srsRAN/srsue/src/stack/upper/tft_packet_filter.cc

432 lines
14 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsue/hdr/stack/upper/tft_packet_filter.h"
#include "srslte/upper/ipv6.h"
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
namespace srsue {
tft_packet_filter_t::tft_packet_filter_t(uint8_t eps_bearer_id_,
uint8_t lcid_,
const LIBLTE_MME_PACKET_FILTER_STRUCT& tft,
srslte::log* log_) :
eps_bearer_id(eps_bearer_id_),
lcid(lcid_),
id(tft.id),
eval_precedence(tft.eval_precedence),
active_filters(0),
log(log_)
{
int idx = 0;
uint32_t length_in_bytes = 0;
uint32_t remaining_bits = 0;
while (idx < tft.filter_size) {
uint8_t filter_type = tft.filter[idx];
idx++;
switch (filter_type) {
// IPv4
case IPV4_LOCAL_ADDR_TYPE:
active_filters |= IPV4_LOCAL_ADDR_FLAG;
memcpy(&ipv4_local_addr, &tft.filter[idx], IPV4_ADDR_SIZE);
idx += IPV4_ADDR_SIZE;
memcpy(&ipv4_local_addr_mask, &tft.filter[idx], IPV4_ADDR_SIZE);
idx += IPV4_ADDR_SIZE;
break;
case IPV4_REMOTE_ADDR_TYPE:
active_filters |= IPV4_REMOTE_ADDR_FLAG;
memcpy(&ipv4_remote_addr, &tft.filter[idx], IPV4_ADDR_SIZE);
idx += IPV4_ADDR_SIZE;
memcpy(&ipv4_remote_addr_mask, &tft.filter[idx], IPV4_ADDR_SIZE);
idx += IPV4_ADDR_SIZE;
break;
// IPv6
case IPV6_REMOTE_ADDR_TYPE:
active_filters |= IPV6_REMOTE_ADDR_FLAG;
memcpy(&ipv6_remote_addr, &tft.filter[idx], IPV6_ADDR_SIZE);
idx += IPV6_ADDR_SIZE;
memcpy(&ipv6_remote_addr_mask, &tft.filter[idx], IPV6_ADDR_SIZE);
idx += IPV6_ADDR_SIZE;
ipv6_remote_addr_length = IPV6_ADDR_SIZE;
break;
case IPV6_REMOTE_ADDR_LENGTH_TYPE: // "IPv6 remote address/prefix length type"
active_filters |= IPV6_REMOTE_ADDR_LENGTH_FLAG;
memcpy(&ipv6_remote_addr, &tft.filter[idx], IPV6_ADDR_SIZE);
idx += IPV6_ADDR_SIZE;
ipv6_remote_addr_length = tft.filter[idx++];
// convert address length to mask:
length_in_bytes = ipv6_remote_addr_length / 8;
remaining_bits = ipv6_remote_addr_length % 8;
for (uint i = 0; i < 16; i++)
ipv6_remote_addr_mask[i] = 0;
for (uint i = 0; i < length_in_bytes; i++)
ipv6_remote_addr_mask[i] = 0xff;
if (remaining_bits > 0)
ipv6_remote_addr_mask[length_in_bytes] = 0xff - ((1 << (8 - remaining_bits)) - 1);
break;
case IPV6_LOCAL_ADDR_LENGTH_TYPE:
active_filters |= IPV6_LOCAL_ADDR_LENGTH_FLAG;
memcpy(&ipv6_local_addr, &tft.filter[idx], IPV6_ADDR_SIZE);
idx += IPV6_ADDR_SIZE;
ipv6_local_addr_length = tft.filter[idx++];
// convert address length to mask:
length_in_bytes = ipv6_local_addr_length / 8;
remaining_bits = ipv6_local_addr_length % 8;
