srsRAN/srsue/src/ue.cc

320 lines
8.1 KiB
C++
Raw Normal View History

2017-05-30 13:38:04 +00:00
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsUE library.
*
* srsUE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsUE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "ue.h"
//#include "srslte_version_check.h"
#include "srslte/srslte.h"
#include <pthread.h>
#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
using namespace srslte;
namespace srsue{
ue* ue::instance = NULL;
pthread_mutex_t ue_instance_mutex = PTHREAD_MUTEX_INITIALIZER;
ue* ue::get_instance(void)
{
pthread_mutex_lock(&ue_instance_mutex);
if(NULL == instance) {
instance = new ue();
}
pthread_mutex_unlock(&ue_instance_mutex);
return(instance);
}
void ue::cleanup(void)
{
pthread_mutex_lock(&ue_instance_mutex);
if(NULL != instance) {
delete instance;
instance = NULL;
}
pthread_mutex_unlock(&ue_instance_mutex);
}
ue::ue()
:started(false)
{
pool = byte_buffer_pool::get_instance();
}
ue::~ue()
{
byte_buffer_pool::cleanup();
}
bool ue::init(all_args_t *args_)
{
args = args_;
logger.init(args->log.filename);
rf_log.init("RF ", &logger);
phy_log.init("PHY ", &logger, true);
mac_log.init("MAC ", &logger, true);
rlc_log.init("RLC ", &logger);
pdcp_log.init("PDCP", &logger);
rrc_log.init("RRC ", &logger);
nas_log.init("NAS ", &logger);
gw_log.init("GW ", &logger);
usim_log.init("USIM", &logger);
// Init logs
logger.log("\n\n");
rf_log.set_level(srslte::LOG_LEVEL_INFO);
phy_log.set_level(level(args->log.phy_level));
mac_log.set_level(level(args->log.mac_level));
rlc_log.set_level(level(args->log.rlc_level));
pdcp_log.set_level(level(args->log.pdcp_level));
rrc_log.set_level(level(args->log.rrc_level));
nas_log.set_level(level(args->log.nas_level));
gw_log.set_level(level(args->log.gw_level));
usim_log.set_level(level(args->log.usim_level));
phy_log.set_hex_limit(args->log.phy_hex_limit);
mac_log.set_hex_limit(args->log.mac_hex_limit);
rlc_log.set_hex_limit(args->log.rlc_hex_limit);
pdcp_log.set_hex_limit(args->log.pdcp_hex_limit);
rrc_log.set_hex_limit(args->log.rrc_hex_limit);
nas_log.set_hex_limit(args->log.nas_hex_limit);
gw_log.set_hex_limit(args->log.gw_hex_limit);
usim_log.set_hex_limit(args->log.usim_hex_limit);
// Set up pcap and trace
if(args->pcap.enable)
{
mac_pcap.open(args->pcap.filename.c_str());
mac.start_pcap(&mac_pcap);
}
if(args->trace.enable)
{
phy.start_trace();
radio.start_trace();
}
// Init layers
/* Start Radio */
char *dev_name = NULL;
if (args->rf.device_name.compare("auto")) {
dev_name = (char*) args->rf.device_name.c_str();
}
char *dev_args = NULL;
if (args->rf.device_args.compare("auto")) {
dev_args = (char*) args->rf.device_args.c_str();
}
printf("Opening RF device with %d RX antennas...\n", args->rf.nof_rx_ant);
if(!radio.init_multi(args->rf.nof_rx_ant, dev_args, dev_name))
{
printf("Failed to find device %s with args %s\n",
args->rf.device_name.c_str(), args->rf.device_args.c_str());
return false;
}
// Set RF options
if (args->rf.time_adv_nsamples.compare("auto")) {
radio.set_tx_adv(atoi(args->rf.time_adv_nsamples.c_str()));
}
if (args->rf.burst_preamble.compare("auto")) {
radio.set_burst_preamble(atof(args->rf.burst_preamble.c_str()));
}
radio.set_manual_calibration(&args->rf_cal);
// Set PHY options
args->expert.phy.nof_rx_ant = args->rf.nof_rx_ant;
if (args->rf.tx_gain > 0) {
args->expert.phy.ul_pwr_ctrl_en = false;
} else {
args->expert.phy.ul_pwr_ctrl_en = true;
}
phy.init(&radio, &mac, &rrc, &phy_log, &args->expert.phy);
if (args->rf.rx_gain < 0) {
