add radio library

This commit is contained in:
Andre Puschmann 2017-05-18 12:53:53 +02:00
parent 3ea8d7c721
commit 2d8d9be3ea
5 changed files with 690 additions and 0 deletions

View File

@ -0,0 +1,175 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <string.h>
#include "srslte/srslte.h"
#include "srslte/phy/rf/rf.h"
#include "srslte/common/trace.h"
#ifndef RADIO_H
#define RADIO_H
typedef struct {
float tx_corr_dc_gain;
float tx_corr_dc_phase;
float tx_corr_iq_i;
float tx_corr_iq_q;
float rx_corr_dc_gain;
float rx_corr_dc_phase;
float rx_corr_iq_i;
float rx_corr_iq_q;
}rf_cal_t;
namespace srslte {
/* Interface to the RF frontend.
*/
class radio
{
public:
radio() : tr_local_time(1024*10), tr_usrp_time(1024*10), tr_tx_time(1024*10), tr_is_eob(1024*10) {
bzero(&rf_device, sizeof(srslte_rf_t));
bzero(&end_of_burst_time, sizeof(srslte_timestamp_t));
bzero(zeros, burst_preamble_max_samples*sizeof(cf_t));
sf_len = 0;
burst_preamble_sec = 0;
is_start_of_burst = false;
burst_preamble_samples = 0;
burst_preamble_time_rounded = 0;
cur_tx_srate = 0;
tx_adv_sec = 0;
tx_adv_nsamples = 0;
tx_adv_auto = false;
tx_adv_negative = false;
tx_freq = 0;
rx_freq = 0;
trace_enabled = false;
tti = 0;
agc_enabled = false;
offset = 0;
};
bool init(char *args = NULL, char *devname = NULL);
void stop();
bool start_agc(bool tx_gain_same_rx);
void set_burst_preamble(double preamble_us);
void set_tx_adv(int nsamples);
void set_tx_adv_neg(bool tx_adv_is_neg);
void set_manual_calibration(rf_cal_t *calibration);
void get_time(srslte_timestamp_t *now);
bool tx(void *buffer, uint32_t nof_samples, srslte_timestamp_t tx_time);
void tx_end();
bool rx_now(void *buffer, uint32_t nof_samples, srslte_timestamp_t *rxd_time);
bool rx_at(void *buffer, uint32_t nof_samples, srslte_timestamp_t rx_time);
void set_tx_gain(float gain);
void set_rx_gain(float gain);
void set_tx_rx_gain_offset(float offset);
double set_rx_gain_th(float gain);
void set_tx_freq(float freq);
void set_rx_freq(float freq);
float get_tx_freq();
float get_rx_freq();
void set_master_clock_rate(float rate);
void set_tx_srate(float srate);
void set_rx_srate(float srate);
float get_tx_gain();
float get_rx_gain();
float get_max_tx_power();
float set_tx_power(float power);
float get_rssi();
bool has_rssi();
void start_trace();
void write_trace(std::string filename);
void start_rx();
void stop_rx();
void set_tti(uint32_t tti);
void tx_offset(int offset);
void set_tti_len(uint32_t sf_len);
uint32_t get_tti_len();
void register_error_handler(srslte_rf_error_handler_t h);
protected:
void save_trace(uint32_t is_eob, srslte_timestamp_t *usrp_time);
srslte_rf_t rf_device;
const static uint32_t burst_preamble_max_samples = 30720000; // 30.72 MHz is maximum frequency
double burst_preamble_sec;// Start of burst preamble time (off->on RF transition time)
srslte_timestamp_t end_of_burst_time;
bool is_start_of_burst;
uint32_t burst_preamble_samples;
double burst_preamble_time_rounded; // preamble time rounded to sample time
cf_t zeros[burst_preamble_max_samples];
double cur_tx_srate;
double tx_adv_sec; // Transmission time advance to compensate for antenna->timestamp delay
int tx_adv_nsamples; // Transmision time advance in number of samples
// Define default values for known radios
bool tx_adv_auto;
bool tx_adv_negative;
const static double uhd_default_burst_preamble_sec = 600*1e-6;
const static double uhd_default_tx_adv_samples = 98;
const static double uhd_default_tx_adv_offset_sec = 4*1e-6;
const static double blade_default_burst_preamble_sec = 0.0;
const static double blade_default_tx_adv_samples = 27;
const static double blade_default_tx_adv_offset_sec = 1e-6;
float tx_freq, rx_freq;
trace<uint32_t> tr_local_time;
trace<uint32_t> tr_usrp_time;
trace<uint32_t> tr_tx_time;
trace<uint32_t> tr_is_eob;
bool trace_enabled;
uint32_t tti;
bool agc_enabled;
int offset;
uint32_t sf_len;
};
}
#endif

