osmo-asf4-dfu/hpl/nvmctrl/hpl_nvmctrl.c

696 lines
21 KiB
C
Raw Normal View History

/**
* \file
*
* \brief Non-Volatile Memory Controller
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include <hpl_flash.h>
#include <hpl_user_area.h>
#include <string.h>
#include <utils_assert.h>
#include <utils.h>
#include <hpl_nvmctrl_config.h>
#define NVM_MEMORY ((volatile uint32_t *)FLASH_ADDR)
#define NVMCTRL_BLOCK_PAGES (NVMCTRL_BLOCK_SIZE / NVMCTRL_PAGE_SIZE)
#define NVMCTRL_REGIONS_NUM 32
#define NVMCTRL_INTFLAG_ERR \
(NVMCTRL_INTFLAG_ADDRE | NVMCTRL_INTFLAG_PROGE | NVMCTRL_INTFLAG_LOCKE | NVMCTRL_INTFLAG_ECCSE \
| NVMCTRL_INTFLAG_NVME | NVMCTRL_INTFLAG_SEESOVF)
/**
* \brief NVM configuration type
*/
struct nvm_configuration {
hri_nvmctrl_ctrlb_reg_t ctrla; /*!< Control B Register */
};
/**
* \brief Array of NVM configurations
*/
static struct nvm_configuration _nvm
= {(CONF_NVM_CACHE0 << NVMCTRL_CTRLA_CACHEDIS0_Pos) | (CONF_NVM_CACHE1 << NVMCTRL_CTRLA_CACHEDIS1_Pos)
| (NVMCTRL_CTRLA_PRM(CONF_NVM_SLEEPPRM))};
/*!< Pointer to hpl device */
static struct _flash_device *_nvm_dev = NULL;
static void _flash_erase_block(void *const hw, const uint32_t dst_addr);
static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size);
/**
* \brief Initialize NVM
*/
int32_t _flash_init(struct _flash_device *const device, void *const hw)
{
uint32_t ctrla;
ASSERT(device && (hw == NVMCTRL));
device->hw = hw;
ctrla = hri_nvmctrl_read_CTRLA_reg(hw);
ctrla &= ~(NVMCTRL_CTRLA_CACHEDIS0 | NVMCTRL_CTRLA_CACHEDIS1 | NVMCTRL_CTRLA_PRM_Msk);
ctrla |= _nvm.ctrla;
hri_nvmctrl_write_CTRLA_reg(hw, ctrla);
_nvm_dev = device;
NVIC_DisableIRQ(NVMCTRL_0_IRQn);
NVIC_DisableIRQ(NVMCTRL_1_IRQn);
NVIC_ClearPendingIRQ(NVMCTRL_0_IRQn);
NVIC_ClearPendingIRQ(NVMCTRL_1_IRQn);
NVIC_EnableIRQ(NVMCTRL_0_IRQn);
NVIC_EnableIRQ(NVMCTRL_1_IRQn);
return ERR_NONE;
}
/**
* \brief De-initialize NVM
*/
void _flash_deinit(struct _flash_device *const device)
{
device->hw = NULL;
NVIC_DisableIRQ(NVMCTRL_0_IRQn);
NVIC_DisableIRQ(NVMCTRL_1_IRQn);
}
/**
* \brief Get the flash page size.
*/
uint32_t _flash_get_page_size(struct _flash_device *const device)
{
(void)device;
return (uint32_t)NVMCTRL_PAGE_SIZE;
}
/**
* \brief Get the numbers of flash page.
*/
uint32_t _flash_get_total_pages(struct _flash_device *const device)
{
(void)device;
return (uint32_t)hri_nvmctrl_read_PARAM_NVMP_bf(device->hw);
}
/**
* \brief Get the number of wait states for read and write operations.
*/
uint8_t _flash_get_wait_state(struct _flash_device *const device)
{
return hri_nvmctrl_get_CTRLA_reg(device->hw, NVMCTRL_CTRLA_RWS_Msk);
}
/**
* \brief Set the number of wait states for read and write operations.
*/
void _flash_set_wait_state(struct _flash_device *const device, uint8_t state)
{
hri_nvmctrl_write_CTRLA_RWS_bf(device->hw, state);
}
/**
* \brief Reads a number of bytes to a page in the internal Flash.
