srsRAN/srsue/hdr/phy/sync.h

365 lines
12 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSUE_PHCH_RECV_H
#define SRSUE_PHCH_RECV_H
#include <condition_variable>
#include <map>
#include <mutex>
#include <pthread.h>
#include <srslte/phy/channel/channel.h>
#include "phy_common.h"
#include "prach.h"
#include "sf_worker.h"
#include "srslte/common/log.h"
#include "srslte/common/thread_pool.h"
#include "srslte/common/threads.h"
#include "srslte/common/tti_sync_cv.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srslte/srslte.h"
#include "srsue/hdr/phy/scell/async_scell_recv.h"
#include <srsue/hdr/phy/scell/intra_measure.h>
namespace srsue {
typedef _Complex float cf_t;
class sync : public thread, public chest_feedback_itf
{
public:
sync() : thread("SYNC"){};
~sync();
void init(srslte::radio_interface_phy* radio_,
stack_interface_phy_lte* _stack,
prach* prach_buffer,
srslte::thread_pool* _workers_pool,
phy_common* _worker_com,
srslte::log* _log_h,
srslte::log* _log_phy_lib_h,
scell::async_recv_vector* scell_sync_,
uint32_t prio,
int sync_cpu_affinity = -1);
void stop();
void radio_overflow();
// RRC interface for controling the SYNC state
phy_interface_rrc_lte::cell_search_ret_t cell_search(phy_interface_rrc_lte::phy_cell_t* cell);
bool cell_select(phy_interface_rrc_lte::phy_cell_t* cell);
bool cell_is_camping();
// RRC interface for controlling the neighbour cell measurement
void set_cells_to_meas(uint32_t earfcn, std::set<uint32_t>& pci);
void set_inter_frequency_measurement(uint32_t cc_idx, uint32_t earfcn_, srslte_cell_t cell_);
void meas_stop();
// from chest_feedback_itf
void in_sync() final;
void out_of_sync() final;
void set_cfo(float cfo) final;
void set_time_adv_sec(float time_adv_sec);
void get_current_cell(srslte_cell_t* cell, uint32_t* earfcn = nullptr);
uint32_t get_current_tti();
// From UE configuration
void set_agc_enable(bool enable);
void set_earfcn(std::vector<uint32_t> earfcn);
void force_freq(float dl_freq, float ul_freq);
// Other functions
void set_rx_gain(float gain);
int radio_recv_fnc(cf_t* data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* rx_time);
private:
// Class to run cell search
class search
{
public:
typedef enum { CELL_NOT_FOUND, CELL_FOUND, ERROR, TIMEOUT } ret_code;
~search();
void init(cf_t* buffer[SRSLTE_MAX_PORTS], srslte::log* log_h, uint32_t nof_rx_antennas, sync* parent);
void reset();
float get_last_cfo();
void set_agc_enable(bool enable);
ret_code run(srslte_cell_t* cell, std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload);
private:
sync* p = nullptr;
srslte::log* log_h = nullptr;
cf_t* buffer[SRSLTE_MAX_PORTS] = {};
srslte_ue_cellsearch_t cs = {};
srslte_ue_mib_sync_t ue_mib_sync = {};
int force_N_id_2 = 0;
};
// Class to synchronize system frame number
class sfn_sync
{
public:
typedef enum { IDLE, SFN_FOUND, SFX0_FOUND, SFN_NOFOUND, ERROR } ret_code;
sfn_sync() = default;
~sfn_sync();
void init(srslte_ue_sync_t* ue_sync,
cf_t* buffer[SRSLTE_MAX_PORTS],
srslte::log* log_h,
uint32_t nof_subframes = SFN_SYNC_NOF_SUBFRAMES);
void reset();
bool set_cell(srslte_cell_t cell);
ret_code run_subframe(srslte_cell_t* cell,
uint32_t* tti_cnt,
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
ret_code decode_mib(srslte_cell_t* cell,
uint32_t* tti_cnt,
cf_t* ext_buffer[SRSLTE_MAX_PORTS],
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN>& bch_payload,
bool sfidx_only = false);
private:
const static int SFN_SYNC_NOF_SUBFRAMES = 100;
uint32_t cnt = 0;
uint32_t timeout = 0;
srslte::log* log_h = nullptr;
srslte_ue_sync_t* ue_sync = nullptr;
cf_t* buffer[SRSLTE_MAX_PORTS] = {};
srslte_ue_mib_t ue_mib = {};
};
/* TODO: Intra-freq measurements can be improved by capturing 200 ms length signal and run cell search +
* measurements offline using sync object and finding multiple cells for each N_id_2
*/
std::vector<uint32_t> earfcn;
void reset();
void radio_error();
void set_ue_sync_opts(srslte_ue_sync_t* q, float cfo);
void run_thread() final;
float get_tx_cfo();
void set_sampling_rate();
bool set_frequency();
bool set_cell();
bool radio_is_overflow = false;
bool radio_overflow_return = false;
bool running = false;
// Objects for internal use
