srsRAN/lib/src/phy/fec/viterbi37_avx2_16bit.c

354 lines
9.4 KiB
C

/* Adapted Phil Karn's r=1/3 k=9 viterbi decoder to r=1/3 k=7
*
* K=15 r=1/6 Viterbi decoder for x86 SSE2
* Copyright Mar 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include "parity.h"
#include <limits.h>
#include <memory.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
//#define DEBUG
#ifdef LV_HAVE_AVX2
#include <emmintrin.h>
#include <immintrin.h>
#include <tmmintrin.h>
typedef union {
// unsigned char c[64];
//__m128i v[4];
unsigned short c[64];
__m256i v[4];
} metric_t;
typedef union {
unsigned int w[2];
unsigned char c[8];
unsigned short s[4];
__m64 v[1];
} decision_t;
union branchtab27 {
// unsigned char c[32];
//__m128i v[2];
unsigned short c[32];
__m256i v[2];
} Branchtab37_sse2[3];
int firstGo;
/* State info for instance of Viterbi decoder */
struct v37 {
metric_t metrics1; /* path metric buffer 1 */
metric_t metrics2; /* path metric buffer 2 */
decision_t* dp; /* Pointer to current decision */
metric_t * old_metrics, *new_metrics; /* Pointers to path metrics, swapped on every bit */
decision_t* decisions; /* Beginning of decisions for block */
uint32_t len;
};
void set_viterbi37_polynomial_avx2_16bit(int polys[3])
{
int state;
for (state = 0; state < 32; state++) {
Branchtab37_sse2[0].c[state] = (polys[0] < 0) ^ parity((2 * state) & polys[0]) ? 65535 : 0;
Branchtab37_sse2[1].c[state] = (polys[1] < 0) ^ parity((2 * state) & polys[1]) ? 65535 : 0;
Branchtab37_sse2[2].c[state] = (polys[2] < 0) ^ parity((2 * state) & polys[2]) ? 65535 : 0;
}
}
void clear_v37_avx2_16bit(struct v37* vp)
{
bzero(vp->decisions, sizeof(decision_t) * vp->len);
vp->dp = NULL;
bzero(&vp->metrics1, sizeof(metric_t));
bzero(&vp->metrics2, sizeof(metric_t));
vp->old_metrics = NULL;
vp->new_metrics = NULL;
}
/* Initialize Viterbi decoder for start of new frame */
int init_viterbi37_avx2_16bit(void* p, int starting_state)
{
struct v37* vp = p;
uint32_t i;
for (i = 0; i < 64; i++)
vp->metrics1.c[i] = 63;
clear_v37_avx2_16bit(vp);
firstGo = 1;
vp->old_metrics = &vp->metrics1;
vp->new_metrics = &vp->metrics2;
vp->dp = vp->decisions;
if (starting_state != -1) {
vp->old_metrics->c[starting_state & 63] = 0; /* Bias known start state */
}
return 0;
}
/* Create a new instance of a Viterbi decoder */
void* create_viterbi37_avx2_16bit(int polys[3], uint32_t len)
{
void* p;
struct v37* vp;
set_viterbi37_polynomial_avx2_16bit(polys);
/* Ordinary malloc() only returns 8-byte alignment, we need 16 */
if (posix_memalign(&p, sizeof(__m256i), sizeof(struct v37)))
return NULL;
vp = (struct v37*)p;
if (posix_memalign(&p, sizeof(__m256i), (len + 6) * sizeof(decision_t))) {
free(vp);
return NULL;
}
vp->decisions = (decision_t*)p;
vp->len = len + 6;
return vp;
}
/* Viterbi chainback */
int chainback_viterbi37_avx2_16bit(void* p,
uint8_t* data, /* Decoded output data */
uint32_t nbits, /* Number of data bits */
uint32_t endstate)
{ /* Terminal encoder state */
struct v37* vp = p;
if (p == NULL)
return -1;
decision_t* d = (decision_t*)vp->decisions;
/* Make room beyond the end of the encoder register so we can
* accumulate a full byte of decoded data
*/
endstate %= 64;
endstate <<= 2;
/* The store into data[] only needs to be done every 8 bits.