*/
void _flash_read(struct _flash_device *const device, const uint32_t src_addr, uint8_t *buffer, uint32_t length)
{
uint8_t *nvm_addr = (uint8_t *)NVM_MEMORY;
uint32_t i;
/* Check if the module is busy */
while (!hri_nvmctrl_get_STATUS_READY_bit(device->hw)) {
/* Wait until this module isn't busy */
}
for (i = 0; i < length; i++) {
buffer[i] = nvm_addr[src_addr + i];
}
}
/**
* \brief Writes a number of bytes to a page in the internal Flash.
*/
void _flash_write(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
{
uint8_t tmp_buffer[NVMCTRL_BLOCK_PAGES][NVMCTRL_PAGE_SIZE];
uint32_t block_start_addr, block_end_addr;
uint32_t i, j, k;
uint32_t wr_start_addr = dst_addr;
do {
block_start_addr = wr_start_addr & ~(NVMCTRL_BLOCK_SIZE - 1);
block_end_addr = block_start_addr + NVMCTRL_BLOCK_SIZE - 1;
/* store the erase data into temp buffer before write */
for (i = 0; i < NVMCTRL_BLOCK_PAGES; i++) {
_flash_read(device, block_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
}
/* temp buffer update */
j = (wr_start_addr - block_start_addr) / NVMCTRL_PAGE_SIZE;
k = wr_start_addr - block_start_addr - j * NVMCTRL_PAGE_SIZE;
while ((wr_start_addr <= block_end_addr) && (length > 0)) {
tmp_buffer[j][k] = *buffer;
k = (k + 1) % NVMCTRL_PAGE_SIZE;
if (0 == k) {
j++;
}
wr_start_addr++;
buffer++;
length--;
}
/* erase row before write */
_flash_erase_block(device->hw, block_start_addr);
/* write buffer to flash */
for (i = 0; i < NVMCTRL_BLOCK_PAGES; i++) {
_flash_program(device->hw, block_start_addr + i * NVMCTRL_PAGE_SIZE, tmp_buffer[i], NVMCTRL_PAGE_SIZE);
}
} while (block_end_addr < (wr_start_addr + length - 1));
}
/**
* \brief Appends a number of bytes in the internal Flash.
*/
void _flash_append(struct _flash_device *const device, const uint32_t dst_addr, uint8_t *buffer, uint32_t length)
{
uint32_t page_start_addr = dst_addr & ~(NVMCTRL_PAGE_SIZE - 1);
uint32_t size;
uint32_t offset = 0;
if (dst_addr != page_start_addr) {
/* Need to write some data to the end of a page */
size = min(length, NVMCTRL_PAGE_SIZE - (dst_addr - page_start_addr));
_flash_program(device->hw, dst_addr, buffer, size);
page_start_addr += NVMCTRL_PAGE_SIZE;
offset += size;
}
while (offset < length) {
size = min(length - offset, NVMCTRL_PAGE_SIZE);
_flash_program(device->hw, page_start_addr, buffer + offset, size);
page_start_addr += NVMCTRL_PAGE_SIZE;
offset += size;
}
}
/**
* \brief Execute erase in the internal flash
*/
void _flash_erase(struct _flash_device *const device, uint32_t dst_addr, uint32_t page_nums)
{
uint8_t tmp_buffer[NVMCTRL_PAGE_SIZE];
uint32_t block_start_addr;
uint32_t i;
block_start_addr = dst_addr & ~(NVMCTRL_BLOCK_SIZE - 1);
memset(tmp_buffer, 0xFF, NVMCTRL_PAGE_SIZE);
/* when address is not aligned with block start address */
if (dst_addr != block_start_addr) {
block_start_addr += NVMCTRL_BLOCK_SIZE;
for (i = 0; i < NVMCTRL_BLOCK_PAGES - 1; i++) {
_flash_write(device, dst_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
if (--page_nums == 0) {
return;
}
dst_addr += NVMCTRL_PAGE_SIZE;
if (dst_addr == block_start_addr) {
break;
}
}
}
while (page_nums >= NVMCTRL_BLOCK_PAGES) {
_flash_erase_block(device->hw, block_start_addr);
block_start_addr += NVMCTRL_BLOCK_SIZE;
page_nums -= NVMCTRL_BLOCK_PAGES;
}
if (page_nums != 0) {
for (i = 0; i < page_nums; i++) {