search search_p;
sfn_sync sfn_p;
std::vector<std::unique_ptr<scell::intra_measure> > intra_freq_meas;
uint32_t current_sflen = 0;
int next_offset = 0; // Sample offset triggered by Time aligment commands
int next_radio_offset[SRSLTE_MAX_RADIOS] = {}; // Sample offset triggered by SFO compensation
// Pointers to other classes
stack_interface_phy_lte* stack = nullptr;
srslte::log* log_h = nullptr;
srslte::log* log_phy_lib_h = nullptr;
srslte::thread_pool* workers_pool = nullptr;
srslte::radio_interface_phy* radio_h = nullptr;
phy_common* worker_com = nullptr;
prach* prach_buffer = nullptr;
scell::async_recv_vector* scell_sync = nullptr;
srslte::channel_ptr channel_emulator = nullptr;
// Object for synchronization of the primary cell
srslte_ue_sync_t ue_sync = {};
// Buffer for primary and secondary cell samples
cf_t* sf_buffer[SRSLTE_MAX_RADIOS][SRSLTE_MAX_PORTS] = {};
// Sync metrics
sync_metrics_t metrics = {};
// in-sync / out-of-sync counters
uint32_t out_of_sync_cnt = 0;
uint32_t in_sync_cnt = 0;
// State machine for SYNC thread
class sync_state
{
public:
typedef enum {
IDLE = 0,
CELL_SEARCH,
SFN_SYNC,
CAMPING,
} state_t;
/* Run_state is called by the main thread at the start of each loop. It updates the state
* and returns the current state
*/
state_t run_state()
{
std::lock_guard<std::mutex> lock(inside);
cur_state = next_state;
if (state_setting) {
state_setting = false;
state_running = true;
}
cvar.notify_all();
return cur_state;
}
// Called by the main thread at the end of each state to indicate it has finished.
void state_exit(bool exit_ok = true)
{
std::lock_guard<std::mutex> lock(inside);
if (cur_state == SFN_SYNC && exit_ok == true) {
next_state = CAMPING;
} else {
next_state = IDLE;
}
state_running = false;
cvar.notify_all();
}
void force_sfn_sync()
{
std::lock_guard<std::mutex> lock(inside);
next_state = SFN_SYNC;
}
/* Functions to be called from outside the STM thread to instruct the STM to switch state.
* The functions change the state and wait until it has changed it.
*
* These functions are mutexed and only 1 can be called at a time
*/
void go_idle()
{
std::lock_guard<std::mutex> lock(outside);
go_state(IDLE);
}
void run_cell_search()
{
std::lock_guard<std::mutex> lock(outside);
go_state(CELL_SEARCH);
wait_state_run();
wait_state_next();
}
void run_sfn_sync()
{
std::lock_guard<std::mutex> lock(outside);
go_state(SFN_SYNC);
wait_state_run();
wait_state_next();
}
/* Helpers below this */
bool is_idle() { return cur_state == IDLE; }
bool is_camping() { return cur_state == CAMPING; }
const char* to_string()
{
switch (cur_state) {
case IDLE:
return "IDLE";
case CELL_SEARCH:
return "SEARCH";
case SFN_SYNC:
return "SYNC";
case CAMPING:
return "CAMPING";
default:
return "UNKNOWN";
}
}
sync_state() = default;
private:
void go_state(state_t s)
{
std::unique_lock<std::mutex> ul(inside);
next_state = s;
state_setting = true;
while (state_setting) {
cvar.wait(ul);
}
}
/* Waits until there is a call to set_state() and then run_state(). Returns when run_state() returns */
void wait_state_run()
{
std::unique_lock<std::mutex> ul(inside);
while (state_running) {
cvar.wait(ul);
}
}
void wait_state_next()
{
std::unique_lock<std::mutex> ul(inside);
while (cur_state != next_state) {
cvar.wait(ul);
}
}
bool state_running = false;
bool state_setting = false;
state_t cur_state = IDLE;
state_t next_state = IDLE;
std::mutex inside;
std::mutex outside;
std::condition_variable cvar;
};
std::mutex rrc_mutex;
sync_state phy_state;
search::ret_code cell_search_ret = search::CELL_NOT_FOUND;
// Sampling rate mode (find is 1.96 MHz, camp is the full cell BW)
enum { SRATE_NONE = 0, SRATE_FIND, SRATE_CAMP } srate_mode = SRATE_NONE;
float current_srate = 0;
// This is the primary cell
srslte_cell_t cell = {};
bool started = false;
float time_adv_sec = 0;
float next_time_adv_sec = 0;
uint32_t tti = 0;
srslte_timestamp_t tti_ts = {};
srslte_timestamp_t radio_ts = {};
std::array<uint8_t, SRSLTE_BCH_PAYLOAD_LEN> mib;
uint32_t nof_workers = 0;
float ul_dl_factor = NAN;
int current_earfcn = 0;
uint32_t cellsearch_earfcn_index = 0;
float dl_freq = -1;
float ul_freq = -1;
};
} // namespace srsue
#endif // SRSUE_PHCH_RECV_H