(q->temp_g_bits);
}
if (q->ul_interleaver) {
free(q->ul_interleaver);
}
srslte_tdec_free(&q->decoder);
srslte_tcod_free(&q->encoder);
srslte_uci_cqi_free(&q->uci_cqi);
bzero(q, sizeof(srslte_sch_t));
}
void srslte_sch_set_max_noi(srslte_sch_t *q, uint32_t max_iterations) {
q->max_iterations = max_iterations;
}
float srslte_sch_average_noi(srslte_sch_t *q) {
return q->average_nof_iterations;
}
uint32_t srslte_sch_last_noi(srslte_sch_t *q) {
return q->nof_iterations;
}
/* Encode a transport block according to 36.212 5.3.2
*
*/
static int encode_tb_off(srslte_sch_t *q,
srslte_softbuffer_tx_t *softbuffer, srslte_cbsegm_t *cb_segm,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
uint8_t *data, uint8_t *e_bits, uint32_t w_offset)
{
uint8_t parity[3] = {0, 0, 0};
uint32_t par;
uint32_t i;
uint32_t cb_len=0, rp=0, wp=0, rlen=0, n_e=0;
int ret = SRSLTE_ERROR_INVALID_INPUTS;
if (q != NULL &&
e_bits != NULL &&
cb_segm != NULL &&
softbuffer != NULL)
{
if (cb_segm->F) {
fprintf(stderr, "Error filler bits are not supported. Use standard TBS\n");
return SRSLTE_ERROR;
}
if (cb_segm->C > softbuffer->max_cb) {
fprintf(stderr, "Error number of CB (%d) exceeds soft buffer size (%d CBs)\n", cb_segm->C, softbuffer->max_cb);
return -1;
}
uint32_t Gp = nof_e_bits / Qm;
uint32_t gamma = Gp;
if (cb_segm->C > 0) {
gamma = Gp%cb_segm->C;
}
if (data) {
/* Compute transport block CRC */
par = srslte_crc_checksum_byte(&q->crc_tb, data, cb_segm->tbs);
/* parity bits will be appended later */
parity[0] = (par&(0xff<<16))>>16;
parity[1] = (par&(0xff<<8))>>8;
parity[2] = par&0xff;
}
wp = 0;
rp = 0;
for (i = 0; i < cb_segm->C; i++) {
uint32_t cblen_idx;
/* Get read lengths */
if (i < cb_segm->C2) {
cb_len = cb_segm->K2;
cblen_idx = cb_segm->K2_idx;
} else {
cb_len = cb_segm->K1;
cblen_idx = cb_segm->K1_idx;
}
if (cb_segm->C > 1) {
rlen = cb_len - 24;
} else {
rlen = cb_len;
}
if (i <= cb_segm->C - gamma - 1) {
n_e = Qm * (Gp/cb_segm->C);
} else {
n_e = Qm * ((uint32_t) ceilf((float) Gp/cb_segm->C));
}
INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, E: %d\n", i,
cb_len, rlen, wp, rp, n_e);
if (data) {
/* Copy data to another buffer, making space for the Codeblock CRC */
if (i < cb_segm->C - 1) {
// Copy data
memcpy(q->cb_in, &data[rp/8], rlen * sizeof(uint8_t)/8);
} else {
INFO("Last CB, appending parity: %d from %d and 24 to %d\n",
rlen - 24, rp, rlen - 24);
/* Append Transport Block parity bits to the last CB */
memcpy(q->cb_in, &data[rp/8], (rlen - 24) * sizeof(uint8_t)/8);
memcpy(&q->cb_in[(rlen - 24)/8], parity, 3 * sizeof(uint8_t));
}
/* Attach Codeblock CRC */
if (cb_segm->C > 1) {
srslte_crc_attach_byte(&q->crc_cb, q->cb_in, rlen);
}
/* Turbo Encoding */
srslte_tcod_encode_lut(&q->encoder, q->cb_in, q->parity_bits, cblen_idx);
}
DEBUG("RM cblen_idx=%d, n_e=%d, wp=%d, nof_e_bits=%d\n",cblen_idx, n_e, wp, nof_e_bits);
/* Rate matching */
if (srslte_rm_turbo_tx_lut(softbuffer->buffer_b[i], q->cb_in, q->parity_bits,
&e_bits[(wp+w_offset)/8], cblen_idx, n_e, (wp+w_offset)%8, rv))
{
fprintf(stderr, "Error in rate matching\n");
return SRSLTE_ERROR;
}
/* Set read/write pointers */
rp += rlen;
wp += n_e;
}
INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
ret = SRSLTE_SUCCESS;
}
return ret;
}
static int encode_tb(srslte_sch_t *q,
srslte_softbuffer_tx_t *soft_buffer, srslte_cbsegm_t *cb_segm,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
uint8_t *data, uint8_t *e_bits)
{
return encode_tb_off(q, soft_buffer, cb_segm, Qm, rv, nof_e_bits, data, e_bits, 0);
}
bool decode_tb_cb(srslte_sch_t *q,
srslte_softbuffer_rx_t *softbuffer, srslte_cbsegm_t *cb_segm,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
int16_t *e_bits, uint8_t *data,
uint32_t cb_size_group)
{
bool cb_map[SRSLTE_MAX_CODEBLOCKS];
uint32_t cb_idx[SRSLTE_TDEC_NPAR];
int16_t *decoder_input[SRSLTE_TDEC_NPAR];
uint32_t nof_cb = cb_size_group?cb_segm->C2:cb_segm->C1;
uint32_t first_cb = cb_size_group?cb_segm->C1:0;
uint32_t cb_len = cb_size_group?cb_segm->K2:cb_segm->K1;
uint32_t cb_len_idx = cb_size_group?cb_segm->K2_idx:cb_segm->K1_idx;
uint32_t rlen = cb_segm->C==1?cb_len:(cb_len-24);
uint32_t Gp = nof_e_bits / Qm;
uint32_t gamma = cb_segm->C>0?Gp%cb_segm->C:Gp;
uint32_t n_e = Qm * (Gp/cb_segm->C);
if (nof_cb > SRSLTE_MAX_CODEBLOCKS) {
fprintf(stderr, "Error SRSLTE_MAX_CODEBLOCKS=%d\n", SRSLTE_MAX_CODEBLOCKS);
return false;
}
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
cb_idx[i] = i+first_cb;
decoder_input[i] = false;
}
for (int i=0;i<nof_cb;i++) {
cb_map[i] = false;
}
srslte_tdec_reset(&q->decoder, cb_len);
uint32_t remaining_cb = nof_cb;
while(remaining_cb>0) {
// Unratematch the codeblocks left to decode
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
if (!decoder_input[i] && remaining_cb > 0) {
// Find an unprocessed CB
cb_idx[i]=first_cb;
while(cb_idx[i]<first_cb+nof_cb-1 && cb_map[cb_idx[i]]) {
cb_idx[i]++;
}
if (cb_map[cb_idx[i]] == false) {
cb_map[cb_idx[i]] = true;
uint32_t rp = cb_idx[i]*n_e;
uint32_t n_e2 = n_e;
if (cb_idx[i] > cb_segm->C - gamma) {
n_e2 = n_e+Qm;
rp = (cb_segm->C - gamma)*n_e + (cb_idx[i]-(cb_segm->C - gamma))*n_e2;
}
INFO("CB %d: rp=%d, n_e=%d, i=%d\n", cb_idx[i], rp, n_e2, i);
if (srslte_rm_turbo_rx_lut(&e_bits[rp], softbuffer->buffer_f[cb_idx[i]], n_e2, cb_len_idx, rv)) {
fprintf(stderr, "Error in rate matching\n");
return SRSLTE_ERROR;
}
decoder_input[i] = softbuffer->buffer_f[cb_idx[i]];
}
}
}
// Run 1 iteration for up to TDEC_NPAR codeblocks
srslte_tdec_iteration_par(&q->decoder, decoder_input, cb_len);
q->nof_iterations = srslte_tdec_get_nof_iterations_cb(&q->decoder, 0);
// Decide output bits and compute CRC
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
if (decoder_input[i]) {
srslte_tdec_decision_byte_par_cb(&q->decoder, q->cb_in, i, cb_len);
uint32_t len_crc;
srslte_crc_t *crc_ptr;
if (cb_segm->C > 1) {
len_crc = cb_len;
crc_ptr = &q->crc_cb;
} else {
len_crc = cb_segm->tbs+24;
crc_ptr = &q->crc_tb;
}
// CRC is OK
if (!srslte_crc_checksum_byte(crc_ptr, q->cb_in, len_crc)) {
memcpy(&data[(cb_idx[i]*rlen)/8], q->cb_in, rlen/8 * sizeof(uint8_t));
// Reset number of iterations for that CB in the decoder
srslte_tdec_reset_cb(&q->decoder, i);
remaining_cb--;
decoder_input[i] = NULL;
cb_idx[i] = 0;
// CRC is error and exceeded maximum iterations for this CB.