for (uint i = 0; i < 16; i++)
ipv6_local_addr_mask[i] = 0;
for (uint i = 0; i < length_in_bytes; i++)
ipv6_local_addr_mask[i] = 0xff;
if (remaining_bits > 0)
ipv6_local_addr_mask[length_in_bytes] = 0xff - ((1 << (8 - remaining_bits)) - 1);
break;
// Ports
case SINGLE_LOCAL_PORT_TYPE:
active_filters |= SINGLE_LOCAL_PORT_FLAG;
memcpy(&single_local_port, &tft.filter[idx], 2);
idx += 2;
break;
case SINGLE_REMOTE_PORT_TYPE:
active_filters |= SINGLE_REMOTE_PORT_FLAG;
memcpy(&single_remote_port, &tft.filter[idx], 2);
idx += 2;
break;
case LOCAL_PORT_RANGE_TYPE:
active_filters |= LOCAL_PORT_RANGE_FLAG;
memcpy(&local_port_range[0], &tft.filter[idx], 2);
memcpy(&local_port_range[1], &tft.filter[idx + 2], 2);
if (local_port_range[0] > local_port_range[1]) { // wrong order
uint16_t t = local_port_range[0];
local_port_range[0] = local_port_range[1];
local_port_range[1] = t;
}
idx += 4;
break;
case REMOTE_PORT_RANGE_TYPE:
active_filters |= REMOTE_PORT_RANGE_FLAG;
memcpy(&remote_port_range[0], &tft.filter[idx], 2);
memcpy(&remote_port_range[1], &tft.filter[idx + 2], 2);
if (remote_port_range[0] > remote_port_range[1]) { // wrong order
uint16_t t = remote_port_range[0];
remote_port_range[0] = remote_port_range[1];
remote_port_range[1] = t;
}
idx += 4;
break;
// Protocol/Next Header
case PROTOCOL_ID_TYPE:
active_filters |= PROTOCOL_ID_FLAG;
protocol_id = tft.filter[idx++];
break;
// Type of service/Traffic class
case TYPE_OF_SERVICE_TYPE:
active_filters |= TYPE_OF_SERVICE_FLAG;
type_of_service = tft.filter[idx++];
type_of_service_mask = tft.filter[idx++];
break;
// Flow label
case FLOW_LABEL_TYPE:
active_filters |= FLOW_LABEL_FLAG;
memcpy(&flow_label, &tft.filter[idx], 3);
idx += 3;
break;
// IPsec security parameter
case SECURITY_PARAMETER_INDEX_TYPE:
active_filters |= SECURITY_PARAMETER_INDEX_FLAG;
memcpy(&security_parameter_index, &tft.filter[idx], 4);
idx += 4;
break;
default:
log->error("ERROR: wrong type: 0x%02x\n", filter_type);
return;
}
}
}
bool inline tft_packet_filter_t::filter_contains(uint16_t filtertype)
{
return (active_filters & filtertype) != 0;
}
/*
* Implements packet matching against the packet filter componenets as specified in TS 24.008, section 10.5.6.12.
*
* This function will only return true if all the active filter components match (logical AND).
* It will return false as soon as any of the filter components does not match.
*
* Note: 'active_filters' is a bitmask; bits set to '1' represent active filter components.
