srsRAN/README.md

208 lines
6.9 KiB
Markdown
Raw Normal View History

2015-03-18 10:52:46 +00:00
srsLTE
2014-01-28 11:41:17 +00:00
========
2017-06-08 15:29:04 +00:00
srsLTE is a free and open-source LTE software suite developed by SRS (www.softwareradiosystems.com).
It includes:
* srsUE - a complete SDR LTE UE application featuring all layers from PHY to IP
* srsENB - a complete SDR LTE eNodeB application
2018-01-19 11:00:39 +00:00
* srsEPC - a light-weight LTE core network implementation with MME, HSS and S/P-GW
2017-06-08 15:29:04 +00:00
* a highly modular set of common libraries for PHY, MAC, RLC, PDCP, RRC, NAS, S1AP and GW layers.
2019-01-18 13:55:42 +00:00
srsLTE is released under the AGPLv3 license and uses software from the OpenLTE project (http://sourceforge.net/projects/openlte) for some security functions and for NAS message parsing.
2015-01-21 18:17:19 +00:00
2017-06-08 15:22:56 +00:00
Common Features
---------------
2016-01-30 09:37:39 +00:00
2017-10-06 13:05:47 +00:00
* LTE Release 8 compliant (with selected features of Release 9)
2015-01-21 18:17:19 +00:00
* FDD configuration
2015-12-02 11:54:57 +00:00
* Tested bandwidths: 1.4, 3, 5, 10, 15 and 20 MHz
2017-10-06 14:26:22 +00:00
* Transmission mode 1 (single antenna), 2 (transmit diversity), 3 (CCD) and 4 (closed-loop spatial multiplexing)
2016-04-19 21:05:02 +00:00
* Frequency-based ZF and MMSE equalizer
2017-10-06 13:05:47 +00:00
* Evolved multimedia broadcast and multicast service (eMBMS)
2017-10-06 14:26:22 +00:00
* Highly optimized Turbo Decoder available in Intel SSE4.1/AVX2 (+100 Mbps) and standard C (+25 Mbps)
2017-06-08 15:22:56 +00:00
* MAC, RLC, PDCP, RRC, NAS, S1AP and GW layers
* Detailed log system with per-layer log levels and hex dumps
* MAC layer wireshark packet capture
* Command-line trace metrics
* Detailed input configuration files
srsUE Features
--------------
* Cell search and synchronization procedure for the UE
2018-06-26 10:30:11 +00:00
* Soft USIM supporting Milenage and XOR authentication
* Hard USIM support using PCSC framework
2017-06-08 15:22:56 +00:00
* Virtual network interface *tun_srsue* created upon network attach
2018-06-26 10:30:11 +00:00
* 150 Mbps DL in 20 MHz MIMO TM3/TM4 configuration in i7 Quad-Core CPU.
2017-06-08 15:52:07 +00:00
* 75 Mbps DL in 20 MHz SISO configuration in i7 Quad-Core CPU.
* 36 Mbps DL in 10 MHz SISO configuration in i5 Dual-Core CPU.
