srsRAN/lib/src/upper/rlc_am_lte.cc

2206 lines
65 KiB
C++

/*
* Copyright 2013-2020 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/upper/rlc_am_lte.h"
#include <iostream>
#include <sstream>
#define MOD 1024
#define RX_MOD_BASE(x) (((x)-vr_r) % 1024)
#define TX_MOD_BASE(x) (((x)-vt_a) % 1024)
#define LCID (parent->lcid)
#define RB_NAME (parent->rb_name.c_str())
namespace srslte {
rlc_am_lte::rlc_am_lte(srslte::log_ref log_,
uint32_t lcid_,
srsue::pdcp_interface_rlc* pdcp_,
srsue::rrc_interface_rlc* rrc_,
srslte::timer_handler* timers_) :
log(log_), rrc(rrc_), pdcp(pdcp_), timers(timers_), lcid(lcid_), tx(this), rx(this)
{}
// Applies new configuration. Must be just reestablished or initiated
bool rlc_am_lte::configure(const rlc_config_t& cfg_)
{
// determine bearer name and configure Rx/Tx objects
rb_name = rrc->get_rb_name(lcid);
// store config
cfg = cfg_;
if (not rx.configure(cfg.am)) {
log->error("Error configuring bearer (RX)\n");
return false;
}
if (not tx.configure(cfg)) {
log->error("Error configuring bearer (TX)\n");
return false;
}
log->info("%s configured: t_poll_retx=%d, poll_pdu=%d, poll_byte=%d, max_retx_thresh=%d, "
"t_reordering=%d, t_status_prohibit=%d\n",
rb_name.c_str(),
cfg.am.t_poll_retx,
cfg.am.poll_pdu,
cfg.am.poll_byte,
cfg.am.max_retx_thresh,
cfg.am.t_reordering,
cfg.am.t_status_prohibit);
return true;
}
void rlc_am_lte::set_bsr_callback(bsr_callback_t callback)
{
tx.set_bsr_callback(callback);
}
void rlc_am_lte::empty_queue()
{
// Drop all messages in TX SDU queue
tx.empty_queue();
}
void rlc_am_lte::reestablish()
{
log->debug("Reestablished bearer %s\n", rb_name.c_str());
tx.reestablish(); // calls stop and enables tx again
rx.reestablish(); // calls only stop
}
void rlc_am_lte::stop()
{
log->debug("Stopped bearer %s\n", rb_name.c_str());
tx.stop();
rx.stop();
}
rlc_mode_t rlc_am_lte::get_mode()
{
return rlc_mode_t::am;
}
uint32_t rlc_am_lte::get_bearer()
{
return lcid;
}
rlc_bearer_metrics_t rlc_am_lte::get_metrics()
{
return metrics;
}
void rlc_am_lte::reset_metrics()
{
tx.reset_metrics();
rx.reset_metrics();
}
/****************************************************************************
* PDCP interface
***************************************************************************/
void rlc_am_lte::write_sdu(unique_byte_buffer_t sdu)
{
if (tx.write_sdu(std::move(sdu)) == SRSLTE_SUCCESS) {
metrics.num_tx_sdus++;
}
}
void rlc_am_lte::discard_sdu(uint32_t discard_sn)
{
tx.discard_sdu(discard_sn);
metrics.num_lost_sdus++;
}
bool rlc_am_lte::sdu_queue_is_full()
{
return tx.sdu_queue_is_full();
}
/****************************************************************************
* MAC interface
***************************************************************************/
bool rlc_am_lte::has_data()
{
return tx.has_data();
}
uint32_t rlc_am_lte::get_buffer_state()
{
return tx.get_buffer_state();
}
int rlc_am_lte::read_pdu(uint8_t* payload, uint32_t nof_bytes)
{
int read_bytes = tx.read_pdu(payload, nof_bytes);
metrics.num_tx_pdus++;
metrics.num_tx_pdu_bytes += read_bytes;
return read_bytes;
}
void rlc_am_lte::write_pdu(uint8_t* payload, uint32_t nof_bytes)
{
rx.write_pdu(payload, nof_bytes);
metrics.num_rx_pdus++;
metrics.num_rx_pdu_bytes += nof_bytes;
}
/****************************************************************************
* Tx subclass implementation
***************************************************************************/
rlc_am_lte::rlc_am_lte_tx::rlc_am_lte_tx(rlc_am_lte* parent_) :
parent(parent_),
log(parent_->log),
pool(byte_buffer_pool::get_instance()),
poll_retx_timer(parent_->timers->get_unique_timer()),
status_prohibit_timer(parent_->timers->get_unique_timer())
{
pthread_mutex_init(&mutex, NULL);
}
rlc_am_lte::rlc_am_lte_tx::~rlc_am_lte_tx()
{
pthread_mutex_destroy(&mutex);
}
void rlc_am_lte::rlc_am_lte_tx::set_bsr_callback(bsr_callback_t callback)
{
bsr_callback = callback;
}
bool rlc_am_lte::rlc_am_lte_tx::configure(const rlc_config_t& cfg_)
{
// TODO: add config checks
cfg = cfg_.am;
// check timers
if (not poll_retx_timer.is_valid() or not status_prohibit_timer.is_valid()) {
log->error("Configuring RLC AM TX: timers not configured\n");
return false;
}
// configure timers
if (cfg.t_status_prohibit > 0) {
status_prohibit_timer.set(static_cast<uint32_t>(cfg.t_status_prohibit),
[this](uint32_t timerid) { timer_expired(timerid); });
}
if (cfg.t_poll_retx > 0) {
poll_retx_timer.set(static_cast<uint32_t>(cfg.t_poll_retx), [this](uint32_t timerid) { timer_expired(timerid); });
}
tx_sdu_queue.resize(cfg_.tx_queue_length);
tx_enabled = true;
return true;
}
void rlc_am_lte::rlc_am_lte_tx::stop()
{
empty_queue();
pthread_mutex_lock(&mutex);
tx_enabled = false;
if (parent->timers != nullptr && poll_retx_timer.is_valid()) {
poll_retx_timer.stop();
}
if (parent->timers != nullptr && status_prohibit_timer.is_valid()) {
status_prohibit_timer.stop();
}
vt_a = 0;
vt_ms = RLC_AM_WINDOW_SIZE;
vt_s = 0;
poll_sn = 0;
pdu_without_poll = 0;
byte_without_poll = 0;
// Drop all messages in TX window
tx_window.clear();
// Drop all messages in RETX queue
retx_queue.clear();
pthread_mutex_unlock(&mutex);
}
void rlc_am_lte::rlc_am_lte_tx::empty_queue()
{
pthread_mutex_lock(&mutex);
// deallocate all SDUs in transmit queue
while (tx_sdu_queue.size() > 0) {
unique_byte_buffer_t buf = tx_sdu_queue.read();
}
// deallocate SDU that is currently processed
tx_sdu.reset();
pthread_mutex_unlock(&mutex);
}
void rlc_am_lte::rlc_am_lte_tx::reestablish()
{
stop();
tx_enabled = true;
}
bool rlc_am_lte::rlc_am_lte_tx::do_status()
{
return parent->rx.get_do_status();
}
// Function is supposed to return as fast as possible
bool rlc_am_lte::rlc_am_lte_tx::has_data()
{
return (((do_status() && not status_prohibit_timer.is_running())) || // if we have a status PDU to transmit
(not retx_queue.empty()) || // if we have a retransmission
(tx_sdu != NULL) || // if we are currently transmitting a SDU
(not tx_sdu_queue.is_empty())); // or if there is a SDU queued up for transmission
}
uint32_t rlc_am_lte::rlc_am_lte_tx::get_buffer_state()
{
pthread_mutex_lock(&mutex);
uint32_t n_bytes = 0;
uint32_t n_sdus = 0;
log->debug("%s Buffer state - do_status=%s, status_prohibit_running=%s (%d/%d)\n",
RB_NAME,
do_status() ? "yes" : "no",
status_prohibit_timer.is_running() ? "yes" : "no",
status_prohibit_timer.time_elapsed(),
status_prohibit_timer.duration());
// Bytes needed for status report
if (do_status() && not status_prohibit_timer.is_running()) {
n_bytes += parent->rx.get_status_pdu_length();
log->debug("%s Buffer state - total status report: %d bytes\n", RB_NAME, n_bytes);
}
// Bytes needed for retx
if (not retx_queue.empty()) {
rlc_amd_retx_t retx = retx_queue.front();
log->debug("%s Buffer state - retx - SN=%d, Segment: %s, %d:%d\n",
RB_NAME,
retx.sn,
retx.is_segment ? "true" : "false",
retx.so_start,
retx.so_end);