* But this avoids a conditional branch, and the writes will
* combine in the cache anyway
*/
d += 6; /* Look past tail */
while (nbits--) {
int k;
k = (d[nbits].c[(endstate >> 2) / 8] >> ((endstate >> 2) % 8)) & 1;
endstate = (endstate >> 1) | (k << 7);
data[nbits] = k;
// printf("nbits=%d, endstate=%3d, k=%d, w[0]=%d, w[1]=%d, c=%d\n", nbits, endstate, k, d[nbits].s[1]&1,
// d[nbits].s[2]&1, d[nbits].c[(endstate>>2)/8]&1);
}
return 0;
}
/* Delete instance of a Viterbi decoder */
void delete_viterbi37_avx2_16bit(void* p)
{
struct v37* vp = p;
if (vp != NULL) {
free(vp->decisions);
free(vp);
}
}
void print_256i(char* s, __m256i val)
{
printf("%s: ", s);
uint16_t* x = (uint16_t*)&val;
for (int i = 0; i < 16; i++) {
printf("%.5f, ", (float)x[i] / 65535);
}
printf("\n");
}
void print_256i_char(char* s, __m256i val)
{
printf("%s: ", s);
uint8_t* x = (uint8_t*)&val;
for (int i = 0; i < 32; i++) {
printf("%d, ", x[31 - i]);
}
printf("\n");
}
inline unsigned short my_mm256_movemask_epi16(__m256i x)
{
uint32_t x1 = _mm256_movemask_epi8(x);
uint16_t tmp = 0;
for (int i = 0; i < 16; i++) {
tmp |= ((x1 >> ((i * 2) + 1)) & 0x01) << i;
}
return (tmp);
}
void update_viterbi37_blk_avx2_16bit(void* p, unsigned short* syms, int nbits, uint32_t* best_state)
{
struct v37* vp = p;
decision_t* d;
if (p == NULL)
return;
#ifdef DEBUG
printf("[");
#endif
d = (decision_t*)vp->dp;
for (int s = 0; s < nbits; s++) {
memset(d + s, 0, sizeof(decision_t));
}
while (nbits--) {
__m256i sym0v, sym1v, sym2v;
void* tmp;
int i;
// printf("nbits=%d, syms=%d,%d,%d\n", nbits, syms[0], syms[1], syms[2]);fflush(stdout);
/* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */
sym0v = _mm256_set1_epi16(syms[0]);
sym1v = _mm256_set1_epi16(syms[1]);
sym2v = _mm256_set1_epi16(syms[2]);
syms += 3;
for (i = 0; i < 2; i++) {
__m256i decision0, decision1, metric, m_metric, m0, m1, m2, m3, survivor0, survivor1;
/* Form branch metrics */
m0 = _mm256_avg_epu16(_mm256_xor_si256(Branchtab37_sse2[0].v[i], sym0v),
_mm256_xor_si256(Branchtab37_sse2[1].v[i], sym1v));
metric = _mm256_avg_epu16(_mm256_xor_si256(Branchtab37_sse2[2].v[i], sym2v), m0);
#ifdef DEBUG
print_128i("metric_initial", metric);
#endif
/* There's no packed bytes right shift in SSE2, so we use the word version and mask
*/
metric = _mm256_srli_epi16(metric, 3);
m_metric = _mm256_sub_epi16(_mm256_set1_epi16(8191), metric);
#ifdef DEBUG
print_128i("metric ", metric);
print_128i("m_metric ", m_metric);
#endif
/* Add branch metrics to path metrics */
m0 = _mm256_add_epi16(vp->old_metrics->v[i], metric);
m3 = _mm256_add_epi16(vp->old_metrics->v[2 + i], metric);
m1 = _mm256_add_epi16(vp->old_metrics->v[2 + i], m_metric);
m2 = _mm256_add_epi16(vp->old_metrics->v[i], m_metric);
/* Compare and select, using modulo arithmetic */
decision0 = _mm256_cmpgt_epi16(_mm256_sub_epi16(m0, m1), _mm256_setzero_si256());
decision1 = _mm256_cmpgt_epi16(_mm256_sub_epi16(m2, m3), _mm256_setzero_si256());
survivor0 = _mm256_or_si256(_mm256_and_si256(decision0, m1), _mm256_andnot_si256(decision0, m0));
survivor1 = _mm256_or_si256(_mm256_and_si256(decision1, m3), _mm256_andnot_si256(decision1, m2));
/* Pack each set of decisions into 16 bits */
decision0 = _mm256_permute4x64_epi64(decision0, 216);
decision1 = _mm256_permute4x64_epi64(decision1, 216);
__m256i packed = _mm256_packus_epi16(_mm256_srli_epi16(_mm256_unpacklo_epi16(decision0, decision1), 8),
_mm256_srli_epi16(_mm256_unpackhi_epi16(decision0, decision1), 8));
d->w[i] = _mm256_movemask_epi8(packed);
unsigned char temp_char1 = d->c[4 * i + 1];
unsigned char temp_char2 = d->c[4 * i + 2];
d->c[4 * i + 1] = temp_char2;
d->c[4 * i + 2] = temp_char1;
/* Store surviving metrics */
survivor0 = _mm256_permute4x64_epi64(survivor0, 216);
survivor1 = _mm256_permute4x64_epi64(survivor1, 216);
vp->new_metrics->v[2 * i] = _mm256_unpacklo_epi16(survivor0, survivor1);
vp->new_metrics->v[2 * i + 1] = _mm256_unpackhi_epi16(survivor0, survivor1);
}
// See if we need to normalize
if (vp->new_metrics->c[0] > 12288) {
int i;
uint16_t adjust;
__m256i adjustv;
union {
__m256i v;
signed short w[8];
} t;
adjustv = vp->new_metrics->v[0];
for (i = 1; i < 4; i++) {
adjustv = _mm256_min_epu16(adjustv, vp->new_metrics->v[i]);
}
adjustv = _mm256_min_epu16(adjustv, _mm256_srli_si256(adjustv, 16));
adjustv = _mm256_min_epu16(adjustv, _mm256_srli_si256(adjustv, 8));
adjustv = _mm256_min_epu16(adjustv, _mm256_srli_si256(adjustv, 4));
t.v = adjustv;
adjust = t.w[0];
adjustv = _mm256_set1_epi16(adjust);
/* We cannot use a saturated subtract, because we often have to adjust by more than SHRT_MAX
* This is okay since it can't overflow anyway
*/
for (i = 0; i < 4; i++)
vp->new_metrics->v[i] = _mm256_sub_epi16(vp->new_metrics->v[i], adjustv);
}
d++;
/* Swap pointers to old and new metrics */
tmp = vp->old_metrics;
vp->old_metrics = vp->new_metrics;
vp->new_metrics = tmp;
}
if (best_state) {
uint32_t i, bst = 0;
uint16_t minmetric = UINT16_MAX;
for (i = 0; i < 64; i++) {
if (vp->old_metrics->c[i] <= minmetric) {
bst = i;
minmetric = vp->old_metrics->c[i];
}
}
*best_state = bst;
}
#ifdef DEBUG
printf("];\n===========================================\n");
#endif
vp->dp = d;
}
#endif