radio.start_agc(false);
radio.set_tx_rx_gain_offset(10);
phy.set_agc_enable(true);
} else {
radio.set_rx_gain(args->rf.rx_gain);
}
if (args->rf.tx_gain > 0) {
radio.set_tx_gain(args->rf.tx_gain);
} else {
radio.set_tx_gain(args->rf.rx_gain);
std::cout << std::endl <<
"Warning: TX gain was not set. " <<
"Using open-loop power control (not working properly)" << std::endl << std::endl;
}
radio.register_error_handler(rf_msg);
radio.set_rx_freq(args->rf.dl_freq);
radio.set_tx_freq(args->rf.ul_freq);
phy_log.console("Setting frequency: DL=%.1f Mhz, UL=%.1f MHz\n", args->rf.dl_freq/1e6, args->rf.ul_freq/1e6);
mac.init(&phy, &rlc, &rrc, &mac_log);
rlc.init(&pdcp, &rrc, this, &rlc_log, &mac);
pdcp.init(&rlc, &rrc, &gw, &pdcp_log, SECURITY_DIRECTION_UPLINK);
rrc.init(&phy, &mac, &rlc, &pdcp, &nas, &usim, &mac, &rrc_log);
rrc.set_ue_category(args->expert.ue_cateogry);
nas.init(&usim, &rrc, &gw, &nas_log);
gw.init(&pdcp, &rrc, this, &gw_log);
usim.init(&args->usim, &usim_log);
started = true;
return true;
}
void ue::pregenerate_signals(bool enable)
{
phy.enable_pregen_signals(enable);
}
void ue::test_con_restablishment() {
rrc.test_con_restablishment();
}
void ue::stop()
{
if(started)
{
usim.stop();
nas.stop();
rrc.stop();
// Caution here order of stop is very important to avoid locks
// Stop RLC and PDCP before GW to avoid locking on queue
rlc.stop();
pdcp.stop();
gw.stop();
// PHY must be stopped before radio otherwise it will lock on rf_recv()
mac.stop();
phy.stop();
radio.stop();
usleep(1e5);
if(args->pcap.enable)
{
mac_pcap.close();
}
if(args->trace.enable)
{
phy.write_trace(args->trace.phy_filename);
radio.write_trace(args->trace.radio_filename);
}
started = false;
}
}
bool ue::is_attached()
{
return (EMM_STATE_REGISTERED == nas.get_state());
}
void ue::start_plot() {
phy.start_plot();
}
bool ue::get_metrics(ue_metrics_t &m)
{
m.rf = rf_metrics;
bzero(&rf_metrics, sizeof(rf_metrics_t));
rf_metrics.rf_error = false; // Reset error flag
if(EMM_STATE_REGISTERED == nas.get_state()) {
if(RRC_STATE_RRC_CONNECTED == rrc.get_state()) {
phy.get_metrics(m.phy);
mac.get_metrics(m.mac);
rlc.get_metrics(m.rlc);
gw.get_metrics(m.gw);
return true;
}
}
return false;
}
void ue::rf_msg(srslte_rf_error_t error)
{
ue *u = ue::get_instance();
u->handle_rf_msg(error);
}
void ue::handle_rf_msg(srslte_rf_error_t error)
{
if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OVERFLOW) {
rf_metrics.rf_o++;
rf_metrics.rf_error = true;
rf_log.warning("Overflow\n");
}else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_UNDERFLOW) {
rf_metrics.rf_u++;
rf_metrics.rf_error = true;
rf_log.warning("Underflow\n");
} else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_LATE) {
rf_metrics.rf_l++;
rf_metrics.rf_error = true;
rf_log.warning("Late\n");
} else if (error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OTHER) {
std::string str(error.msg);
str.erase(std::remove(str.begin(), str.end(), '\n'), str.end());
str.erase(std::remove(str.begin(), str.end(), '\r'), str.end());
str.push_back('\n');
rf_log.info(str);
}
}
srslte::LOG_LEVEL_ENUM ue::level(std::string l)
{
std::transform(l.begin(), l.end(), l.begin(), ::toupper);
if("NONE" == l){
return srslte::LOG_LEVEL_NONE;
}else if("ERROR" == l){
return srslte::LOG_LEVEL_ERROR;
}else if("WARNING" == l){
return srslte::LOG_LEVEL_WARNING;
}else if("INFO" == l){
return srslte::LOG_LEVEL_INFO;
}else if("DEBUG" == l){
return srslte::LOG_LEVEL_DEBUG;
}else{
return srslte::LOG_LEVEL_NONE;
}
}
} // namespace srsue