if (tx_window.end() != tx_window.find(retx.sn)) {
int req_bytes = required_buffer_size(retx);
if (req_bytes < 0) {
log->error("In get_buffer_state(): Removing retx.sn=%d from queue\n", retx.sn);
retx_queue.pop_front();
} else {
n_bytes += req_bytes;
log->debug("Buffer state - retx: %d bytes\n", n_bytes);
}
}
}
// Bytes needed for tx SDUs
if (tx_window.size() < 1024) {
n_sdus = tx_sdu_queue.size();
n_bytes += tx_sdu_queue.size_bytes();
if (tx_sdu != NULL) {
n_sdus++;
n_bytes += tx_sdu->N_bytes;
}
}
// Room needed for header extensions? (integer rounding)
if (n_sdus > 1) {
n_bytes += ((n_sdus - 1) * 1.5) + 0.5;
}
// Room needed for fixed header of data PDUs
if (n_bytes > 0 && n_sdus > 0) {
n_bytes += 3;
log->debug("%s Total buffer state - %d SDUs (%d B)\n", RB_NAME, n_sdus, n_bytes);
}
pthread_mutex_unlock(&mutex);
return n_bytes;
}
int rlc_am_lte::rlc_am_lte_tx::write_sdu(unique_byte_buffer_t sdu)
{
if (!tx_enabled) {
return SRSLTE_ERROR;
}
if (sdu.get() == nullptr) {
log->warning("NULL SDU pointer in write_sdu()\n");
return SRSLTE_ERROR;
}
uint8_t* msg_ptr = sdu->msg;
uint32_t nof_bytes = sdu->N_bytes;
srslte::error_type<unique_byte_buffer_t> ret = tx_sdu_queue.try_write(std::move(sdu));
if (ret) {
log->info_hex(
msg_ptr, nof_bytes, "%s Tx SDU (%d B, tx_sdu_queue_len=%d)\n", RB_NAME, nof_bytes, tx_sdu_queue.size());
} else {
// in case of fail, the try_write returns back the sdu
log->warning_hex(ret.error()->msg,
ret.error()->N_bytes,
"[Dropped SDU] %s Tx SDU (%d B, tx_sdu_queue_len=%d)\n",
RB_NAME,
ret.error()->N_bytes,
tx_sdu_queue.size());
return SRSLTE_ERROR;
}
return SRSLTE_SUCCESS;
}
void rlc_am_lte::rlc_am_lte_tx::discard_sdu(uint32_t discard_sn)
{
if (!tx_enabled) {
return;
}
log->warning("Discard SDU not implemented yet\n");
}
bool rlc_am_lte::rlc_am_lte_tx::sdu_queue_is_full()
{
return tx_sdu_queue.is_full();
}
int rlc_am_lte::rlc_am_lte_tx::read_pdu(uint8_t* payload, uint32_t nof_bytes)
{
pthread_mutex_lock(&mutex);
int pdu_size = 0;
log->debug("MAC opportunity - %d bytes\n", nof_bytes);
log->debug("tx_window size - %zu PDUs\n", tx_window.size());
if (not tx_enabled) {
log->debug("RLC entity not active. Not generating PDU.\n");
goto unlock_and_exit;
}
// Tx STATUS if requested
if (do_status() && not status_prohibit_timer.is_running()) {
pdu_size = build_status_pdu(payload, nof_bytes);
goto unlock_and_exit;
}
// Section 5.2.2.3 in TS 36.311, if tx_window is full and retx_queue empty, retransmit random PDU
if (tx_window.size() >= RLC_AM_WINDOW_SIZE && retx_queue.empty()) {
retransmit_random_pdu();
}
// RETX if required
if (not retx_queue.empty()) {
pdu_size = build_retx_pdu(payload, nof_bytes);
if (pdu_size > 0) {
goto unlock_and_exit;
}
}
// Build a PDU from SDUs
pdu_size = build_data_pdu(payload, nof_bytes);
unlock_and_exit:
num_tx_bytes += pdu_size;
pthread_mutex_unlock(&mutex);
return pdu_size;
}
void rlc_am_lte::rlc_am_lte_tx::timer_expired(uint32_t timeout_id)
{
pthread_mutex_lock(&mutex);
if (poll_retx_timer.is_valid() && poll_retx_timer.id() == timeout_id) {
log->debug("Poll reTx timer expired for LCID=%d after %d ms\n", parent->lcid, poll_retx_timer.duration());
// Section 5.2.2.3 in TS 36.311, schedule random PDU for retransmission if
// (a) both tx and retx buffer are empty, or
// (b) no new data PDU can be transmitted (tx window is full)
if ((retx_queue.empty() && tx_sdu_queue.size() == 0) || tx_window.size() >= RLC_AM_WINDOW_SIZE) {
retransmit_random_pdu();
}
}
pthread_mutex_unlock(&mutex);
if (bsr_callback) {
bsr_callback(parent->lcid, get_buffer_state(), 0);
}
}
void rlc_am_lte::rlc_am_lte_tx::retransmit_random_pdu()
{
if (not tx_window.empty()) {
// randomly select PDU in tx window for retransmission
std::map<uint32_t, rlc_amd_tx_pdu_t>::iterator it = tx_window.begin();
std::advance(it, rand() % tx_window.size());
log->info("Schedule SN=%d for reTx.\n", it->first);
rlc_amd_retx_t retx = {};
retx.is_segment = false;
retx.so_start = 0;
retx.so_end = it->second.buf->N_bytes;
retx.sn = it->first;
retx_queue.push_back(retx);
}
}
uint32_t rlc_am_lte::rlc_am_lte_tx::get_num_tx_bytes()
{
return num_tx_bytes;
}
void rlc_am_lte::rlc_am_lte_tx::reset_metrics()
{
pthread_mutex_lock(&mutex);
num_tx_bytes = 0;
pthread_mutex_unlock(&mutex);
}
/****************************************************************************
* Helper functions
***************************************************************************/
/**
* Called when building a RLC PDU for checking whether the poll bit needs
* to be set.
*
* Note that this is called from a PHY worker thread.
*
* @return True if a status PDU needs to be requested, false otherwise.
*/
bool rlc_am_lte::rlc_am_lte_tx::poll_required()
{
if (cfg.poll_pdu > 0 && pdu_without_poll > static_cast<uint32_t>(cfg.poll_pdu)) {
return true;
}
if (cfg.poll_byte > 0 && byte_without_poll > static_cast<uint32_t>(cfg.poll_byte)) {
return true;
}
if (poll_retx_timer.is_valid() && poll_retx_timer.is_expired()) {
// re-arming of timer is handled by caller
return true;
}
if (tx_window.size() >= RLC_AM_WINDOW_SIZE) {
return true;
}
if (tx_sdu_queue.size() == 0 && retx_queue.empty()) {
return true;
}
/* According to 5.2.2.1 in 36.322 v13.3.0 a poll should be requested if
* the entire AM window is unacknowledged, i.e. no new PDU can be transmitted.
* However, it seems more appropiate to request more often if polling
* is disabled otherwise, e.g. every N PDUs.
*/
if (cfg.poll_pdu == 0 && cfg.poll_byte == 0 && vt_s % poll_periodicity == 0) {
return true;
}
return false;
}
int rlc_am_lte::rlc_am_lte_tx::build_status_pdu(uint8_t* payload, uint32_t nof_bytes)
{
int pdu_len = parent->rx.get_status_pdu(&tx_status, nof_bytes);
log->debug("%s\n", rlc_am_status_pdu_to_string(&tx_status).c_str());
if (pdu_len > 0 && nof_bytes >= static_cast<uint32_t>(pdu_len)) {
log->info("%s Tx status PDU - %s\n", RB_NAME, rlc_am_status_pdu_to_string(&tx_status).c_str());
parent->rx.reset_status();
if (cfg.t_status_prohibit > 0 && status_prohibit_timer.is_valid()) {
// re-arm timer
status_prohibit_timer.run();
}
debug_state();
pdu_len = rlc_am_write_status_pdu(&tx_status, payload);
} else {
log->info("%s Cannot tx status PDU - %d bytes available, %d bytes required\n", RB_NAME, nof_bytes, pdu_len);
pdu_len = 0;
}
return pdu_len;
}
int rlc_am_lte::rlc_am_lte_tx::build_retx_pdu(uint8_t* payload, uint32_t nof_bytes)
{
// Check there is at least 1 element before calling front()
if (retx_queue.empty()) {
log->error("In build_retx_pdu(): retx_queue is empty\n");
return -1;
}
rlc_amd_retx_t retx = retx_queue.front();
// Sanity check - drop any retx SNs not present in tx_window
while (tx_window.end() == tx_window.find(retx.sn)) {
retx_queue.pop_front();
if (!retx_queue.empty()) {
retx = retx_queue.front();
} else {
log->info("In build_retx_pdu(): retx_queue is empty during sanity check, sn=%d\n", retx.sn);
return 0;
}
}
// Is resegmentation needed?