*/
bool tft_packet_filter_t::match(const srslte::unique_byte_buffer_t& pdu)
{
uint16_t ip_flags = IPV4_REMOTE_ADDR_FLAG | IPV4_LOCAL_ADDR_FLAG | IPV6_REMOTE_ADDR_FLAG |
IPV6_REMOTE_ADDR_LENGTH_FLAG | IPV6_LOCAL_ADDR_LENGTH_FLAG;
uint16_t port_flags =
SINGLE_LOCAL_PORT_FLAG | LOCAL_PORT_RANGE_FLAG | SINGLE_REMOTE_PORT_FLAG | REMOTE_PORT_RANGE_FLAG;
// Check if there is any active filter
if (active_filters == 0) {
return false;
}
// Match IP Header to active filters
if (filter_contains(ip_flags) && !match_ip(pdu)) {
return false;
}
// Check Protocol ID/Next Header Field
if (filter_contains(PROTOCOL_ID_FLAG) && !match_protocol(pdu)) {
return false;
}
// Check Ports/Port Range
if (filter_contains(port_flags) && !match_port(pdu)) {
return false;
}
// Check Type of Service/Traffic class
if (filter_contains(TYPE_OF_SERVICE_FLAG) && !match_type_of_service(pdu)) {
return false;
}
return true;
}
bool tft_packet_filter_t::match_ip(const srslte::unique_byte_buffer_t& pdu)
{
struct iphdr* ip_pkt = (struct iphdr*)pdu->msg;
struct ipv6hdr* ip6_pkt = (struct ipv6hdr*)pdu->msg;
// It is implied, that this is always an OUTGOING packet
if (ip_pkt->version == 4) {
// Check match on IPv4 packet
if (filter_contains(IPV4_LOCAL_ADDR_FLAG)) {
if ((ip_pkt->saddr & ipv4_local_addr_mask) != (ipv4_local_addr & ipv4_local_addr_mask)) {
return false;
}
}
if (filter_contains(IPV4_REMOTE_ADDR_FLAG)) {
if ((ip_pkt->daddr & ipv4_remote_addr_mask) != (ipv4_remote_addr & ipv4_remote_addr_mask)) {
return false;
}
}
} else if (ip_pkt->version == 6) {
// Check match on IPv6
if (filter_contains(IPV6_REMOTE_ADDR_FLAG | IPV6_REMOTE_ADDR_LENGTH_FLAG)) {
bool match = true;
for (int i = 0; i < ipv6_remote_addr_length; i++) {
match &= ((ipv6_remote_addr[i] ^ ip6_pkt->daddr.__in6_u.__u6_addr8[i]) & ipv6_remote_addr_mask[i]) == 0;
if (!match) {
return false;
}
}
return true;
}
} else {
// Error
return false;
}
return true;
}
bool tft_packet_filter_t::match_protocol(const srslte::unique_byte_buffer_t& pdu)
{
struct iphdr* ip_pkt = (struct iphdr*)pdu->msg;
struct ipv6hdr* ip6_pkt = (struct ipv6hdr*)pdu->msg;
if (ip_pkt->version == 4) {
// Check match on IPv4 packet
if (ip_pkt->protocol != protocol_id) {
return false;
}
} else if (ip_pkt->version == 6) {
// Check match on IPv6 packet
if (ip6_pkt->nexthdr != protocol_id) {
return false;
}
} else {
// Error
return false;
}
return true;
}
bool tft_packet_filter_t::match_type_of_service(const srslte::unique_byte_buffer_t& pdu)
{
struct iphdr* ip_pkt = (struct iphdr*)pdu->msg;
if (ip_pkt->version == 4) {
// Check match on IPv4 packet
if ((ip_pkt->tos ^ type_of_service) & type_of_service_mask) {
return false;
}
} else if (ip_pkt->version == 6) {
// IPv6 traffic class not supported yet
return false;
}
return true;
}
bool tft_packet_filter_t::match_flow_label(const srslte::unique_byte_buffer_t& pdu)
{
struct ipv6hdr* ip6_pkt = (struct ipv6hdr*)pdu->msg;
if (ip6_pkt->version == 6 && (active_filters & FLOW_LABEL_FLAG)) {
// Check match on IPv4 packet