_flash_write(device, block_start_addr, tmp_buffer, NVMCTRL_PAGE_SIZE);
block_start_addr += NVMCTRL_PAGE_SIZE;
}
}
}
/**
* \brief Execute lock in the internal flash
*/
int32_t _flash_lock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
{
uint32_t region_pages;
uint32_t block_start_addr;
region_pages = (uint32_t)FLASH_SIZE / (NVMCTRL_REGIONS_NUM * NVMCTRL_PAGE_SIZE);
block_start_addr = dst_addr & ~(NVMCTRL_BLOCK_SIZE - 1);
if ((page_nums != region_pages) || (dst_addr != block_start_addr)) {
return ERR_INVALID_ARG;
}
while (!hri_nvmctrl_get_STATUS_READY_bit(device->hw)) {
/* Wait until this module isn't busy */
}
hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr);
hri_nvmctrl_write_CTRLB_reg(device->hw, NVMCTRL_CTRLB_CMD_LR | NVMCTRL_CTRLB_CMDEX_KEY);
return (int32_t)FLASH_SIZE / (NVMCTRL_REGIONS_NUM * NVMCTRL_PAGE_SIZE);
}
/**
* \brief Execute unlock in the internal flash
*/
int32_t _flash_unlock(struct _flash_device *const device, const uint32_t dst_addr, uint32_t page_nums)
{
uint32_t region_pages;
uint32_t block_start_addr;
region_pages = (uint32_t)FLASH_SIZE / (NVMCTRL_REGIONS_NUM * NVMCTRL_PAGE_SIZE);
block_start_addr = dst_addr & ~(NVMCTRL_BLOCK_SIZE - 1);
if ((page_nums != region_pages) || (dst_addr != block_start_addr)) {
return ERR_INVALID_ARG;
}
while (!hri_nvmctrl_get_STATUS_READY_bit(device->hw)) {
/* Wait until this module isn't busy */
}
hri_nvmctrl_write_ADDR_reg(device->hw, dst_addr);
hri_nvmctrl_write_CTRLB_reg(device->hw, NVMCTRL_CTRLB_CMD_UR | NVMCTRL_CTRLB_CMDEX_KEY);
return (int32_t)FLASH_SIZE / (NVMCTRL_REGIONS_NUM * NVMCTRL_PAGE_SIZE);
}
/**
* \brief check whether the region which is pointed by address
*/
bool _flash_is_locked(struct _flash_device *const device, const uint32_t dst_addr)
{
uint16_t region_id;
/* Get region for given page */
region_id = dst_addr / (FLASH_SIZE / NVMCTRL_REGIONS_NUM);
return !(hri_nvmctrl_get_RUNLOCK_reg(device->hw, 1 << region_id));
}
/**
* \brief Enable/disable Flash interrupt
*/
void _flash_set_irq_state(struct _flash_device *const device, const enum _flash_cb_type type, const bool state)
{
ASSERT(device);
if (FLASH_DEVICE_CB_READY == type) {
hri_nvmctrl_write_INTEN_DONE_bit(device->hw, state);
} else if (FLASH_DEVICE_CB_ERROR == type) {
if (state) {
hri_nvmctrl_write_INTEN_reg(device->hw, NVMCTRL_INTFLAG_ERR);
} else {
hri_nvmctrl_clear_INTEN_reg(device->hw, NVMCTRL_INTFLAG_ERR);
}
}
}
/**
* \internal erase a row in flash
* \param[in] hw The pointer to hardware instance
* \param[in] dst_addr Destination page address to erase
*/
static void _flash_erase_block(void *const hw, const uint32_t dst_addr)
{
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
/* Set address and command */
hri_nvmctrl_write_ADDR_reg(hw, dst_addr);
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_EB | NVMCTRL_CTRLB_CMDEX_KEY);
}
/**
* \internal write a page in flash
* \param[in] hw The pointer to hardware instance
* \param[in] dst_addr Destination page address to write
* \param[in] buffer Pointer to buffer where the data to
* write is stored
* \param[in] size The size of data to write to a page
*/
static void _flash_program(void *const hw, const uint32_t dst_addr, const uint8_t *buffer, const uint16_t size)
{
uint32_t *ptr_read = (uint32_t *)buffer;
uint32_t nvm_address = dst_addr / 4;