int req_size = required_buffer_size(retx);
if (req_size < 0) {
log->error("In build_retx_pdu(): Removing retx.sn=%d from queue\n", retx.sn);
retx_queue.pop_front();
return -1;
}
if (retx.is_segment || req_size > static_cast<int>(nof_bytes)) {
log->debug("%s build_retx_pdu - resegmentation required\n", RB_NAME);
return build_segment(payload, nof_bytes, retx);
}
// Update & write header
rlc_amd_pdu_header_t new_header = tx_window[retx.sn].header;
new_header.p = 0;
// Set poll bit
pdu_without_poll++;
byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header));
log->info("%s pdu_without_poll: %d\n", RB_NAME, pdu_without_poll);
log->info("%s byte_without_poll: %d\n", RB_NAME, byte_without_poll);
if (poll_required()) {
new_header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
// re-arm timer (will be stopped when status PDU is received)
poll_retx_timer.run();
}
}
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
memcpy(ptr, tx_window[retx.sn].buf->msg, tx_window[retx.sn].buf->N_bytes);
retx_queue.pop_front();
tx_window[retx.sn].retx_count++;
if (tx_window[retx.sn].retx_count >= cfg.max_retx_thresh) {
log->warning(
"%s Signaling max number of reTx=%d for for PDU %d\n", RB_NAME, tx_window[retx.sn].retx_count, retx.sn);
parent->rrc->max_retx_attempted();
}
log->info("%s Retx PDU scheduled for tx. SN=%d, retx count: %d\n", RB_NAME, retx.sn, tx_window[retx.sn].retx_count);
debug_state();
return (ptr - payload) + tx_window[retx.sn].buf->N_bytes;
}
int rlc_am_lte::rlc_am_lte_tx::build_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_retx_t retx)
{
if (tx_window[retx.sn].buf == NULL) {
log->error("In build_segment: retx.sn=%d has null buffer\n", retx.sn);
return 0;
}
if (!retx.is_segment) {
retx.so_start = 0;
retx.so_end = tx_window[retx.sn].buf->N_bytes;
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
pdu_without_poll++;
byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header));
log->info("%s pdu_without_poll: %d\n", RB_NAME, pdu_without_poll);
log->info("%s byte_without_poll: %d\n", RB_NAME, byte_without_poll);
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
new_header.p = 0;
if (poll_required()) {
log->debug("%s setting poll bit to request status\n", RB_NAME);
new_header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
poll_retx_timer.run();
}
}
uint32_t head_len = 0;
uint32_t pdu_space = 0;
head_len = rlc_am_packed_length(&new_header);
if (old_header.N_li > 0) {
// Make sure we can fit at least one N_li element if old header contained at least one
head_len += 2;
}
if (nof_bytes <= head_len) {
log->info("%s Cannot build a PDU segment - %d bytes available, %d bytes required for header\n",
RB_NAME,
nof_bytes,
head_len);
return 0;
}
pdu_space = nof_bytes - head_len;
if (pdu_space < (retx.so_end - retx.so_start)) {
retx.so_end = retx.so_start + pdu_space;
}
// Need to rebuild the li table & update fi based on so_start and so_end
if (retx.so_start == 0 && rlc_am_start_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
}
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for (uint32_t i = 0; i < old_header.N_li; i++) {
if (lower >= retx.so_end) {
break;
}
if (pdu_space <= 2) {
break;
}
upper += old_header.li[i];
head_len = rlc_am_packed_length(&new_header);
// Accomodate some extra space for for LIs if old header contained segments too
head_len += old_header.N_li;
pdu_space = nof_bytes - head_len;
if (pdu_space < (retx.so_end - retx.so_start)) {
retx.so_end = retx.so_start + pdu_space;
}
if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if (upper > retx.so_end) {
li -= upper - retx.so_end;
}
if (lower < retx.so_start) {
li -= retx.so_start - lower;
}
if (lower > 0 && lower == retx.so_start) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
}
if (upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li] = li;
// only increment N_li if more SDU (segments) are being added
if (retx.so_end > upper) {
new_header.N_li++;
}
}
lower += old_header.li[i];
}
// Update retx_queue
if (tx_window[retx.sn].buf->N_bytes == retx.so_end) {
retx_queue.pop_front();
new_header.lsf = 1;
if (rlc_am_end_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment is end aligned
}
} else if (retx_queue.front().so_end == retx.so_end) {
retx_queue.pop_front();
} else {
retx_queue.front().is_segment = true;
retx_queue.front().so_start = retx.so_end;
}
// Write header and pdu
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&new_header, &ptr);
uint8_t* data = &tx_window[retx.sn].buf->msg[retx.so_start];
uint32_t len = retx.so_end - retx.so_start;
memcpy(ptr, data, len);
debug_state();
int pdu_len = (ptr - payload) + len;
if (pdu_len > static_cast<int>(nof_bytes)) {
log->error("%s Retx PDU segment length error. Available: %d, Used: %d\n", RB_NAME, nof_bytes, pdu_len);
int header_len = (ptr - payload);
log->debug("%s Retx PDU segment length error. Header len: %d, Payload len: %d, N_li: %d\n",
RB_NAME,
header_len,
len,
new_header.N_li);
}
log->info_hex(payload,
pdu_len,
"%s Retx PDU segment of SN=%d (%d B), SO: %d, N_li: %d\n",
RB_NAME,
retx.sn,
pdu_len,
retx.so_start,
new_header.N_li);
return pdu_len;
}
int rlc_am_lte::rlc_am_lte_tx::build_data_pdu(uint8_t* payload, uint32_t nof_bytes)
{
if (tx_sdu == NULL && tx_sdu_queue.is_empty()) {
log->info("No data available to be sent\n");
return 0;
}
// do not build any more PDU if window is already full
if (tx_sdu == NULL && tx_window.size() >= RLC_AM_WINDOW_SIZE) {
log->info("Tx window full.\n");
return 0;
}
unique_byte_buffer_t pdu = srslte::allocate_unique_buffer(*pool, true);
if (pdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Could not allocate PDU in build_data_pdu()\n");
srslte::out_stream("tx_window size: %zd PDUs\n", tx_window.size());
srslte::out_stream("vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d\n", vt_a, vt_ms, vt_s, poll_sn);
srslte::out_stream("retx_queue size: %zd PDUs\n", retx_queue.size());
std::map<uint32_t, rlc_amd_tx_pdu_t>::iterator txit;
for (txit = tx_window.begin(); txit != tx_window.end(); txit++) {
srslte::out_stream("tx_window - SN=%d\n", txit->first);
}
exit(-1);
#else
log->error("Fatal Error: Couldn't allocate PDU in build_data_pdu().\n");
return 0;
#endif
}
rlc_amd_pdu_header_t header = {};
header.dc = RLC_DC_FIELD_DATA_PDU;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = vt_s;
uint32_t head_len = rlc_am_packed_length(&header);
uint32_t to_move = 0;
uint32_t last_li = 0;
uint32_t pdu_space = SRSLTE_MIN(nof_bytes, pdu->get_tailroom());
uint8_t* pdu_ptr = pdu->msg;
if (pdu_space <= head_len + 1) {
log->info(
"%s Cannot build a PDU - %d bytes available, %d bytes required for header\n", RB_NAME, nof_bytes, head_len);
return 0;
}
log->debug("%s Building PDU - pdu_space: %d, head_len: %d \n", RB_NAME, pdu_space, head_len);
// Check for SDU segment
if (tx_sdu != NULL) {
to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if (tx_sdu->N_bytes == 0) {
log->debug("%s Complete SDU scheduled for tx. Stack latency: %ld us\n", RB_NAME, tx_sdu->get_latency_us());
tx_sdu.reset();
}
