osmo-asf4-dfu/hpl/dmac/hpl_dmac.c

263 lines
8.5 KiB
C

/**
* \file
*
* \brief Generic DMAC related functionality.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include <hpl_dma.h>
#include <utils_assert.h>
#include <utils.h>
#include <hpl_dmac_config.h>
#include <utils_repeat_macro.h>
#if CONF_DMAC_ENABLE
/* Section containing first descriptors for all DMAC channels */
COMPILER_ALIGNED(16)
DmacDescriptor _descriptor_section[DMAC_CH_NUM];
/* Section containing current descriptors for all DMAC channels */
COMPILER_ALIGNED(16)
DmacDescriptor _write_back_section[DMAC_CH_NUM];
/* Array containing callbacks for DMAC channels */
static struct _dma_resource _resources[DMAC_CH_NUM];
/* DMAC interrupt handler */
static void _dmac_handler(void);
/* This macro DMAC configuration */
#define DMAC_CHANNEL_CFG(i, n) \
{(CONF_DMAC_RUNSTDBY_##n << DMAC_CHCTRLA_RUNSTDBY_Pos) | DMAC_CHCTRLA_TRIGACT(CONF_DMAC_TRIGACT_##n) \
| DMAC_CHCTRLA_TRIGSRC(CONF_DMAC_TRIGSRC_##n), \
DMAC_CHPRILVL_PRILVL(CONF_DMAC_LVL_##n), \
(CONF_DMAC_EVIE_##n << DMAC_CHEVCTRL_EVIE_Pos) | (CONF_DMAC_EVOE_##n << DMAC_CHEVCTRL_EVOE_Pos) \
| (CONF_DMAC_EVACT_##n << DMAC_CHEVCTRL_EVACT_Pos), \
DMAC_BTCTRL_STEPSIZE(CONF_DMAC_STEPSIZE_##n) | (CONF_DMAC_STEPSEL_##n << DMAC_BTCTRL_STEPSEL_Pos) \
| (CONF_DMAC_DSTINC_##n << DMAC_BTCTRL_DSTINC_Pos) | (CONF_DMAC_SRCINC_##n << DMAC_BTCTRL_SRCINC_Pos) \
| DMAC_BTCTRL_BEATSIZE(CONF_DMAC_BEATSIZE_##n) | DMAC_BTCTRL_BLOCKACT(CONF_DMAC_BLOCKACT_##n) \
| DMAC_BTCTRL_EVOSEL(CONF_DMAC_EVOSEL_##n)},
/* DMAC channel configuration */
struct dmac_channel_cfg {
uint32_t ctrla;
uint8_t prilvl;
uint8_t evctrl;
uint16_t btctrl;
};
/* DMAC channel configurations */
const static struct dmac_channel_cfg _cfgs[] = {REPEAT_MACRO(DMAC_CHANNEL_CFG, i, DMAC_CH_NUM)};
/**
* \brief Initialize DMAC
*/
int32_t _dma_init(void)
{
uint8_t i;
hri_dmac_clear_CTRL_DMAENABLE_bit(DMAC);
hri_dmac_clear_CRCCTRL_reg(DMAC, DMAC_CRCCTRL_CRCSRC_Msk);
hri_dmac_set_CTRL_SWRST_bit(DMAC);
while (hri_dmac_get_CTRL_SWRST_bit(DMAC))
;
hri_dmac_write_CTRL_reg(DMAC,
(CONF_DMAC_LVLEN0 << DMAC_CTRL_LVLEN0_Pos) | (CONF_DMAC_LVLEN1 << DMAC_CTRL_LVLEN1_Pos)
| (CONF_DMAC_LVLEN2 << DMAC_CTRL_LVLEN2_Pos)
| (CONF_DMAC_LVLEN3 << DMAC_CTRL_LVLEN3_Pos));
hri_dmac_write_DBGCTRL_DBGRUN_bit(DMAC, CONF_DMAC_DBGRUN);
hri_dmac_write_PRICTRL0_reg(
DMAC,
DMAC_PRICTRL0_LVLPRI0(CONF_DMAC_LVLPRI0) | DMAC_PRICTRL0_LVLPRI1(CONF_DMAC_LVLPRI1)
| DMAC_PRICTRL0_LVLPRI2(CONF_DMAC_LVLPRI2) | DMAC_PRICTRL0_LVLPRI3(CONF_DMAC_LVLPRI3)
| (CONF_DMAC_RRLVLEN0 << DMAC_PRICTRL0_RRLVLEN0_Pos) | (CONF_DMAC_RRLVLEN1 << DMAC_PRICTRL0_RRLVLEN1_Pos)
| (CONF_DMAC_RRLVLEN2 << DMAC_PRICTRL0_RRLVLEN2_Pos) | (CONF_DMAC_RRLVLEN3 << DMAC_PRICTRL0_RRLVLEN3_Pos));
hri_dmac_write_BASEADDR_reg(DMAC, (uint32_t)_descriptor_section);
hri_dmac_write_WRBADDR_reg(DMAC, (uint32_t)_write_back_section);
for (i = 0; i < DMAC_CH_NUM; i++) {
hri_dmac_write_CHCTRLA_reg(DMAC, i, _cfgs[i].ctrla);
hri_dmac_write_CHPRILVL_reg(DMAC, i, _cfgs[i].prilvl);
hri_dmac_write_CHEVCTRL_reg(DMAC, i, _cfgs[i].evctrl);
hri_dmacdescriptor_write_BTCTRL_reg(&_descriptor_section[i], _cfgs[i].btctrl);
}
for (i = 0; i < 5; i++) {
NVIC_DisableIRQ(DMAC_0_IRQn + i);
NVIC_ClearPendingIRQ(DMAC_0_IRQn + i);
NVIC_EnableIRQ(DMAC_0_IRQn + i);
}
hri_dmac_set_CTRL_DMAENABLE_bit(DMAC);
return ERR_NONE;
}
/**
* \brief Enable/disable DMA interrupt
*/
void _dma_set_irq_state(const uint8_t channel, const enum _dma_callback_type type, const bool state)