uint16_t i;
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_PBC | NVMCTRL_CTRLB_CMDEX_KEY);
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
/* Writes to the page buffer must be 32 bits, perform manual copy
* to ensure alignment */
for (i = 0; i < size; i += 4) {
NVM_MEMORY[nvm_address++] = *ptr_read;
ptr_read++;
}
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
hri_nvmctrl_write_ADDR_reg(hw, dst_addr);
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_WP | NVMCTRL_CTRLB_CMDEX_KEY);
}
/**
* \internal NVM interrupt handler
*
* \param[in] p The pointer to interrupt parameter
*/
static void _nvm_interrupt_handler(struct _flash_device *device)
{
void *const hw = device->hw;
if (hri_nvmctrl_get_INTFLAG_DONE_bit(hw)) {
hri_nvmctrl_clear_INTFLAG_DONE_bit(hw);
if (NULL != device->flash_cb.ready_cb) {
device->flash_cb.ready_cb(device);
}
} else if (hri_nvmctrl_read_INTFLAG_reg(hw) && ~NVMCTRL_INTFLAG_ERR) {
hri_nvmctrl_clear_INTFLAG_reg(hw, NVMCTRL_INTFLAG_ERR);
if (NULL != device->flash_cb.error_cb) {
device->flash_cb.error_cb(device);
}
}
}
/**
* \internal NVM 0 interrupt handler
*/
void NVMCTRL_0_Handler(void)
{
_nvm_interrupt_handler(_nvm_dev);
}
/**
* \internal NVM 1 interrupt handler
*/
void NVMCTRL_1_Handler(void)
{
_nvm_interrupt_handler(_nvm_dev);
}
/*
The NVM User Row contains calibration data that are automatically read at device
power on.
The NVM User Row can be read at address 0x804000.
The first eight 32-bit words (32 Bytes) of the Non Volatile Memory (NVM) User
Page contain calibration data that are automatically read at device power-on.
The remaining 480 Bytes can be used for storing custom parameters.
*/
#ifndef _NVM_USER_ROW_BASE
#define _NVM_USER_ROW_BASE 0x804000
#endif
#define _NVM_USER_ROW_N_BITS 4096
#define _NVM_USER_ROW_N_BYTES (_NVM_USER_ROW_N_BITS / 8)
#define _NVM_USER_ROW_END (((uint8_t *)_NVM_USER_ROW_BASE) + _NVM_USER_ROW_N_BYTES - 1)
#define _IS_NVM_USER_ROW(b) \
(((uint8_t *)(b) >= (uint8_t *)(_NVM_USER_ROW_BASE)) && ((uint8_t *)(b) <= (uint8_t *)(_NVM_USER_ROW_END)))
#define _IN_NVM_USER_ROW(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_USER_ROW_END))
/*
The NVM Software Calibration Area can be read at address 0x00800080.
The NVM Software Calibration Area can not be written.
*/
#ifndef _NVM_SW_CALIB_AREA_BASE
#define _NVM_SW_CALIB_AREA_BASE 0x00800080
#endif
#define _NVM_SW_CALIB_AREA_N_BITS 45
#define _NVM_SW_CALIB_AREA_N_BYTES (_NVM_SW_CALIB_AREA_N_BITS / 8)
#define _NVM_SW_CALIB_AREA_END (((uint8_t *)_NVM_SW_CALIB_AREA_BASE) + _NVM_SW_CALIB_AREA_N_BYTES - 1)
#define _IS_NVM_SW_CALIB_AREA(b) \
(((uint8_t *)(b) >= (uint8_t *)_NVM_SW_CALIB_AREA_BASE) && ((uint8_t *)(b) <= (uint8_t *)_NVM_SW_CALIB_AREA_END))
#define _IN_NVM_SW_CALIB_AREA(b, o) (((uint8_t *)(b) + (o)) <= (uint8_t *)(_NVM_SW_CALIB_AREA_END))
/**
* \internal Read left aligned data bits
* \param[in] base Base address for the data
* \param[in] bit_offset Offset for the bitfield start
* \param[in] n_bits Number of bits in the bitfield
*/
static inline uint32_t _user_area_read_l32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
const uint8_t n_bits)
{
return base[bit_offset >> 5] & ((1 << n_bits) - 1);
}
/**
* \internal Read right aligned data bits
* \param[in] base Base address for the data