if (pdu_space > to_move) {
pdu_space -= SRSLTE_MIN(to_move, pdu->get_tailroom());
} else {
pdu_space = 0;
}
header.fi |= RLC_FI_FIELD_NOT_START_ALIGNED; // First byte does not correspond to first byte of SDU
log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n",
RB_NAME,
to_move,
pdu_space,
head_len);
}
// Pull SDUs from queue
while (pdu_space > head_len + 1 && tx_sdu_queue.size() > 0 && header.N_li < RLC_AM_WINDOW_SIZE) {
if (last_li > 0) {
header.li[header.N_li] = last_li;
header.N_li++;
}
head_len = rlc_am_packed_length(&header);
if (head_len >= pdu_space) {
header.N_li--;
break;
}
tx_sdu = tx_sdu_queue.read();
to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len;
memcpy(pdu_ptr, tx_sdu->msg, to_move);
last_li = to_move;
pdu_ptr += to_move;
pdu->N_bytes += to_move;
tx_sdu->N_bytes -= to_move;
tx_sdu->msg += to_move;
if (tx_sdu->N_bytes == 0) {
log->debug("%s Complete SDU scheduled for tx. Stack latency: %ld us\n", RB_NAME, tx_sdu->get_latency_us());
tx_sdu.reset();
}
if (pdu_space > to_move) {
pdu_space -= to_move;
} else {
pdu_space = 0;
}
log->debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d \n",
RB_NAME,
to_move,
pdu_space,
head_len);
}
// Make sure, at least one SDU (segment) has been added until this point
if (pdu->N_bytes == 0) {
log->error("Generated empty RLC PDU.\n");
return 0;
}
if (tx_sdu != NULL) {
header.fi |= RLC_FI_FIELD_NOT_END_ALIGNED; // Last byte does not correspond to last byte of SDU
}
// Set Poll bit
pdu_without_poll++;
byte_without_poll += (pdu->N_bytes + head_len);
log->debug("%s pdu_without_poll: %d\n", RB_NAME, pdu_without_poll);
log->debug("%s byte_without_poll: %d\n", RB_NAME, byte_without_poll);
if (poll_required()) {
log->debug("%s setting poll bit to request status\n", RB_NAME);
header.p = 1;
poll_sn = vt_s;
pdu_without_poll = 0;
byte_without_poll = 0;
if (poll_retx_timer.is_valid()) {
poll_retx_timer.run();
}
}
// Set SN
header.sn = vt_s;
vt_s = (vt_s + 1) % MOD;
// Place PDU in tx_window, write header and TX
tx_window[header.sn].buf = std::move(pdu);
tx_window[header.sn].header = header;
tx_window[header.sn].is_acked = false;
tx_window[header.sn].retx_count = 0;
const byte_buffer_t* buffer_ptr = tx_window[header.sn].buf.get();
uint8_t* ptr = payload;
rlc_am_write_data_pdu_header(&header, &ptr);
memcpy(ptr, buffer_ptr->msg, buffer_ptr->N_bytes);
int total_len = (ptr - payload) + buffer_ptr->N_bytes;
log->info_hex(payload, total_len, "%s Tx PDU SN=%d (%d B)\n", RB_NAME, header.sn, total_len);
log->debug("%s\n", rlc_amd_pdu_header_to_string(header).c_str());
debug_state();
return total_len;
}
void rlc_am_lte::rlc_am_lte_tx::handle_control_pdu(uint8_t* payload, uint32_t nof_bytes)
{
pthread_mutex_lock(&mutex);
log->info_hex(payload, nof_bytes, "%s Rx control PDU", RB_NAME);
rlc_status_pdu_t status;
rlc_am_read_status_pdu(payload, nof_bytes, &status);
log->info("%s Rx Status PDU: %s\n", RB_NAME, rlc_am_status_pdu_to_string(&status).c_str());
if (poll_retx_timer.is_valid()) {
poll_retx_timer.stop();
}
// flush retx queue to avoid unordered SNs, we expect the Rx to request lost PDUs again
if (status.N_nack > 0) {
retx_queue.clear();
}
// Handle ACKs and NACKs
std::map<uint32_t, rlc_amd_tx_pdu_t>::iterator it;
bool update_vt_a = true;
uint32_t i = vt_a;
while (TX_MOD_BASE(i) < TX_MOD_BASE(status.ack_sn) && TX_MOD_BASE(i) < TX_MOD_BASE(vt_s)) {
bool nack = false;
for (uint32_t j = 0; j < status.N_nack; j++) {
if (status.nacks[j].nack_sn == i) {
nack = true;
update_vt_a = false;
it = tx_window.find(i);
if (tx_window.end() != it) {
if (!retx_queue_has_sn(i)) {
rlc_amd_retx_t retx = {};
retx.sn = i;
retx.is_segment = false;
retx.so_start = 0;
retx.so_end = it->second.buf->N_bytes;
if (status.nacks[j].has_so) {
// sanity check
if (status.nacks[j].so_start >= it->second.buf->N_bytes) {
// print error but try to send original PDU again
log->info("SO_start is larger than original PDU (%d >= %d)\n",
status.nacks[j].so_start,
it->second.buf->N_bytes);
status.nacks[j].so_start = 0;
}
// check for special SO_end value
if (status.nacks[j].so_end == 0x7FFF) {
status.nacks[j].so_end = it->second.buf->N_bytes;
} else {
retx.so_end = status.nacks[j].so_end + 1;
}
if (status.nacks[j].so_start < it->second.buf->N_bytes &&
status.nacks[j].so_end <= it->second.buf->N_bytes) {
retx.is_segment = true;
retx.so_start = status.nacks[j].so_start;
} else {
log->warning("%s invalid segment NACK received for SN %d. so_start: %d, so_end: %d, N_bytes: %d\n",
RB_NAME,
i,
status.nacks[j].so_start,
status.nacks[j].so_end,
it->second.buf->N_bytes);
}
}
retx_queue.push_back(retx);
}
}
}
}
if (!nack) {
// ACKed SNs get marked and removed from tx_window if possible
if (tx_window.count(i) > 0) {
it = tx_window.find(i);
if (it != tx_window.end()) {
if (update_vt_a) {
tx_window.erase(it);
vt_a = (vt_a + 1) % MOD;
vt_ms = (vt_ms + 1) % MOD;
}
}
}
}
i = (i + 1) % MOD;
}
debug_state();
pthread_mutex_unlock(&mutex);
}
void rlc_am_lte::rlc_am_lte_tx::debug_state()
{
log->debug("%s vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d\n", RB_NAME, vt_a, vt_ms, vt_s, poll_sn);
}
int rlc_am_lte::rlc_am_lte_tx::required_buffer_size(rlc_amd_retx_t retx)
{
if (!retx.is_segment) {
if (tx_window.count(retx.sn) == 1) {
if (tx_window[retx.sn].buf) {
return rlc_am_packed_length(&tx_window[retx.sn].header) + tx_window[retx.sn].buf->N_bytes;
} else {
log->warning("retx.sn=%d has null ptr in required_buffer_size()\n", retx.sn);
return -1;
}
} else {
log->warning("retx.sn=%d does not exist in required_buffer_size()\n", retx.sn);
return -1;
}
}
// Construct new header
rlc_amd_pdu_header_t new_header;
rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header;
new_header.dc = RLC_DC_FIELD_DATA_PDU;
new_header.rf = 1;
new_header.p = 0;
new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED;
new_header.sn = old_header.sn;
new_header.lsf = 0;
new_header.so = retx.so_start;
new_header.N_li = 0;
// Need to rebuild the li table & update fi based on so_start and so_end
if (retx.so_start != 0 && rlc_am_start_aligned(old_header.fi)) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned
}
uint32_t lower = 0;
uint32_t upper = 0;
uint32_t li = 0;
for (uint32_t i = 0; i < old_header.N_li; i++) {
if (lower >= retx.so_end) {
break;
}
upper += old_header.li[i];
if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed
li = upper - lower;
if (upper > retx.so_end) {
li -= upper - retx.so_end;
}
if (lower < retx.so_start) {
li -= retx.so_start - lower;
}
if (lower > 0 && lower == retx.so_start) {
new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU
}
if (upper == retx.so_end) {
new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU
}
new_header.li[new_header.N_li++] = li;
}
lower += old_header.li[i];
}
// if(tx_window[retx.sn].buf->N_bytes != retx.so_end) {
// if(new_header.N_li > 0)
// new_header.N_li--; // No li for last segment
// }
return rlc_am_packed_length(&new_header) + (retx.so_end - retx.so_start);
}
bool rlc_am_lte::rlc_am_lte_tx::retx_queue_has_sn(uint32_t sn)
{