View File

@ -0,0 +1,30 @@
#include <string.h>
#include "srslte/srslte.h"
extern "C" {
#include "srslte/phy/rf/rf.h"
}
#include "srslte/common/trace.h"
#include "srslte/radio/radio.h"
#ifndef RADIO_MULTI_H
#define RADIO_MULTI_H
namespace srslte {
/* Interface to the RF frontend.
*/
class radio_multi : public radio
{
public:
bool init_multi(uint32_t nof_rx_antennas, char *args = NULL, char *devname = NULL);
bool rx_now(cf_t *buffer[SRSLTE_MAX_PORTS], uint32_t nof_samples, srslte_timestamp_t *rxd_time);
};
}
#endif

View File

@ -0,0 +1,23 @@
# Copyright 2015 Software Radio Systems Limited
#
# This file is part of srsUE
#
# srsUE is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# srsUE is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# A copy of the GNU Affero General Public License can be found in
# the LICENSE file in the top-level directory of this distribution
# and at http://www.gnu.org/licenses/.
#
add_library(srslte_radio SHARED radio.cc radio_multi.cc)
INSTALL(TARGETS srslte_radio DESTINATION ${LIBRARY_DIR})
target_link_libraries(srslte_radio srslte_rf)
SRSLTE_SET_PIC(srslte_radio)