// Early stop the whole transport block.
} else if (srslte_tdec_get_nof_iterations_cb(&q->decoder, i) >= q->max_iterations) {
INFO("CB %d: Error. CB is erroneous. remaining_cb=%d, i=%d, first_cb=%d, nof_cb=%d\n",
cb_idx[i], remaining_cb, i, first_cb, nof_cb);
return false;
}
}
}
}
return true;
}
/**
* Decode a transport block according to 36.212 5.3.2
*
* @param[in] q
* @param[inout] softbuffer Initialized softbuffer
* @param[in] cb_segm Code block segmentation parameters
* @param[in] e_bits Input transport block
* @param[in] Qm Modulation type
* @param[in] rv Redundancy Version. Indicates which part of FEC bits is in input buffer
* @param[out] softbuffer Initialized output softbuffer
* @param[out] data Decoded transport block
* @return negative if error in parameters or CRC error in decoding
*/
static int decode_tb(srslte_sch_t *q,
srslte_softbuffer_rx_t *softbuffer, srslte_cbsegm_t *cb_segm,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
int16_t *e_bits, uint8_t *data)
{
if (q != NULL &&
data != NULL &&
softbuffer != NULL &&
e_bits != NULL &&
cb_segm != NULL)
{
if (cb_segm->tbs == 0 || cb_segm->C == 0) {
return SRSLTE_SUCCESS;
}
if (cb_segm->F) {
fprintf(stderr, "Error filler bits are not supported. Use standard TBS\n");
return SRSLTE_ERROR;
}
if (cb_segm->C > softbuffer->max_cb) {
fprintf(stderr, "Error number of CB (%d) exceeds soft buffer size (%d CBs)\n", cb_segm->C, softbuffer->max_cb);
return SRSLTE_ERROR;
}
bool crc_ok = true;
uint32_t nof_cb_groups = cb_segm->C2>0?2:1;
data[cb_segm->tbs/8+0] = 0;
data[cb_segm->tbs/8+1] = 0;
data[cb_segm->tbs/8+2] = 0;
// Process Codeblocks in groups of equal CB size to parallelize according to SRSLTE_TDEC_NPAR
for (uint32_t i=0;i<nof_cb_groups && crc_ok;i++) {
crc_ok = decode_tb_cb(q, softbuffer, cb_segm, Qm, rv, nof_e_bits, e_bits, data, i);
}
if (crc_ok) {
uint32_t par_rx = 0, par_tx = 0;
// Compute transport block CRC
par_rx = srslte_crc_checksum_byte(&q->crc_tb, data, cb_segm->tbs);
// check parity bits
par_tx = ((uint32_t) data[cb_segm->tbs/8+0])<<16 |
((uint32_t) data[cb_segm->tbs/8+1])<<8 |
((uint32_t) data[cb_segm->tbs/8+2]);
if (!par_rx) {
INFO("Warning: Received all-zero transport block\n\n",0);
}
if (par_rx == par_tx) {
INFO("TB decoded OK\n",0);
return SRSLTE_SUCCESS;
} else {
INFO("Error in TB parity: par_tx=0x%x, par_rx=0x%x\n", par_tx, par_rx);
return SRSLTE_ERROR;
}
} else {
return SRSLTE_ERROR;
}
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}
}
int srslte_dlsch_decode(srslte_sch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffer,
int16_t *e_bits, uint8_t *data)
{
return decode_tb(q,
softbuffer, &cfg->cb_segm,
cfg->grant.Qm, cfg->rv, cfg->nbits.nof_bits,
e_bits, data);
}
/**
* Encode transport block. Segments into code blocks, adds channel coding, and does rate matching.