std::deque<rlc_amd_retx_t>::iterator q_it;
for (q_it = retx_queue.begin(); q_it != retx_queue.end(); ++q_it) {
if (q_it->sn == sn) {
return true;
}
}
return false;
}
/****************************************************************************
* Rx subclass implementation
***************************************************************************/
rlc_am_lte::rlc_am_lte_rx::rlc_am_lte_rx(rlc_am_lte* parent_) :
parent(parent_),
pool(byte_buffer_pool::get_instance()),
log(parent_->log),
reordering_timer(parent_->timers->get_unique_timer())
{
pthread_mutex_init(&mutex, NULL);
}
rlc_am_lte::rlc_am_lte_rx::~rlc_am_lte_rx()
{
pthread_mutex_destroy(&mutex);
}
bool rlc_am_lte::rlc_am_lte_rx::configure(rlc_am_config_t cfg_)
{
// TODO: add config checks
cfg = cfg_;
// check timers
if (not reordering_timer.is_valid()) {
log->error("Configuring RLC AM TX: timers not configured\n");
return false;
}
// configure timer
if (cfg.t_reordering > 0) {
reordering_timer.set(static_cast<uint32_t>(cfg.t_reordering), [this](uint32_t tid) { timer_expired(tid); });
}
return true;
}
void rlc_am_lte::rlc_am_lte_rx::reestablish()
{
stop();
}
void rlc_am_lte::rlc_am_lte_rx::stop()
{
pthread_mutex_lock(&mutex);
if (parent->timers != nullptr && reordering_timer.is_valid()) {
reordering_timer.stop();
}
rx_sdu.reset();
vr_r = 0;
vr_mr = RLC_AM_WINDOW_SIZE;
vr_x = 0;
vr_ms = 0;
vr_h = 0;
poll_received = false;
do_status = false;
// Drop all messages in RX segments
rx_segments.clear();
// Drop all messages in RX window
rx_window.clear();
pthread_mutex_unlock(&mutex);
}
/** Called from stack thread when MAC has received a new RLC PDU
*
* @param payload Pointer to payload
* @param nof_bytes Payload length
* @param header Reference to PDU header (unpacked by caller)
*/
void rlc_am_lte::rlc_am_lte_rx::handle_data_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header)
{
std::map<uint32_t, rlc_amd_rx_pdu_t>::iterator it;
log->info_hex(payload, nof_bytes, "%s Rx data PDU SN=%d (%d B)", RB_NAME, header.sn, nof_bytes);
log->debug("%s\n", rlc_amd_pdu_header_to_string(header).c_str());
// sanity check for segments not exceeding PDU length
if (header.N_li > 0) {
uint32_t segments_len = 0;
for (uint32_t i = 0; i < header.N_li; i++) {
segments_len += header.li[i];
if (segments_len > nof_bytes) {
log->info("Dropping corrupted PDU (segments_len=%d > pdu_len=%d)\n", segments_len, nof_bytes);
return;
}
}
}
if (!inside_rx_window(header.sn)) {
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
do_status = true;
}
log->info("%s SN=%d outside rx window [%d:%d] - discarding\n", RB_NAME, header.sn, vr_r, vr_mr);
return;
}
it = rx_window.find(header.sn);
if (rx_window.end() != it) {
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
do_status = true;
}
log->info("%s Discarding duplicate SN=%d\n", RB_NAME, header.sn);
return;
}
// Write to rx window
rlc_amd_rx_pdu_t pdu;
pdu.buf = srslte::allocate_unique_buffer(*pool, true);
if (pdu.buf == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Couldn't allocate PDU in handle_data_pdu().\n");
exit(-1);
#else
log->error("Fatal Error: Couldn't allocate PDU in handle_data_pdu().\n");
return;
#endif
}
// check available space for payload
if (nof_bytes > pdu.buf->get_tailroom()) {
log->error("%s Discarding SN=%d of size %d B (available space %d B)\n",
RB_NAME,
header.sn,
nof_bytes,
pdu.buf->get_tailroom());
return;
}
memcpy(pdu.buf->msg, payload, nof_bytes);
pdu.buf->N_bytes = nof_bytes;
pdu.header = header;
rx_window[header.sn] = std::move(pdu);
// Update vr_h
if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) {
vr_h = (header.sn + 1) % MOD;
}
// Update vr_ms
it = rx_window.find(vr_ms);
while (rx_window.end() != it) {
vr_ms = (vr_ms + 1) % MOD;
it = rx_window.find(vr_ms);
}
// Check poll bit
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
poll_received = true;
// 36.322 v10 Section 5.2.3
if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) {
do_status = true;
}
// else delay for reordering timer
}
// Reassemble and deliver SDUs
reassemble_rx_sdus();
// Update reordering variables and timers (36.322 v10.0.0 Section 5.1.3.2.3)
if (reordering_timer.is_valid()) {
if (reordering_timer.is_running()) {
if (vr_x == vr_r || (!inside_rx_window(vr_x) && vr_x != vr_mr)) {
log->debug("Stopping reordering timer.\n");
reordering_timer.stop();
} else {
log->debug("Leave reordering timer running.\n");
}
debug_state();
}
if (not reordering_timer.is_running()) {
if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_r)) {
log->debug("Starting reordering timer.\n");
reordering_timer.run();
vr_x = vr_h;
} else {
log->debug("Leave reordering timer stopped.\n");
}
debug_state();
}
}
debug_state();
}
void rlc_am_lte::rlc_am_lte_rx::handle_data_pdu_segment(uint8_t* payload,
uint32_t nof_bytes,
rlc_amd_pdu_header_t& header)
{
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
log->info_hex(payload,
nof_bytes,
"%s Rx data PDU segment of SN=%d (%d B), SO=%d, N_li=%d",
RB_NAME,
header.sn,
nof_bytes,
header.so,
header.N_li);
log->debug("%s\n", rlc_amd_pdu_header_to_string(header).c_str());
// Check inside rx window
if (!inside_rx_window(header.sn)) {
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
do_status = true;
}
log->info("%s SN=%d outside rx window [%d:%d] - discarding\n", RB_NAME, header.sn, vr_r, vr_mr);
return;
}
rlc_amd_rx_pdu_t segment;
segment.buf = srslte::allocate_unique_buffer(*pool, true);
if (segment.buf == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment().\n");
exit(-1);
#else
log->error("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment().\n");
return;
#endif
}
if (segment.buf->get_tailroom() < nof_bytes) {
log->info("Dropping corrupted segment SN=%d, not enough space to fit %d B\n", header.sn, nof_bytes);
return;
}
memcpy(segment.buf->msg, payload, nof_bytes);
segment.buf->N_bytes = nof_bytes;
segment.header = header;
// Check if we already have a segment from the same PDU
it = rx_segments.find(header.sn);
if (rx_segments.end() != it) {
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
do_status = true;
}
// Add segment to PDU list and check for complete
// NOTE: MAY MOVE. Preference would be to capture by value, and then move; but header is stack allocated
if (add_segment_and_check(&it->second, &segment)) {
rx_segments.erase(it);
}
} else {
// Create new PDU segment list and write to rx_segments
rlc_amd_rx_pdu_segments_t pdu;
pdu.segments.push_back(std::move(segment));
rx_segments[header.sn] = std::move(pdu);
// Update vr_h
if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) {
vr_h = (header.sn + 1) % MOD;
}
// Check poll bit
if (header.p) {
log->info("%s Status packet requested through polling bit\n", RB_NAME);
poll_received = true;
// 36.322 v10 Section 5.2.3
if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) {
do_status = true;
}
// else delay for reordering timer
}
}
#ifdef RLC_AM_BUFFER_DEBUG
print_rx_segments();
#endif
debug_state();
}
void rlc_am_lte::rlc_am_lte_rx::reassemble_rx_sdus()
{
uint32_t len = 0;
if (rx_sdu == NULL) {
