srsRAN/lib/src/phy/ch_estimation/test/chest_test_ul.c

258 lines
7.2 KiB
C

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <complex.h>
#include "srslte/srslte.h"
srslte_cell_t cell = {
6, // nof_prb
1, // nof_ports
0,
1000, // cell_id
SRSLTE_CP_NORM // cyclic prefix
};
char *output_matlab = NULL;
void usage(char *prog) {
printf("Usage: %s [recov]\n", prog);
printf("\t-r nof_prb [Default %d]\n", cell.nof_prb);
printf("\t-e extended cyclic prefix [Default normal]\n");
printf("\t-c cell_id (1000 tests all). [Default %d]\n", cell.id);
printf("\t-o output matlab file [Default %s]\n",output_matlab?output_matlab:"None");
printf("\t-v increase verbosity\n");
}
void parse_args(int argc, char **argv) {
int opt;
while ((opt = getopt(argc, argv, "recov")) != -1) {
switch(opt) {
case 'r':
cell.nof_prb = atoi(argv[optind]);
break;
case 'e':
cell.cp = SRSLTE_CP_EXT;
break;
case 'c':
cell.id = atoi(argv[optind]);
break;
case 'o':
output_matlab = argv[optind];
break;
case 'v':
srslte_verbose++;
break;
default:
usage(argv[0]);
exit(-1);
}
}
}
int main(int argc, char **argv) {
srslte_chest_ul_t est;
cf_t *input = NULL, *ce = NULL, *h = NULL;
int i, j, n_port=0, sf_idx=0, cid=0, num_re;
int ret = -1;
int max_cid;
FILE *fmatlab = NULL;
parse_args(argc,argv);
if (output_matlab) {
fmatlab=fopen(output_matlab, "w");
if (!fmatlab) {
perror("fopen");
goto do_exit;
}
}
num_re = 2 * cell.nof_prb * SRSLTE_NRE * SRSLTE_CP_NSYMB(cell.cp);
input = srslte_vec_malloc(num_re * sizeof(cf_t));
if (!input) {
perror("srslte_vec_malloc");
goto do_exit;
}
h = srslte_vec_malloc(num_re * sizeof(cf_t));
if (!h) {
perror("srslte_vec_malloc");
goto do_exit;
}
ce = srslte_vec_malloc(num_re * sizeof(cf_t));
if (!ce) {
perror("srslte_vec_malloc");
goto do_exit;
}
if (cell.id == 1000) {
cid = 0;
max_cid = 504;
} else {
cid = cell.id;
max_cid = cell.id;
}
printf("max_cid=%d, cid=%d, cell.id=%d\n", max_cid, cid, cell.id);
if (srslte_chest_ul_init(&est, cell.nof_prb)) {
fprintf(stderr, "Error initializing equalizer\n");
goto do_exit;
}
while(cid <= max_cid) {
cell.id = cid;
if (srslte_chest_ul_set_cell(&est, cell)) {
fprintf(stderr, "Error initializing equalizer\n");
goto do_exit;
}
for (int n=6;n<=cell.nof_prb;n+=5) {
if (srslte_dft_precoding_valid_prb(n)) {
for (int delta_ss=29;delta_ss<SRSLTE_NOF_DELTA_SS;delta_ss++) {
for (int cshift=7;cshift<SRSLTE_NOF_CSHIFT;cshift++) {
for (int t=2;t<3;t++) {
/* Setup and pregen DMRS reference signals */
srslte_refsignal_dmrs_pusch_cfg_t pusch_cfg;
uint32_t nof_prb = n;
pusch_cfg.cyclic_shift = cshift;
pusch_cfg.delta_ss = delta_ss;
bool group_hopping_en = false;
bool sequence_hopping_en = false;
if (!t) {
group_hopping_en = false;
sequence_hopping_en = false;
} else if (t == 1) {
group_hopping_en = false;
sequence_hopping_en = true;
} else if (t == 2) {
group_hopping_en = true;
sequence_hopping_en = false;
}
pusch_cfg.group_hopping_en = group_hopping_en;
pusch_cfg.sequence_hopping_en = sequence_hopping_en;
srslte_chest_ul_set_cfg(&est, &pusch_cfg, NULL, NULL);
// Loop through subframe idx and cyclic shifts
for (int sf_idx=0;sf_idx<10;sf_idx+=3) {
for (int cshift_dmrs=0;cshift_dmrs<SRSLTE_NOF_CSHIFT;cshift_dmrs+=5) {
if (SRSLTE_VERBOSE_ISINFO()) {
printf("nof_prb: %d, ",nof_prb);
printf("cyclic_shift: %d, ",pusch_cfg.cyclic_shift);
printf("cyclic_shift_for_dmrs: %d, ", cshift_dmrs);
printf("delta_ss: %d, ",pusch_cfg.delta_ss);
printf("SF_idx: %d\n", sf_idx);
}
/* Generate random input */
bzero(input, sizeof(cf_t) * num_re);
for (i=0;i<num_re;i++) {
input[i] = 0.5-rand()/RAND_MAX+I*(0.5-(float) rand()/RAND_MAX);
}
/* Generate channel and pass input through channel */
for (i=0;i<2*SRSLTE_CP_NSYMB(cell.cp);i++) {
for (j=0;j<cell.nof_prb * SRSLTE_NRE;j++) {
float x = -1+(float) i/SRSLTE_CP_NSYMB(cell.cp) + cosf(2 * M_PI * (float) j/cell.nof_prb/SRSLTE_NRE);
h[i*cell.nof_prb * SRSLTE_NRE+j] = (3+x) * cexpf(I * x);
input[i*cell.nof_prb * SRSLTE_NRE+j] *= h[i*cell.nof_prb * SRSLTE_NRE+j];
}
}
// Estimate channel
uint32_t prb_idx[2]= {0, 0};
srslte_chest_ul_estimate(&est, input, ce, n, sf_idx, cshift_dmrs, prb_idx);
// Compute MSE
float mse = 0;
for (i=0;i<num_re;i++) {
mse += cabsf(ce[i]-h[i]);
}
mse /= num_re;
INFO("MSE: %f\n", mse);
if (mse > 4) {
goto do_exit;
}
}
}
}
}
}
}
}
cid+=10;
printf("cid=%d\n", cid);
}
srslte_chest_ul_free(&est);
if (fmatlab) {
fprintf(fmatlab, "input=");
srslte_vec_fprint_c(fmatlab, input, num_re);
fprintf(fmatlab, ";\n");
fprintf(fmatlab, "h=");
srslte_vec_fprint_c(fmatlab, h, num_re);
fprintf(fmatlab, ";\n");
fprintf(fmatlab, "ce=");
srslte_vec_fprint_c(fmatlab, ce, num_re);
fprintf(fmatlab, ";\n");
}
ret = 0;
do_exit:
if (ce) {
free(ce);
}
if (input) {
free(input);
}
if (h) {
free(h);
}
if (!ret) {
printf("OK\n");
} else {
printf("Error at cid=%d, slot=%d, port=%d\n",cid, sf_idx, n_port);
}
exit(ret);
}