*
* @param[in] q Initialized
* @param[in] cfg Encoding parameters
* @param[inout] softbuffer Initialized softbuffer
* @param[in] data Byte array of data. Size is implicit in cfg->cb_segm
* @param e_bits
* @return Error code
*/
int srslte_dlsch_encode(srslte_sch_t *q, srslte_pdsch_cfg_t *cfg, srslte_softbuffer_tx_t *softbuffer,
uint8_t *data, uint8_t *e_bits)
{
return encode_tb(q,
softbuffer, &cfg->cb_segm,
cfg->grant.Qm, cfg->rv, cfg->nbits.nof_bits,
data, e_bits);
}
/* Compute the interleaving function on-the-fly, because it depends on number of RI bits
* Profiling show that the computation of this matrix is neglegible.
*/
static void ulsch_interleave_gen(uint32_t H_prime_total, uint32_t N_pusch_symbs, uint32_t Qm,
uint8_t *ri_present, uint16_t *interleaver_lut)
{
uint32_t rows = H_prime_total/N_pusch_symbs;
uint32_t cols = N_pusch_symbs;
uint32_t idx = 0;
for(uint32_t j=0; j<rows; j++) {
for(uint32_t i=0; i<cols; i++) {
for(uint32_t k=0; k<Qm; k++) {
if (ri_present[j*Qm + i*rows*Qm + k]) {
interleaver_lut[j*Qm + i*rows*Qm + k] = 0;
} else {
interleaver_lut[j*Qm + i*rows*Qm + k] = idx;
idx++;
}
}
}
}
}
/* UL-SCH channel interleaver according to 5.2.2.8 of 36.212 */
void ulsch_interleave(uint8_t *g_bits, uint32_t Qm, uint32_t H_prime_total,
uint32_t N_pusch_symbs, uint8_t *q_bits, srslte_uci_bit_t *ri_bits, uint32_t nof_ri_bits,
uint8_t *ri_present, uint16_t *inteleaver_lut)
{
// Prepare ri_bits for fast search using temp_buffer
if (nof_ri_bits > 0) {
for (uint32_t i=0;i<nof_ri_bits;i++) {
ri_present[ri_bits[i].position] = 1;
}
}
// Genearate interleaver table and interleave bits
ulsch_interleave_gen(H_prime_total, N_pusch_symbs, Qm, ri_present, inteleaver_lut);
srslte_bit_interleave(g_bits, q_bits, inteleaver_lut, H_prime_total*Qm);
// Reset temp_buffer because will be reused next time
if (nof_ri_bits > 0) {
for (uint32_t i=0;i<nof_ri_bits;i++) {
ri_present[ri_bits[i].position] = 0;
}
}
}
/* UL-SCH channel deinterleaver according to 5.2.2.8 of 36.212 */
void ulsch_deinterleave(int16_t *q_bits, uint32_t Qm, uint32_t H_prime_total,
uint32_t N_pusch_symbs, int16_t *g_bits, srslte_uci_bit_t *ri_bits, uint32_t nof_ri_bits,
uint8_t *ri_present, uint16_t *inteleaver_lut)
{
// Prepare ri_bits for fast search using temp_buffer
if (nof_ri_bits > 0) {
for (uint32_t i=0;i<nof_ri_bits;i++) {
ri_present[ri_bits[i].position] = 1;
}
}
// Generate interleaver table and interleave samples
ulsch_interleave_gen(H_prime_total, N_pusch_symbs, Qm, ri_present, inteleaver_lut);
srslte_vec_lut_sss(q_bits, inteleaver_lut, g_bits, H_prime_total*Qm);
// Reset temp_buffer because will be reused next time
if (nof_ri_bits > 0) {
for (uint32_t i=0;i<nof_ri_bits;i++) {
ri_present[ri_bits[i].position] = 0;
}
}
}