rx_sdu = allocate_unique_buffer(*pool, true);
if (rx_sdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n");
exit(-1);
#else
log->error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n");
return;
#endif
}
}
// Iterate through rx_window, assembling and delivering SDUs
while (rx_window.end() != rx_window.find(vr_r)) {
// Handle any SDU segments
for (uint32_t i = 0; i < rx_window[vr_r].header.N_li; i++) {
len = rx_window[vr_r].header.li[i];
log->debug_hex(rx_window[vr_r].buf->msg,
len,
"Handling segment %d/%d of length %d B of SN=%d\n",
i + 1,
rx_window[vr_r].header.N_li,
len,
vr_r);
// sanity check to avoid zero-size SDUs
if (len == 0) {
break;
}
if (rx_sdu->get_tailroom() >= len) {
if ((rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer) + len < SRSLTE_MAX_BUFFER_SIZE_BYTES) {
if (rx_window[vr_r].buf->N_bytes < len) {
log->error("Dropping corrupted SN=%d\n", vr_r);
rx_sdu.reset();
goto exit;
}
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len);
rx_sdu->N_bytes += len;
rx_window[vr_r].buf->msg += len;
rx_window[vr_r].buf->N_bytes -= len;
log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU (%d B)", RB_NAME, rx_sdu->N_bytes);
rx_sdu->set_timestamp();
parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu));
parent->metrics.num_rx_sdus++;
rx_sdu = allocate_unique_buffer(*pool, true);
if (rx_sdu == nullptr) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n");
exit(-1);
#else
log->error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n");
return;
#endif
}
} else {
int buf_len = rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer;
log->error("Cannot read %d bytes from rx_window. vr_r=%d, msg-buffer=%d B\n", len, vr_r, buf_len);
rx_sdu.reset();
goto exit;
}
} else {
log->error("Cannot fit RLC PDU in SDU buffer, dropping both.\n");
rx_sdu.reset();
goto exit;
}
}
// Handle last segment
len = rx_window[vr_r].buf->N_bytes;
log->debug_hex(rx_window[vr_r].buf->msg, len, "Handling last segment of length %d B of SN=%d\n", len, vr_r);
if (rx_sdu->get_tailroom() >= len) {
memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len);
rx_sdu->N_bytes += rx_window[vr_r].buf->N_bytes;
} else {
printf("Cannot fit RLC PDU in SDU buffer (tailroom=%d, len=%d), dropping both. Erasing SN=%d.\n",
rx_sdu->get_tailroom(),
len,
vr_r);
rx_sdu.reset();
goto exit;
}
if (rlc_am_end_aligned(rx_window[vr_r].header.fi)) {
log->info_hex(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU (%d B)", RB_NAME, rx_sdu->N_bytes);
rx_sdu->set_timestamp();
parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu));
parent->metrics.num_rx_sdus++;
rx_sdu = allocate_unique_buffer(*pool, true);
if (rx_sdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n");
exit(-1);
#else
log->error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n");
return;
#endif
}
}
exit:
// Move the rx_window
log->debug("Erasing SN=%d.\n", vr_r);
// also erase any segments of this SN
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
it = rx_segments.find(vr_r);
if (rx_segments.end() != it) {
log->debug("Erasing segments of SN=%d\n", vr_r);
std::list<rlc_amd_rx_pdu_t>::iterator segit;
for (segit = it->second.segments.begin(); segit != it->second.segments.end(); ++segit) {
log->debug(" Erasing segment of SN=%d SO=%d Len=%d N_li=%d\n",
segit->header.sn,
segit->header.so,
segit->buf->N_bytes,
segit->header.N_li);
}
it->second.segments.clear();
}
rx_window.erase(vr_r);
vr_r = (vr_r + 1) % MOD;
vr_mr = (vr_mr + 1) % MOD;
}
}
void rlc_am_lte::rlc_am_lte_rx::reset_status()
{
pthread_mutex_lock(&mutex);
do_status = false;
poll_received = false;
pthread_mutex_unlock(&mutex);
}
bool rlc_am_lte::rlc_am_lte_rx::get_do_status()
{
return do_status;
}
uint32_t rlc_am_lte::rlc_am_lte_rx::get_num_rx_bytes()
{
return num_rx_bytes;
}
void rlc_am_lte::rlc_am_lte_rx::reset_metrics()
{
pthread_mutex_lock(&mutex);
num_rx_bytes = 0;
pthread_mutex_unlock(&mutex);
}
void rlc_am_lte::rlc_am_lte_rx::write_pdu(uint8_t* payload, const uint32_t nof_bytes)
{
if (nof_bytes < 1)
return;
pthread_mutex_lock(&mutex);
num_rx_bytes += nof_bytes;
if (rlc_am_is_control_pdu(payload)) {
// unlock mutex and pass to Tx subclass
pthread_mutex_unlock(&mutex);
parent->tx.handle_control_pdu(payload, nof_bytes);
} else {
rlc_amd_pdu_header_t header = {};
uint32_t payload_len = nof_bytes;
rlc_am_read_data_pdu_header(&payload, &payload_len, &header);
if (payload_len > nof_bytes) {
log->info("Dropping corrupted PDU (%d B). Remaining length after header %d B.\n", nof_bytes, payload_len);
pthread_mutex_unlock(&mutex);
return;
}
if (header.rf) {
handle_data_pdu_segment(payload, payload_len, header);
} else {
handle_data_pdu(payload, payload_len, header);
}
pthread_mutex_unlock(&mutex);
}
}
/**
* Function called from stack thread when timer has expired
*
* @param timeout_id
*/
void rlc_am_lte::rlc_am_lte_rx::timer_expired(uint32_t timeout_id)
{
pthread_mutex_lock(&mutex);
if (reordering_timer.is_valid() and reordering_timer.id() == timeout_id) {
log->debug("%s reordering timeout expiry - updating vr_ms (was %d)\n", RB_NAME, vr_ms);
// 36.322 v10 Section 5.1.3.2.4
vr_ms = vr_x;
std::map<uint32_t, rlc_amd_rx_pdu_t>::iterator it = rx_window.find(vr_ms);
while (rx_window.end() != it) {
vr_ms = (vr_ms + 1) % MOD;
it = rx_window.find(vr_ms);
}
if (poll_received) {
do_status = true;
}
if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_ms)) {
reordering_timer.run();
vr_x = vr_h;
}
debug_state();
}
pthread_mutex_unlock(&mutex);
}
// Called from Tx object to pack status PDU that doesn't exceed a given size
int rlc_am_lte::rlc_am_lte_rx::get_status_pdu(rlc_status_pdu_t* status, const uint32_t max_pdu_size)
{
pthread_mutex_lock(&mutex);
status->N_nack = 0;
status->ack_sn = vr_r; // start with lower edge of the rx window
// We don't use segment NACKs - just NACK the full PDU
uint32_t i = vr_r;
while (RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms) && status->N_nack < RLC_AM_WINDOW_SIZE) {
if (rx_window.find(i) == rx_window.end()) {
status->nacks[status->N_nack].nack_sn = i;
status->N_nack++;
} else {
// only update ACK_SN if this SN has been received
status->ack_sn = i;
}
// make sure we don't exceed grant size
if (rlc_am_packed_length(status) > max_pdu_size) {
log->debug("Status PDU too big (%d > %d)\n", rlc_am_packed_length(status), max_pdu_size);
if (status->N_nack >= 1 && status->N_nack < RLC_AM_WINDOW_SIZE) {
log->debug("Removing last NACK SN=%d\n", status->nacks[status->N_nack].nack_sn);
status->N_nack--;
// make sure we don't have the current ACK_SN in the NACK list
if (rlc_am_is_valid_status_pdu(*status) == false) {
// No space to send any NACKs
log->debug("Resetting N_nack to zero\n");
status->N_nack = 0;
}
} else {
log->warning("Failed to generate small enough status PDU (packed_len=%d, max_pdu_size=%d, status->N_nack=%d)\n",
rlc_am_packed_length(status),
max_pdu_size,
status->N_nack);
}
break;
}
i = (i + 1) % MOD;
}
pthread_mutex_unlock(&mutex);
return rlc_am_packed_length(status);
}
// Called from Tx object to obtain length of the full status PDU