if (memcmp(ip6_pkt->flow_lbl, flow_label, 3) != 0) {
return false;
}
}
return true;
}
bool tft_packet_filter_t::match_port(const srslte::unique_byte_buffer_t& pdu)
{
struct iphdr* ip_pkt = (struct iphdr*)pdu->msg;
struct ipv6hdr* ip6_pkt = (struct ipv6hdr*)pdu->msg;
struct udphdr* udp_pkt;
struct tcphdr* tcp_pkt;
if (ip_pkt->version == 4) {
switch (ip_pkt->protocol) {
case UDP_PROTOCOL:
udp_pkt = (struct udphdr*)&pdu->msg[ip_pkt->ihl * 4];
if (active_filters & SINGLE_LOCAL_PORT_FLAG) {
if (udp_pkt->source != single_local_port) {
return false;
}
}
if (active_filters & SINGLE_REMOTE_PORT_FLAG) {
if (udp_pkt->dest != single_remote_port) {
return false;
}
}
break;
case TCP_PROTOCOL:
tcp_pkt = (struct tcphdr*)&pdu->msg[ip_pkt->ihl * 4];
if (active_filters & SINGLE_LOCAL_PORT_FLAG) {
if (tcp_pkt->source != single_local_port) {
return false;
}
}
if (active_filters & SINGLE_REMOTE_PORT_FLAG) {
if (tcp_pkt->dest != single_remote_port) {
return false;
}
}
break;
default:
return false;
}
} else if (ip_pkt->version == 6) {
switch (ip6_pkt->nexthdr) {
case UDP_PROTOCOL:
udp_pkt = (struct udphdr*)&pdu->msg[sizeof(ipv6hdr)];
if (active_filters & SINGLE_LOCAL_PORT_FLAG) {
if (udp_pkt->source != single_local_port) {
return false;
}
}
if (active_filters & SINGLE_REMOTE_PORT_FLAG) {
if (udp_pkt->dest != single_remote_port) {
return false;
}
}
break;
case TCP_PROTOCOL:
tcp_pkt = (struct tcphdr*)&pdu->msg[sizeof(ipv6hdr)];
if (active_filters & SINGLE_LOCAL_PORT_FLAG) {
if (tcp_pkt->source != single_local_port) {
return false;
}
}
if (active_filters & SINGLE_REMOTE_PORT_FLAG) {
if (tcp_pkt->dest != single_remote_port) {
return false;
}
}
break;
default:
return false;
}
}
return true;
}
uint8_t tft_pdu_matcher::check_tft_filter_match(const srslte::unique_byte_buffer_t& pdu)
{
std::lock_guard<std::mutex> lock(tft_mutex);
uint8_t lcid = default_lcid;
for (std::pair<const uint16_t, tft_packet_filter_t>& filter_pair : tft_filter_map) {
bool match = filter_pair.second.match(pdu);
if (match) {
lcid = filter_pair.second.lcid;
log->debug("Found filter match -- EPS bearer Id %d, LCID %d\n", filter_pair.second.eps_bearer_id, lcid);
break;
}
}
return lcid;
}
int tft_pdu_matcher::apply_traffic_flow_template(const uint8_t& erab_id,
const uint8_t& lcid,
const LIBLTE_MME_TRAFFIC_FLOW_TEMPLATE_STRUCT* tft)
{
std::lock_guard<std::mutex> lock(tft_mutex);
switch (tft->tft_op_code) {
case LIBLTE_MME_TFT_OPERATION_CODE_CREATE_NEW_TFT:
for (int i = 0; i < tft->packet_filter_list_size; i++) {
log->info("New packet filter for TFT\n");
tft_packet_filter_t filter(erab_id, lcid, tft->packet_filter_list[i], log);
auto it = tft_filter_map.insert(std::make_pair(filter.eval_precedence, filter));
if (it.second == false) {
log->error("Error inserting TFT Packet Filter\n");
return SRSLTE_ERROR_CANT_START;
}
}
break;
default:
log->error("Unhandled TFT OP code\n");
return SRSLTE_ERROR_CANT_START;
}
return SRSLTE_SUCCESS;
}
void tft_pdu_matcher::set_default_lcid(const uint8_t lcid)
{
default_lcid = lcid;
}
} // namespace srsue