int srslte_ulsch_decode(srslte_sch_t *q, srslte_pusch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffer,
int16_t *q_bits, int16_t *g_bits, uint8_t *data)
{
srslte_uci_data_t uci_data;
bzero(&uci_data, sizeof(srslte_uci_data_t));
return srslte_ulsch_uci_decode(q, cfg, softbuffer, q_bits, g_bits, data, &uci_data);
}
/* This is done before scrambling */
int srslte_ulsch_uci_decode_ri_ack(srslte_sch_t *q, srslte_pusch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffer,
int16_t *q_bits, uint8_t *c_seq, srslte_uci_data_t *uci_data)
{
int ret = 0;
uint32_t Q_prime_ri = 0;
uint32_t Q_prime_ack = 0;
uint32_t nb_q = cfg->nbits.nof_bits;
uint32_t Qm = cfg->grant.Qm;
cfg->last_O_cqi = uci_data->uci_cqi_len;
// Deinterleave and decode HARQ bits
if (uci_data->uci_ack_len > 0) {
float beta = beta_harq_offset[cfg->uci_cfg.I_offset_ack];
if (cfg->cb_segm.tbs == 0) {
beta /= beta_cqi_offset[cfg->uci_cfg.I_offset_cqi];
}
ret = srslte_uci_decode_ack(cfg, q_bits, c_seq, beta, nb_q/Qm, uci_data->uci_cqi_len, q->ack_ri_bits, &uci_data->uci_ack);
if (ret < 0) {
return ret;
}
Q_prime_ack = (uint32_t) ret;
// Set zeros to HARQ bits
for (uint32_t i=0;i<Q_prime_ack;i++) {
q_bits[q->ack_ri_bits[i].position] = 0;
}
}
// Deinterleave and decode RI bits
if (uci_data->uci_ri_len > 0) {
float beta = beta_ri_offset[cfg->uci_cfg.I_offset_ri];
if (cfg->cb_segm.tbs == 0) {
beta /= beta_cqi_offset[cfg->uci_cfg.I_offset_cqi];
}
ret = srslte_uci_decode_ri(cfg, q_bits, c_seq, beta, nb_q/Qm, uci_data->uci_cqi_len, q->ack_ri_bits, &uci_data->uci_ri);
if (ret < 0) {
return ret;
}
Q_prime_ri = (uint32_t) ret;
}
q->nof_ri_ack_bits = Q_prime_ri;
return SRSLTE_SUCCESS;
}
int srslte_ulsch_uci_decode(srslte_sch_t *q, srslte_pusch_cfg_t *cfg, srslte_softbuffer_rx_t *softbuffer,
int16_t *q_bits, int16_t *g_bits, uint8_t *data, srslte_uci_data_t *uci_data)
{
int ret = 0;
uint32_t Q_prime_ri = q->nof_ri_ack_bits;
uint32_t Q_prime_cqi = 0;
uint32_t e_offset = 0;
uint32_t nb_q = cfg->nbits.nof_bits;
uint32_t Qm = cfg->grant.Qm;
// Deinterleave data and CQI in ULSCH
ulsch_deinterleave(q_bits, Qm, nb_q/Qm, cfg->nbits.nof_symb, g_bits, q->ack_ri_bits, Q_prime_ri*Qm,
q->temp_g_bits, q->ul_interleaver);
// Decode CQI (multiplexed at the front of ULSCH)
if (uci_data->uci_cqi_len > 0) {
ret = srslte_uci_decode_cqi_pusch(&q->uci_cqi, cfg, g_bits,
beta_cqi_offset[cfg->uci_cfg.I_offset_cqi],
Q_prime_ri, uci_data->uci_cqi_len,
uci_data->uci_cqi, &uci_data->cqi_ack);
if (ret < 0) {
return ret;
}
Q_prime_cqi = (uint32_t) ret;
}
e_offset += Q_prime_cqi*Qm;
// Decode ULSCH
if (cfg->cb_segm.tbs > 0) {
uint32_t G = nb_q/Qm - Q_prime_ri - Q_prime_cqi;
ret = decode_tb(q, softbuffer, &cfg->cb_segm,
Qm, cfg->rv, G*Qm,
&g_bits[e_offset], data);
if (ret) {
return ret;
}
}
return SRSLTE_SUCCESS;
}