int rlc_am_lte::rlc_am_lte_rx::get_status_pdu_length()
{
pthread_mutex_lock(&mutex);
rlc_status_pdu_t status = {};
status.ack_sn = vr_ms;
uint32_t i = vr_r;
while (RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms) && status.N_nack < RLC_AM_WINDOW_SIZE) {
if (rx_window.find(i) == rx_window.end()) {
status.N_nack++;
}
i = (i + 1) % MOD;
}
pthread_mutex_unlock(&mutex);
return rlc_am_packed_length(&status);
}
void rlc_am_lte::rlc_am_lte_rx::print_rx_segments()
{
std::map<uint32_t, rlc_amd_rx_pdu_segments_t>::iterator it;
std::stringstream ss;
ss << "rx_segments:" << std::endl;
for (it = rx_segments.begin(); it != rx_segments.end(); it++) {
std::list<rlc_amd_rx_pdu_t>::iterator segit;
for (segit = it->second.segments.begin(); segit != it->second.segments.end(); segit++) {
ss << " SN=" << segit->header.sn << " SO:" << segit->header.so << " N:" << segit->buf->N_bytes
<< " N_li: " << segit->header.N_li << std::endl;
}
}
log->debug("%s\n", ss.str().c_str());
}
// NOTE: Preference would be to capture by value, and then move; but header is stack allocated
bool rlc_am_lte::rlc_am_lte_rx::add_segment_and_check(rlc_amd_rx_pdu_segments_t* pdu, rlc_amd_rx_pdu_t* segment)
{
// Find segment insertion point in the list of segments
auto it1 = pdu->segments.begin();
while (it1 != pdu->segments.end() && (*it1).header.so < segment->header.so) {
// Increment iterator
it1++;
}
// Check if the insertion point was found
if (it1 != pdu->segments.end()) {
// Found insertion point
rlc_amd_rx_pdu_t& s = *it1;
if (s.header.so == segment->header.so) {
// Same Segment offset
if (segment->buf->N_bytes > s.buf->N_bytes) {
// replace if the new one is bigger
s = std::move(*segment);
} else {
// Ignore otherwise
}
} else if (s.header.so > segment->header.so) {
pdu->segments.insert(it1, std::move(*segment));
}
} else {
// Either the new segment is the latest or the only one, push back
pdu->segments.push_back(std::move(*segment));
}
// Check for complete
uint32_t so = 0;
std::list<rlc_amd_rx_pdu_t>::iterator it, tmpit;
for (it = pdu->segments.begin(); it != pdu->segments.end(); /* Do not increment */) {
// Check that there is no gap between last segment and current; overlap allowed
if (so < it->header.so) {
// return
return false;
}
// Check if segment is overlapped
if (it->header.so + it->buf->N_bytes <= so) {
// completely overlapped with previous segments, erase
it = pdu->segments.erase(it); // Returns next iterator
} else {
// Update segment offset it shall not go backwards
so = SRSLTE_MAX(so, it->header.so + it->buf->N_bytes);
it++; // Increments iterator
}
}
// Check for last segment flag available
if (!pdu->segments.back().header.lsf) {
return false;
}
// We have all segments of the PDU - reconstruct and handle
rlc_amd_pdu_header_t header;
header.dc = RLC_DC_FIELD_DATA_PDU;
header.rf = 0;
header.p = 0;
header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED;
header.sn = pdu->segments.front().header.sn;
header.lsf = 0;
header.so = 0;
header.N_li = 0;
// Reconstruct fi field
header.fi |= (pdu->segments.front().header.fi & RLC_FI_FIELD_NOT_START_ALIGNED);
header.fi |= (pdu->segments.back().header.fi & RLC_FI_FIELD_NOT_END_ALIGNED);
log->debug("Starting header reconstruction of %zd segments\n", pdu->segments.size());
// Reconstruct li fields
uint16_t count = 0;
uint16_t carryover = 0;
for (it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
log->debug(" Handling %d PDU segments\n", it->header.N_li);
for (uint32_t i = 0; i < it->header.N_li; i++) {
header.li[header.N_li] = it->header.li[i];
if (i == 0) {
header.li[header.N_li] += carryover;
}
log->debug(" - adding segment %d/%d (%d B, SO=%d, carryover=%d, count=%d)\n",
i + 1,
it->header.N_li,
header.li[header.N_li],
header.so,
carryover,
count);
header.N_li++;
count += it->header.li[i];
carryover = 0;
}
if (count <= it->buf->N_bytes) {
carryover += it->buf->N_bytes - count;
log->debug("Incremented carryover (it->buf->N_bytes=%d, count=%d). New carryover=%d\n",
it->buf->N_bytes,
count,
carryover);
} else {
// Next segment would be too long, recalculate carryover
header.N_li--;
carryover = it->buf->N_bytes - (count - header.li[header.N_li]);
log->debug("Recalculated carryover=%d (it->buf->N_bytes=%d, count=%d, header.li[header.N_li]=%d)\n",
carryover,
it->buf->N_bytes,
count,
header.li[header.N_li]);
}
tmpit = it;
if (rlc_am_end_aligned(it->header.fi) && ++tmpit != pdu->segments.end()) {
log->debug("Header is end-aligned, overwrite header.li[%d]=%d\n", header.N_li, carryover);
header.li[header.N_li] = carryover;
header.N_li++;
carryover = 0;
}
count = 0;
}
log->debug("Finished header reconstruction of %zd segments\n", pdu->segments.size());
// Copy data
unique_byte_buffer_t full_pdu = srslte::allocate_unique_buffer(*pool, true);
if (full_pdu == NULL) {
#ifdef RLC_AM_BUFFER_DEBUG
srslte::out_stream("Fatal Error: Could not allocate PDU in add_segment_and_check()\n");
exit(-1);
#else
log->error("Fatal Error: Could not allocate PDU in add_segment_and_check()\n");
return false;
#endif
}
for (it = pdu->segments.begin(); it != pdu->segments.end(); it++) {
// By default, the segment is not copied. It could be it is fully overlapped with previous segments
uint32_t overlap = 0;
uint32_t n = 0;
// Check if the segment has non-overlapped bytes
if (it->header.so + it->buf->N_bytes > full_pdu->N_bytes) {
// Calculate overlap and number of bytes
overlap = full_pdu->N_bytes - it->header.so;
n = it->buf->N_bytes - overlap;
}
// Copy data itself
memcpy(&full_pdu->msg[full_pdu->N_bytes], &it->buf->msg[overlap], n);
full_pdu->N_bytes += n;
}
handle_data_pdu(full_pdu->msg, full_pdu->N_bytes, header);
return true;
}
bool rlc_am_lte::rlc_am_lte_rx::inside_rx_window(const int16_t sn)
{
if (RX_MOD_BASE(sn) >= RX_MOD_BASE(static_cast<int16_t>(vr_r)) && RX_MOD_BASE(sn) < RX_MOD_BASE(vr_mr)) {
return true;
} else {
return false;
}
}
void rlc_am_lte::rlc_am_lte_rx::debug_state()
{
log->debug("%s vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d\n", RB_NAME, vr_r, vr_mr, vr_x, vr_ms, vr_h);
}
/****************************************************************************
* Header pack/unpack helper functions
* Ref: 3GPP TS 36.322 v10.0.0 Section 6.2.1
***************************************************************************/
// Read header from pdu struct, don't strip header
void rlc_am_read_data_pdu_header(byte_buffer_t* pdu, rlc_amd_pdu_header_t* header)
{
uint8_t* ptr = pdu->msg;
uint32_t n = 0;
rlc_am_read_data_pdu_header(&ptr, &n, header);
}
// Read header from raw pointer, strip header
void rlc_am_read_data_pdu_header(uint8_t** payload, uint32_t* nof_bytes, rlc_amd_pdu_header_t* header)
{
uint8_t ext;
uint8_t* ptr = *payload;
header->dc = static_cast<rlc_dc_field_t>((*ptr >> 7) & 0x01);
if (RLC_DC_FIELD_DATA_PDU == header->dc) {
// Fixed part
header->rf = ((*ptr >> 6) & 0x01);
header->p = ((*ptr >> 5) & 0x01);
header->fi = static_cast<rlc_fi_field_t>((*ptr >> 3) & 0x03);
ext = ((*ptr >> 2) & 0x01);
header->sn = (*ptr & 0x03) << 8; // 2 bits SN
ptr++;
header->sn |= (*ptr & 0xFF); // 8 bits SN