413
srslte/lib/radio/radio.cc Normal file
View File

@ -0,0 +1,413 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/srslte.h"
extern "C" {
#include "srslte/phy/rf/rf.h"
}
#include "radio/radio.h"
#include <string.h>
namespace srslte {
bool radio::init(char *args, char *devname)
{
if (srslte_rf_open_devname(&rf_device, devname, args)) {
fprintf(stderr, "Error opening RF device\n");
return false;
}
tx_adv_negative = false;
agc_enabled = false;
burst_preamble_samples = 0;
burst_preamble_time_rounded = 0;
cur_tx_srate = 0;
is_start_of_burst = true;
// Suppress radio stdout
srslte_rf_suppress_stdout(&rf_device);
tx_adv_auto = true;
// Set default preamble length each known device
// We distinguish by device family, maybe we should calibrate per device
if (strstr(srslte_rf_name(&rf_device), "uhd")) {
burst_preamble_sec = uhd_default_burst_preamble_sec;
} else if (strstr(srslte_rf_name(&rf_device), "bladerf")) {
burst_preamble_sec = blade_default_burst_preamble_sec;
} else {
printf("\nWarning burst preamble is not calibrated for device %s. Set a value manually\n\n", srslte_rf_name(&rf_device));
}
return true;
}
void radio::stop()
{
srslte_rf_close(&rf_device);
}
void radio::set_manual_calibration(rf_cal_t* calibration)
{
srslte_rf_cal_t tx_cal;
tx_cal.dc_gain = calibration->tx_corr_dc_gain;
tx_cal.dc_phase = calibration->tx_corr_dc_phase;
tx_cal.iq_i = calibration->tx_corr_iq_i;
tx_cal.iq_q = calibration->tx_corr_iq_q;
srslte_rf_set_tx_cal(&rf_device, &tx_cal);
}
void radio::set_tx_rx_gain_offset(float offset) {
srslte_rf_set_tx_rx_gain_offset(&rf_device, offset);
}
void radio::set_burst_preamble(double preamble_us)
{
burst_preamble_sec = (double) preamble_us/1e6;
}
void radio::set_tx_adv(int nsamples)
{
tx_adv_auto = false;
tx_adv_nsamples = nsamples;
if (!nsamples) {
tx_adv_sec = 0;
}
}
void radio::set_tx_adv_neg(bool tx_adv_is_neg) {
tx_adv_negative = tx_adv_is_neg;
}
void radio::tx_offset(int offset_)
{
offset = offset_;
}
bool radio::start_agc(bool tx_gain_same_rx)
{
if (srslte_rf_start_gain_thread(&rf_device, tx_gain_same_rx)) {
fprintf(stderr, "Error opening RF device\n");
return false;
}
agc_enabled = true;
return true;
}
bool radio::rx_at(void* buffer, uint32_t nof_samples, srslte_timestamp_t rx_time)
{
fprintf(stderr, "Not implemented\n");
return false;
}
bool radio::rx_now(void* buffer, uint32_t nof_samples, srslte_timestamp_t* rxd_time)
{
if (srslte_rf_recv_with_time(&rf_device, buffer, nof_samples, true,
rxd_time?&rxd_time->full_secs:NULL, rxd_time?&rxd_time->frac_secs:NULL) > 0) {
return true;
} else {
return false;
}
}
void radio::get_time(srslte_timestamp_t *now) {
srslte_rf_get_time(&rf_device, &now->full_secs, &now->frac_secs);
}
// TODO: Use Calibrated values for this
float radio::set_tx_power(float power)
{
if (power > 10) {
power = 10;
}
if (power < -50) {
power = -50;
}
float gain = power + 74;
srslte_rf_set_tx_gain(&rf_device, gain);
return gain;
}
float radio::get_max_tx_power()
{
return 10;
}
float radio::get_rssi()
{
return srslte_rf_get_rssi(&rf_device);
}
bool radio::has_rssi()
{
return srslte_rf_has_rssi(&rf_device);
}
bool radio::tx(void* buffer, uint32_t nof_samples, srslte_timestamp_t tx_time)
{
if (!tx_adv_negative) {
srslte_timestamp_sub(&tx_time, 0, tx_adv_sec);
} else {
srslte_timestamp_add(&tx_time, 0, tx_adv_sec);
}
if (is_start_of_burst) {
if (burst_preamble_samples != 0) {
srslte_timestamp_t tx_time_pad;
srslte_timestamp_copy(&tx_time_pad, &tx_time);
srslte_timestamp_sub(&tx_time_pad, 0, burst_preamble_time_rounded);
save_trace(1, &tx_time_pad);
srslte_rf_send_timed2(&rf_device, zeros, burst_preamble_samples, tx_time_pad.full_secs, tx_time_pad.frac_secs, true, false);
is_start_of_burst = false;
}
}
// Save possible end of burst time
srslte_timestamp_copy(&end_of_burst_time, &tx_time);
srslte_timestamp_add(&end_of_burst_time, 0, (double) nof_samples/cur_tx_srate);
save_trace(0, &tx_time);
int ret = srslte_rf_send_timed2(&rf_device, buffer, nof_samples+offset, tx_time.full_secs, tx_time.frac_secs, is_start_of_burst, false);
offset = 0;
is_start_of_burst = false;
if (ret > 0) {
return true;
} else {
return false;
}
}
uint32_t radio::get_tti_len()
{
return sf_len;
}
void radio::set_tti_len(uint32_t sf_len_)
{
sf_len = sf_len_;
}
void radio::tx_end()
{
if (!is_start_of_burst) {
save_trace(2, &end_of_burst_time);
srslte_rf_send_timed2(&rf_device, zeros, 0, end_of_burst_time.full_secs, end_of_burst_time.frac_secs, false, true);
is_start_of_burst = true;
}
}
void radio::start_trace() {
trace_enabled = true;
}
void radio::set_tti(uint32_t tti_) {
tti = tti_;
}
void radio::write_trace(std::string filename)
{
tr_local_time.writeToBinary(filename + ".local");
tr_is_eob.writeToBinary(filename + ".eob");