{
if (DMA_TRANSFER_COMPLETE_CB == type) {
hri_dmac_write_CHINTEN_TCMPL_bit(DMAC, channel, state);
} else if (DMA_TRANSFER_ERROR_CB == type) {
hri_dmac_write_CHINTEN_TERR_bit(DMAC, channel, state);
}
}
int32_t _dma_set_destination_address(const uint8_t channel, const void *const dst)
{
hri_dmacdescriptor_write_DSTADDR_reg(&_descriptor_section[channel], (uint32_t)dst);
return ERR_NONE;
}
int32_t _dma_set_source_address(const uint8_t channel, const void *const src)
{
hri_dmacdescriptor_write_SRCADDR_reg(&_descriptor_section[channel], (uint32_t)src);
return ERR_NONE;
}
int32_t _dma_set_next_descriptor(const uint8_t current_channel, const uint8_t next_channel)
{
hri_dmacdescriptor_write_DESCADDR_reg(&_descriptor_section[current_channel],
(uint32_t)&_descriptor_section[next_channel]);
return ERR_NONE;
}
int32_t _dma_srcinc_enable(const uint8_t channel, const bool enable)
{
hri_dmacdescriptor_write_BTCTRL_SRCINC_bit(&_descriptor_section[channel], enable);
return ERR_NONE;
}
int32_t _dma_set_data_amount(const uint8_t channel, const uint32_t amount)
{
uint32_t address = hri_dmacdescriptor_read_DSTADDR_reg(&_descriptor_section[channel]);
uint8_t beat_size = hri_dmacdescriptor_read_BTCTRL_BEATSIZE_bf(&_descriptor_section[channel]);
if (hri_dmacdescriptor_get_BTCTRL_DSTINC_bit(&_descriptor_section[channel])) {
hri_dmacdescriptor_write_DSTADDR_reg(&_descriptor_section[channel], address + amount * (1 << beat_size));
}
address = hri_dmacdescriptor_read_SRCADDR_reg(&_descriptor_section[channel]);
if (hri_dmacdescriptor_get_BTCTRL_SRCINC_bit(&_descriptor_section[channel])) {
hri_dmacdescriptor_write_SRCADDR_reg(&_descriptor_section[channel], address + amount * (1 << beat_size));
}
hri_dmacdescriptor_write_BTCNT_reg(&_descriptor_section[channel], amount);
return ERR_NONE;
}
int32_t _dma_enable_transaction(const uint8_t channel, const bool software_trigger)
{
hri_dmacdescriptor_set_BTCTRL_VALID_bit(&_descriptor_section[channel]);
hri_dmac_set_CHCTRLA_ENABLE_bit(DMAC, channel);
if (software_trigger) {
hri_dmac_set_SWTRIGCTRL_reg(DMAC, 1 << channel);
}
return ERR_NONE;
}
int32_t _dma_get_channel_resource(struct _dma_resource **resource, const uint8_t channel)
{
*resource = &_resources[channel];
return ERR_NONE;
}
int32_t _dma_dstinc_enable(const uint8_t channel, const bool enable)
{
hri_dmacdescriptor_write_BTCTRL_DSTINC_bit(&_descriptor_section[channel], enable);
return ERR_NONE;
}
/**
* \internal DMAC interrupt handler
*/
static void _dmac_handler(void)
{
uint8_t channel = hri_dmac_get_INTPEND_reg(DMAC, DMAC_INTPEND_ID_Msk);
struct _dma_resource *tmp_resource = &_resources[channel];
if (hri_dmac_get_CHINTFLAG_TERR_bit(DMAC, channel)) {
hri_dmac_clear_CHINTFLAG_TERR_bit(DMAC, channel);
tmp_resource->dma_cb.error(tmp_resource);
} else if (hri_dmac_get_CHINTFLAG_TCMPL_bit(DMAC, channel)) {
hri_dmac_clear_CHINTFLAG_TCMPL_bit(DMAC, channel);
tmp_resource->dma_cb.transfer_done(tmp_resource);
}
}
/**
* \brief DMAC interrupt handler
*/
void DMAC_0_Handler(void)
{
_dmac_handler();
}
/**
* \brief DMAC interrupt handler
*/
void DMAC_1_Handler(void)
{
_dmac_handler();
}
/**
* \brief DMAC interrupt handler
*/
void DMAC_2_Handler(void)
{
_dmac_handler();
}
/**
* \brief DMAC interrupt handler
*/
void DMAC_3_Handler(void)
{
_dmac_handler();
}
/**
* \brief DMAC interrupt handler
*/
void DMAC_4_Handler(void)
{
_dmac_handler();
}
#endif /* CONF_DMAC_ENABLE */