ptr++;
if (header->rf) {
header->lsf = ((*ptr >> 7) & 0x01);
header->so = (*ptr & 0x7F) << 8; // 7 bits of SO
ptr++;
header->so |= (*ptr & 0xFF); // 8 bits of SO
ptr++;
}
// Extension part
header->N_li = 0;
while (ext) {
if (header->N_li % 2 == 0) {
ext = ((*ptr >> 7) & 0x01);
header->li[header->N_li] = (*ptr & 0x7F) << 4; // 7 bits of LI
ptr++;
header->li[header->N_li] |= (*ptr & 0xF0) >> 4; // 4 bits of LI
header->N_li++;
} else {
ext = (*ptr >> 3) & 0x01;
header->li[header->N_li] = (*ptr & 0x07) << 8; // 3 bits of LI
ptr++;
header->li[header->N_li] |= (*ptr & 0xFF); // 8 bits of LI
header->N_li++;
ptr++;
}
}
// Account for padding if N_li is odd
if (header->N_li % 2 == 1) {
ptr++;
}
*nof_bytes -= ptr - *payload;
*payload = ptr;
}
}
// Write header to pdu struct
void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, byte_buffer_t* pdu)
{
uint8_t* ptr = pdu->msg;
rlc_am_write_data_pdu_header(header, &ptr);
pdu->N_bytes += ptr - pdu->msg;
}
// Write header to pointer & move pointer
void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, uint8_t** payload)
{
uint32_t i;
uint8_t ext = (header->N_li > 0) ? 1 : 0;
uint8_t* ptr = *payload;
// Fixed part
*ptr = (header->dc & 0x01) << 7;
*ptr |= (header->rf & 0x01) << 6;
*ptr |= (header->p & 0x01) << 5;
*ptr |= (header->fi & 0x03) << 3;
*ptr |= (ext & 0x01) << 2;
*ptr |= (header->sn & 0x300) >> 8; // 2 bits SN
ptr++;
*ptr = (header->sn & 0xFF); // 8 bits SN
ptr++;
// Segment part
if (header->rf) {
*ptr = (header->lsf & 0x01) << 7;
*ptr |= (header->so & 0x7F00) >> 8; // 7 bits of SO
ptr++;
*ptr = (header->so & 0x00FF); // 8 bits of SO
ptr++;
}
// Extension part
i = 0;
while (i < header->N_li) {
ext = ((i + 1) == header->N_li) ? 0 : 1;
*ptr = (ext & 0x01) << 7; // 1 bit header
*ptr |= (header->li[i] & 0x7F0) >> 4; // 7 bits of LI
ptr++;
*ptr = (header->li[i] & 0x00F) << 4; // 4 bits of LI
i++;
if (i < header->N_li) {
ext = ((i + 1) == header->N_li) ? 0 : 1;
*ptr |= (ext & 0x01) << 3; // 1 bit header
*ptr |= (header->li[i] & 0x700) >> 8; // 3 bits of LI
ptr++;
*ptr = (header->li[i] & 0x0FF); // 8 bits of LI
ptr++;
i++;
}
}
// Pad if N_li is odd
if (header->N_li % 2 == 1) {
ptr++;
}
*payload = ptr;
}
void rlc_am_read_status_pdu(byte_buffer_t* pdu, rlc_status_pdu_t* status)
{
rlc_am_read_status_pdu(pdu->msg, pdu->N_bytes, status);
}
void rlc_am_read_status_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_status_pdu_t* status)
{
uint32_t i;
uint8_t ext1, ext2;
bit_buffer_t tmp;
uint8_t* ptr = tmp.msg;
srslte_bit_unpack_vector(payload, tmp.msg, nof_bytes * 8);
tmp.N_bits = nof_bytes * 8;
rlc_dc_field_t dc = static_cast<rlc_dc_field_t>(srslte_bit_pack(&ptr, 1));
if (RLC_DC_FIELD_CONTROL_PDU == dc) {
uint8_t cpt = srslte_bit_pack(&ptr, 3); // 3-bit Control PDU Type (0 == status)
if (0 == cpt) {
status->ack_sn = srslte_bit_pack(&ptr, 10); // 10 bits ACK_SN
ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1
status->N_nack = 0;
while (ext1) {
status->nacks[status->N_nack].nack_sn = srslte_bit_pack(&ptr, 10);
ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1
ext2 = srslte_bit_pack(&ptr, 1); // 1 bits E2
if (ext2) {
status->nacks[status->N_nack].has_so = true;
status->nacks[status->N_nack].so_start = srslte_bit_pack(&ptr, 15);
status->nacks[status->N_nack].so_end = srslte_bit_pack(&ptr, 15);
}
status->N_nack++;
}
}
}
}
void rlc_am_write_status_pdu(rlc_status_pdu_t* status, byte_buffer_t* pdu)
{
pdu->N_bytes = rlc_am_write_status_pdu(status, pdu->msg);
}
int rlc_am_write_status_pdu(rlc_status_pdu_t* status, uint8_t* payload)
{
uint32_t i;
uint8_t ext1;
bit_buffer_t tmp;
uint8_t* ptr = tmp.msg;
srslte_bit_unpack(RLC_DC_FIELD_CONTROL_PDU, &ptr, 1); // D/C
srslte_bit_unpack(0, &ptr, 3); // CPT (0 == STATUS)
srslte_bit_unpack(status->ack_sn, &ptr, 10); // 10 bit ACK_SN
ext1 = (status->N_nack == 0) ? 0 : 1;
srslte_bit_unpack(ext1, &ptr, 1); // E1
for (i = 0; i < status->N_nack; i++) {
srslte_bit_unpack(status->nacks[i].nack_sn, &ptr, 10); // 10 bit NACK_SN
ext1 = ((status->N_nack - 1) == i) ? 0 : 1;
srslte_bit_unpack(ext1, &ptr, 1); // E1
if (status->nacks[i].has_so) {
srslte_bit_unpack(1, &ptr, 1); // E2
srslte_bit_unpack(status->nacks[i].so_start, &ptr, 15);
srslte_bit_unpack(status->nacks[i].so_end, &ptr, 15);
} else {
srslte_bit_unpack(0, &ptr, 1); // E2
}
}
// Pad
tmp.N_bits = ptr - tmp.msg;
uint8_t n_pad = 8 - (tmp.N_bits % 8);
srslte_bit_unpack(0, &ptr, n_pad);
tmp.N_bits = ptr - tmp.msg;
// Pack bits
srslte_bit_pack_vector(tmp.msg, payload, tmp.N_bits);
return tmp.N_bits / 8;
}
bool rlc_am_is_valid_status_pdu(const rlc_status_pdu_t& status)
{
for (uint32_t i = 0; i < status.N_nack; ++i) {
if (status.nacks[i].nack_sn == status.ack_sn) {
return false;
}
}
return true;
}
uint32_t rlc_am_packed_length(rlc_amd_pdu_header_t* header)
{
uint32_t len = 2; // Fixed part is 2 bytes
if (header->rf) {
len += 2; // Segment header is 2 bytes
}
len += header->N_li * 1.5 + 0.5; // Extension part - integer rounding up
return len;
}
uint32_t rlc_am_packed_length(rlc_status_pdu_t* status)
{
uint32_t len_bits = 15; // Fixed part is 15 bits
for (uint32_t i = 0; i < status->N_nack; i++) {
if (status->nacks[i].has_so) {
len_bits += 42; // 10 bits SN, 2 bits ext, 15 bits so_start, 15 bits so_end
} else {
len_bits += 12; // 10 bits SN, 2 bits ext
}
}
return (len_bits + 7) / 8; // Convert to bytes - integer rounding up
}
bool rlc_am_is_pdu_segment(uint8_t* payload)
{
return ((*(payload) >> 6) & 0x01) == 1;
}
std::string rlc_am_status_pdu_to_string(rlc_status_pdu_t* status)
{
std::stringstream ss;
ss << "ACK_SN = " << status->ack_sn;
ss << ", N_nack = " << status->N_nack;
if (status->N_nack > 0) {
ss << ", NACK_SN = ";
for (uint32_t i = 0; i < status->N_nack; i++) {
if (status->nacks[i].has_so) {
ss << "[" << status->nacks[i].nack_sn << " " << status->nacks[i].so_start << ":" << status->nacks[i].so_end
<< "]";
} else {
ss << "[" << status->nacks[i].nack_sn << "]";
}
}
}
return ss.str();
}
std::string rlc_amd_pdu_header_to_string(const rlc_amd_pdu_header_t& header)
{
std::stringstream ss;
ss << "[" << rlc_dc_field_text[header.dc];
ss << ", RF=" << (header.rf ? "1" : "0");
ss << ", P=" << (header.p ? "1" : "0");
ss << ", FI=" << (header.fi ? "1" : "0");
ss << ", SN=" << header.sn;
ss << ", LSF=" << (header.lsf ? "1" : "0");
ss << ", SO=" << header.so;
ss << ", N_li=" << header.N_li;
if (header.N_li > 0) {
ss << " (";
for (uint32_t i = 0; i < header.N_li; i++) {
ss << header.li[i] << ", ";
}
ss << ")";
}
ss << "]";
return ss.str();
}
bool rlc_am_start_aligned(const uint8_t fi)
{
return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_END_ALIGNED);
}
bool rlc_am_end_aligned(const uint8_t fi)
{
return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_START_ALIGNED);
}
bool rlc_am_is_unaligned(const uint8_t fi)
{
return (fi == RLC_FI_FIELD_NOT_START_OR_END_ALIGNED);
}
bool rlc_am_not_start_aligned(const uint8_t fi)
{
return (fi == RLC_FI_FIELD_NOT_START_ALIGNED || fi == RLC_FI_FIELD_NOT_START_OR_END_ALIGNED);
}
} // namespace srslte