2017-06-08 15:22:56 +00:00
srsUE has been fully tested and validated with the following network equipment:
* Amarisoft LTE100 eNodeB and EPC
* Nokia FlexiRadio family FSMF system module with 1800MHz FHED radio module and TravelHawk EPC simulator
* Huawei DBS3900
* Octasic Flexicell LTE-FDD NIB
srsENB Features
---------------
* Round Robin MAC scheduler with FAPI-like C++ API
2017-06-08 15:52:07 +00:00
* SR support
* Periodic and Aperiodic CQI feedback support
2017-06-08 15:22:56 +00:00
* Standard S1AP and GTP-U interfaces to the Core Network
2018-01-19 15:38:20 +00:00
* 150 Mbps DL in 20 MHz MIMO TM3/TM4 with commercial UEs
2018-01-19 11:00:39 +00:00
* 75 Mbps DL in SISO configuration with commercial UEs
2018-07-06 14:44:49 +00:00
* 50 Mbps UL in 20 MHz with commercial UEs
2017-06-08 15:22:56 +00:00
srsENB has been tested and validated with the following handsets:
2018-07-06 14:44:49 +00:00
* LG Nexus 5 and 4
* Motorola Moto G4 plus and G5
* Huawei P9/P9lite, P10/P10lite, P20/P20lite
2017-10-06 14:26:22 +00:00
* Huawei dongles: E3276 and E398
2015-07-06 15:12:57 +00:00
2018-01-19 11:00:39 +00:00
srsEPC Features
---------------
* Single binary, light-weight LTE EPC implementation with:
* MME (Mobility Management Entity) with standard S1AP and GTP-U interface to eNB
* S/P-GW with standard SGi exposed as virtual network interface (TUN device)
* HSS (Home Subscriber Server) with configurable user database in CSV format
2014-03-08 12:26:01 +00:00
Hardware
2017-06-08 15:22:56 +00:00
--------
2014-03-08 12:26:01 +00:00
2016-01-30 09:37:39 +00:00
The library currently supports the Ettus Universal Hardware Driver (UHD) and the bladeRF driver. Thus, any hardware supported by UHD or bladeRF can be used. There is no sampling rate conversion, therefore the hardware should support 30.72 MHz clock in order to work correctly with LTE sampling frequencies and decode signals from live LTE base stations.
2014-03-08 12:26:01 +00:00
2016-01-30 09:37:39 +00:00
We have tested the following hardware:
* USRP B210
2018-07-06 14:44:49 +00:00
* USRP B205mini
2016-01-30 09:37:39 +00:00
* USRP X300
2018-06-26 10:30:11 +00:00
* limeSDR
2016-01-30 09:37:39 +00:00
* bladeRF
2015-12-16 18:48:05 +00:00
2017-06-08 15:22:56 +00:00
Build Instructions
------------------
2014-01-30 15:14:41 +00:00
2017-06-08 15:29:04 +00:00
* Mandatory requirements:
2017-06-08 15:22:56 +00:00
* Common:
2017-09-25 14:00:20 +00:00
* cmake https://cmake.org/
2017-06-08 15:22:56 +00:00
* libfftw http://www.fftw.org/
* PolarSSL/mbedTLS https://tls.mbed.org
* srsUE:
* Boost: http://www.boost.org
* srsENB:
* Boost: http://www.boost.org
* lksctp: http://lksctp.sourceforge.net/
2017-06-19 15:38:39 +00:00
* config: http://www.hyperrealm.com/libconfig/
2018-01-19 11:00:39 +00:00
* srsEPC:
* Boost: http://www.boost.org
* lksctp: http://lksctp.sourceforge.net/
* config: http://www.hyperrealm.com/libconfig/
2017-06-08 15:22:56 +00:00
For example, on Ubuntu 17.04, one can install the required libraries with:
```
2018-03-29 10:12:15 +00:00
sudo apt-get install cmake libfftw3-dev libmbedtls-dev libboost-program-options-dev libconfig++-dev libsctp-dev
```
2018-07-10 12:23:50 +00:00
or on Fedora:
```
dnf install cmake fftw3-devel polarssl-devel lksctp-tools-devel libconfig-devel boost-devel
```
Note that depending on your flavor and version of Linux, the actual package names may be different.
2015-03-19 16:16:20 +00:00
* Optional requirements:
2017-06-08 15:52:07 +00:00
* srsgui: https://github.com/srslte/srsgui - for real-time plotting.