tr_usrp_time.writeToBinary(filename + ".usrp");
tr_tx_time.writeToBinary(filename + ".tx");
}
void radio::save_trace(uint32_t is_eob, srslte_timestamp_t *tx_time) {
if (trace_enabled) {
tr_local_time.push_cur_time_us(tti);
srslte_timestamp_t usrp_time;
srslte_rf_get_time(&rf_device, &usrp_time.full_secs, &usrp_time.frac_secs);
tr_usrp_time.push(tti, srslte_timestamp_uint32(&usrp_time));
tr_tx_time.push(tti, srslte_timestamp_uint32(tx_time));
tr_is_eob.push(tti, is_eob);
}
}
void radio::set_rx_freq(float freq)
{
rx_freq = srslte_rf_set_rx_freq(&rf_device, freq);
}
void radio::set_rx_gain(float gain)
{
srslte_rf_set_rx_gain(&rf_device, gain);
}
double radio::set_rx_gain_th(float gain)
{
return srslte_rf_set_rx_gain_th(&rf_device, gain);
}
void radio::set_master_clock_rate(float rate)
{
srslte_rf_set_master_clock_rate(&rf_device, rate);
}
void radio::set_rx_srate(float srate)
{
srslte_rf_set_rx_srate(&rf_device, srate);
}
void radio::set_tx_freq(float freq)
{
tx_freq = srslte_rf_set_tx_freq(&rf_device, freq);
}
void radio::set_tx_gain(float gain)
{
srslte_rf_set_tx_gain(&rf_device, gain);
}
float radio::get_rx_freq()
{
return rx_freq;
}
float radio::get_tx_freq()
{
return tx_freq;
}
float radio::get_tx_gain()
{
return srslte_rf_get_tx_gain(&rf_device);
}
float radio::get_rx_gain()
{
return srslte_rf_get_rx_gain(&rf_device);
}
void radio::set_tx_srate(float srate)
{
cur_tx_srate = srslte_rf_set_tx_srate(&rf_device, srate);
burst_preamble_samples = (uint32_t) (cur_tx_srate * burst_preamble_sec);
if (burst_preamble_samples > burst_preamble_max_samples) {
burst_preamble_samples = burst_preamble_max_samples;
fprintf(stderr, "Error setting TX srate %.1f MHz. Maximum frequency for zero prepadding is 30.72 MHz\n", srate*1e-6);
}
burst_preamble_time_rounded = (double) burst_preamble_samples/cur_tx_srate;
int nsamples=0;
/* Set time advance for each known device if in auto mode */
if (tx_adv_auto) {
/* This values have been calibrated using the prach_test_usrp tool in srsLTE */
if (!strcmp(srslte_rf_name(&rf_device), "uhd_b200")) {
double srate_khz = round(cur_tx_srate/1e3);
if (srate_khz == 1.92e3) {
nsamples = 54;
} else if (srate_khz == 3.84e3) {
nsamples = 69;
} else if (srate_khz == 5.76e3) {
nsamples = 93;
} else if (srate_khz == 11.52e3) {
nsamples = 120;
} else if (srate_khz == 15.36e3) {
nsamples = 131;
} else if (srate_khz == 23.04e3) {
nsamples = 175;
} else {
/* Interpolate from known values */
printf("\nWarning TX/RX time offset for sampling rate %.0f KHz not calibrated. Using interpolated value\n\n", cur_tx_srate);
nsamples = cur_tx_srate*(uhd_default_tx_adv_samples * (1/cur_tx_srate) + uhd_default_tx_adv_offset_sec);
}
} else if (!strcmp(srslte_rf_name(&rf_device), "uhd_x300")) {
double srate_khz = round(cur_tx_srate/1e3);
if (srate_khz == 1.92e3) {
nsamples = 50;
} else if (srate_khz == 3.84e3) {
nsamples = 65;
} else if (srate_khz == 5.76e3) {
nsamples = 75;
} else if (srate_khz == 11.52e3) {
nsamples = 89;
} else if (srate_khz == 15.36e3) {
nsamples = 86;
} else if (srate_khz == 23.04e3) {
nsamples = 119;
} else {
/* Interpolate from known values */
printf("\nWarning TX/RX time offset for sampling rate %.0f KHz not calibrated. Using interpolated value\n\n", cur_tx_srate);
nsamples = cur_tx_srate*(uhd_default_tx_adv_samples * (1/cur_tx_srate) + uhd_default_tx_adv_offset_sec);
}
} else if (!strcmp(srslte_rf_name(&rf_device), "bladerf")) {
double srate_khz = round(cur_tx_srate/1e3);
if (srate_khz == 1.92e3) {
nsamples = 16;
} else if (srate_khz == 3.84e3) {
nsamples = 18;
} else if (srate_khz == 5.76e3) {
nsamples = 16;
} else if (srate_khz == 11.52e3) {
nsamples = 21;
} else if (srate_khz == 15.36e3) {
nsamples = 14;
} else if (srate_khz == 23.04e3) {
nsamples = 21;
} else {
/* Interpolate from known values */
printf("\nWarning TX/RX time offset for sampling rate %.0f KHz not calibrated. Using interpolated value\n\n", cur_tx_srate);
tx_adv_sec = blade_default_tx_adv_samples * (1/cur_tx_srate) + blade_default_tx_adv_offset_sec;
}
} else {
printf("\nWarning TX/RX time offset has not been calibrated for device %s. Set a value manually\n\n", srslte_rf_name(&rf_device));
}
} else {
nsamples = tx_adv_nsamples;
printf("Setting manual TX/RX offset to %d samples\n", nsamples);
}
// Calculate TX advance in seconds from samples and sampling rate
tx_adv_sec = nsamples/cur_tx_srate;
printf("Setting TX/RX offset %d samples, %.2f us\n", nsamples, tx_adv_sec*1e6);
}
void radio::start_rx()
{
srslte_rf_start_rx_stream(&rf_device);
}
void radio::stop_rx()
{
srslte_rf_stop_rx_stream(&rf_device);
}
void radio::register_error_handler(srslte_rf_error_handler_t h)
{
srslte_rf_register_error_handler(&rf_device, h);
}
}