int srslte_ulsch_encode(srslte_sch_t *q, srslte_pusch_cfg_t *cfg, srslte_softbuffer_tx_t *softbuffer,
uint8_t *data, uint8_t *g_bits, uint8_t *q_bits)
{
srslte_uci_data_t uci_data;
bzero(&uci_data, sizeof(srslte_uci_data_t));
return srslte_ulsch_uci_encode(q, cfg, softbuffer, data, uci_data, g_bits, q_bits);
}
int srslte_ulsch_uci_encode(srslte_sch_t *q,
srslte_pusch_cfg_t *cfg, srslte_softbuffer_tx_t *softbuffer,
uint8_t *data, srslte_uci_data_t uci_data,
uint8_t *g_bits, uint8_t *q_bits)
{
int ret;
uint32_t e_offset = 0;
uint32_t Q_prime_cqi = 0;
uint32_t Q_prime_ack = 0;
uint32_t Q_prime_ri = 0;
uint32_t nb_q = cfg->nbits.nof_bits;
uint32_t Qm = cfg->grant.Qm;
// Encode RI
if (uci_data.uci_ri_len > 0) {
float beta = beta_ri_offset[cfg->uci_cfg.I_offset_ri];
if (cfg->cb_segm.tbs == 0) {
beta /= beta_cqi_offset[cfg->uci_cfg.I_offset_cqi];
}
ret = srslte_uci_encode_ri(cfg, uci_data.uci_ri, uci_data.uci_cqi_len, beta, nb_q/Qm, q->ack_ri_bits);
if (ret < 0) {
return ret;
}
Q_prime_ri = (uint32_t) ret;
}
// Encode CQI
cfg->last_O_cqi = uci_data.uci_cqi_len;
if (uci_data.uci_cqi_len > 0) {
ret = srslte_uci_encode_cqi_pusch(&q->uci_cqi, cfg,
uci_data.uci_cqi, uci_data.uci_cqi_len,
beta_cqi_offset[cfg->uci_cfg.I_offset_cqi],
Q_prime_ri, q->temp_g_bits);
if (ret < 0) {
return ret;
}
Q_prime_cqi = (uint32_t) ret;
srslte_bit_pack_vector(q->temp_g_bits, g_bits, Q_prime_cqi*Qm);
// Reset the buffer because will be reused in ulsch_interleave
bzero(q->temp_g_bits, Q_prime_cqi*Qm);
}
e_offset += Q_prime_cqi*Qm;
// Encode UL-SCH
if (cfg->cb_segm.tbs > 0) {
uint32_t G = nb_q/Qm - Q_prime_ri - Q_prime_cqi;
ret = encode_tb_off(q, softbuffer, &cfg->cb_segm,
Qm, cfg->rv, G*Qm,
data, &g_bits[e_offset/8], e_offset%8);
if (ret) {
return ret;
}
}
// Interleave UL-SCH (and RI and CQI)
ulsch_interleave(g_bits, Qm, nb_q/Qm, cfg->nbits.nof_symb, q_bits, q->ack_ri_bits, Q_prime_ri*Qm,
q->temp_g_bits, q->ul_interleaver);
// Encode (and interleave) ACK
if (uci_data.uci_ack_len > 0) {
float beta = beta_harq_offset[cfg->uci_cfg.I_offset_ack];
if (cfg->cb_segm.tbs == 0) {
beta /= beta_cqi_offset[cfg->uci_cfg.I_offset_cqi];
}
ret = srslte_uci_encode_ack(cfg, uci_data.uci_ack, uci_data.uci_cqi_len, beta, nb_q/Qm, &q->ack_ri_bits[Q_prime_ri*Qm]);
if (ret < 0) {
return ret;
}
Q_prime_ack = (uint32_t) ret;
}
q->nof_ri_ack_bits = (Q_prime_ack+Q_prime_ri)*Qm;
for (uint32_t i=0;i<q->nof_ri_ack_bits;i++) {
uint32_t p = q->ack_ri_bits[i].position;
if (p < nb_q) {
if (q->ack_ri_bits[i].type == UCI_BIT_1) {
q_bits[p/8] |= (1<<(7-p%8));
} else {
q_bits[p/8] &= ~(1<<(7-p%8));
}
} else {
fprintf(stderr, "Invalid RI/ACK bit position %d. Max bits=%d\n", p, nb_q);
}
}
INFO("Q_prime_ack=%d, Q_prime_cqi=%d, Q_prime_ri=%d\n",Q_prime_ack, Q_prime_cqi, Q_prime_ri);
return SRSLTE_SUCCESS;
}