2018-06-26 10:30:11 +00:00
* libpcsclite-dev: https://pcsclite.apdu.fr/ - for accessing smart card readers
2015-03-19 16:16:20 +00:00
2017-06-08 15:29:04 +00:00
* RF front-end driver:
* UHD: https://github.com/EttusResearch/uhd
2018-06-26 10:30:11 +00:00
* SoapySDR: https://github.com/pothosware/SoapySDR
2017-06-08 15:29:04 +00:00
* BladeRF: https://github.com/Nuand/bladeRF
2015-03-19 16:16:20 +00:00
Download and build srsLTE:
2014-01-30 15:14:41 +00:00
```
2015-03-18 10:54:07 +00:00
git clone https://github.com/srsLTE/srsLTE.git
cd srsLTE
2014-01-30 15:14:41 +00:00
mkdir build
cd build
cmake ../
2018-01-19 11:00:39 +00:00
make
make test
2014-01-30 15:14:41 +00:00
```
2018-06-26 10:30:11 +00:00
Install srsLTE:
```
sudo make install
sudo srslte_install_configs.sh
```
This installs srsLTE and also copies the default srsLTE config files to
the user's home directory (~/.srs).
2015-01-21 18:17:19 +00:00
2017-06-08 15:22:56 +00:00
Execution Instructions
----------------------
2014-01-30 15:14:41 +00:00
2018-01-19 11:00:39 +00:00
The srsUE, srsENB and srsEPC applications include example configuration files
2018-06-26 10:30:11 +00:00
that should be copied (manually or by using the convenience script) and modified,
if needed, to meet the system configuration.
On many systems they should work out of the box.
By default, all applications will search for config files in the user's home
directory (~/.srs) upon startup.
2014-01-30 15:14:41 +00:00
2018-01-19 11:00:39 +00:00
Note that you have to execute the applications with root privileges to enable
real-time thread priorities and to permit creation of virtual network interfaces.
2018-01-19 11:05:31 +00:00
srsENB and srsEPC can run on the same machine as a network-in-the-box configuration.
srsUE needs to run on a separate machine.
2018-01-19 11:00:39 +00:00
2018-06-26 10:30:11 +00:00
If you have installed the software suite using ```sudo make install``` and
have installed the example config files using ```sudo srslte_install_configs.sh```,
you may just start all applications with their default parameters.
2018-01-19 11:00:39 +00:00
### srsEPC
2018-06-26 10:30:11 +00:00
On machine 1, run srsEPC as follows:
2014-01-30 15:14:41 +00:00
```
2018-06-26 10:30:11 +00:00
sudo srsepc
2014-01-30 15:14:41 +00:00
```
2018-06-26 10:30:11 +00:00
Using the default configuration, this creates a virtual network interface
named "srs_spgw_sgi" on machine 1 with IP 172.16.0.1. All connected UEs
will be assigned an IP in this network.
2017-06-08 15:22:56 +00:00
### srsENB
2015-01-21 18:17:19 +00:00
2018-06-26 10:30:11 +00:00
Also on machine 1, but in another console, run srsENB as follows:
2018-01-19 11:00:39 +00:00
```
2018-06-26 10:30:11 +00:00
sudo srsenb
2018-01-19 11:00:39 +00:00
```
### srsUE
2018-06-26 10:30:11 +00:00
On machine 2, run srsUE as follows:
2015-01-21 18:17:19 +00:00
2018-01-19 11:00:39 +00:00
```
2018-06-26 10:30:11 +00:00
sudo srsue
2018-01-19 11:00:39 +00:00
```
Using the default configuration, this creates a virtual network interface
named "tun_srsue" on machine 2 with an IP in the network 172.16.0.x.
Assuming the UE has been assigned IP 172.16.0.2, you may now exchange
2018-01-19 11:07:33 +00:00
IP traffic with machine 1 over the LTE link. For example, run a ping to
2018-01-19 11:00:39 +00:00
the default SGi IP address:
2018-06-26 10:30:11 +00:00
2018-01-19 11:00:39 +00:00
```
ping 172.16.0.1
```
2014-03-08 12:26:27 +00:00
Support
========
2015-03-18 10:52:46 +00:00
Mailing list: http://www.softwareradiosystems.com/mailman/listinfo/srslte-users