View File

@ -0,0 +1,49 @@
#include "radio/radio_multi.h"
namespace srslte {
bool radio_multi::init_multi(uint32_t nof_rx_antennas, char* args, char* devname)
{
if (srslte_rf_open_devname_multi(&rf_device, devname, args, nof_rx_antennas)) {
fprintf(stderr, "Error opening RF device\n");
return false;
}
tx_adv_negative = false;
agc_enabled = false;
burst_preamble_samples = 0;
burst_preamble_time_rounded = 0;
cur_tx_srate = 0;
is_start_of_burst = true;
tx_adv_auto = true;
// Set default preamble length each known device
// We distinguish by device family, maybe we should calibrate per device
if (strstr(srslte_rf_name(&rf_device), "uhd")) {
burst_preamble_sec = uhd_default_burst_preamble_sec;
} else if (strstr(srslte_rf_name(&rf_device), "bladerf")) {
burst_preamble_sec = blade_default_burst_preamble_sec;
} else {
printf("\nWarning burst preamble is not calibrated for device %s. Set a value manually\n\n", srslte_rf_name(&rf_device));
}
return true;
}
bool radio_multi::rx_now(cf_t *buffer[SRSLTE_MAX_PORTS], uint32_t nof_samples, srslte_timestamp_t* rxd_time)
{
void *ptr[SRSLTE_MAX_PORTS];
for (int i=0;i<SRSLTE_MAX_PORTS;i++) {
ptr[i] = buffer[i];
}
if (srslte_rf_recv_with_time_multi(&rf_device, ptr, nof_samples, true,
rxd_time?&rxd_time->full_secs:NULL, rxd_time?&rxd_time->frac_secs:NULL) > 0) {
return true;
} else {
return false;
}
}
}