* \param[in] bit_offset Offset for the bitfield start
* \param[in] n_bits Number of bits in the bitfield
*/
static inline uint32_t _user_area_read_r32_bits(const volatile uint32_t *base, const uint32_t bit_offset,
const uint8_t n_bits)
{
return (base[bit_offset >> 5] >> (bit_offset & 0x1F)) & ((1 << n_bits) - 1);
}
int32_t _user_area_read(const void *base, const uint32_t offset, uint8_t *buf, uint32_t size)
{
ASSERT(buf);
/** Parameter check. */
if (_IS_NVM_USER_ROW(base)) {
if (!_IN_NVM_USER_ROW(base, offset)) {
return ERR_BAD_ADDRESS;
}
/* Cut off if request too many bytes */
if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
return ERR_INVALID_ARG;
}
} else if (_IS_NVM_SW_CALIB_AREA(base)) {
if (!_IN_NVM_SW_CALIB_AREA(base, offset)) {
return ERR_BAD_ADDRESS;
}
/* Cut off if request too many bytes */
if (!_IN_NVM_SW_CALIB_AREA(base, offset + size - 1)) {
return ERR_INVALID_ARG;
}
} else {
return ERR_UNSUPPORTED_OP;
}
/* Copy data */
memcpy(buf, ((uint8_t *)base) + offset, size);
return ERR_NONE;
}
uint32_t _user_area_read_bits(const void *base, const uint32_t bit_offset, const uint8_t n_bits)
{
volatile uint32_t *mem_base = (volatile uint32_t *)base;
uint32_t l_off, l_bits;
uint32_t r_off, r_bits;
/** Parameter check. */
if (_IS_NVM_USER_ROW(base)) {
ASSERT(_IN_NVM_USER_ROW(base, bit_offset >> 3) && _IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3));
} else if (_IS_NVM_SW_CALIB_AREA(base)) {
ASSERT(_IN_NVM_SW_CALIB_AREA(base, bit_offset >> 3)
&& _IN_NVM_SW_CALIB_AREA(base, (bit_offset + n_bits - 1) >> 3));
} else {
ASSERT(false);
}
/* Since the bitfield can cross 32-bits boundaries,
* left and right bits are read from 32-bit aligned address
* and then combined together. */
l_off = bit_offset & (~(32 - 1));
r_off = l_off + 32;
l_bits = 32 - (bit_offset & (32 - 1));
if (n_bits > l_bits) {
r_bits = n_bits - l_bits;
} else {
l_bits = n_bits;
r_bits = 0;
}
return _user_area_read_r32_bits(mem_base, bit_offset, l_bits)
+ (_user_area_read_l32_bits(mem_base, r_off, r_bits) << l_bits);
}
/** \internal Write 4096-bit user row
* \param[in] _row Pointer to 4096-bit user row data.
*/
static int32_t _user_row_write_exec(const uint32_t *_row)
{
Nvmctrl *hw = NVMCTRL;
uint32_t ctrla = hri_nvmctrl_read_CTRLA_reg(NVMCTRL);
uint32_t i;
/* Denied if Security Bit is set */
if (DSU->STATUSB.bit.PROT) {
return ERR_DENIED;
}
/* Do Save */
/* - Prepare. */
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
hri_nvmctrl_clear_CTRLA_WMODE_bf(NVMCTRL, NVMCTRL_CTRLA_WMODE_Msk);
/* - Erase AUX row. */
hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)_NVM_USER_ROW_BASE);
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_EP | NVMCTRL_CTRLB_CMDEX_KEY);
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
for (i = 0; i < 32; i++) { /* 32 Quad words for User row: 32 * (4 bytes * 4) = 512 bytes */
/* - Page buffer clear & write. */
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_PBC | NVMCTRL_CTRLB_CMDEX_KEY);
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
*(((uint32_t *)NVMCTRL_USER) + i * 4) = _row[i * 4];
*(((uint32_t *)NVMCTRL_USER) + i * 4 + 1) = _row[i * 4 + 1];
*(((uint32_t *)NVMCTRL_USER) + i * 4 + 2) = _row[i * 4 + 2];
*(((uint32_t *)NVMCTRL_USER) + i * 4 + 3) = _row[i * 4 + 3];
/* - Write AUX row. */
hri_nvmctrl_write_ADDR_reg(hw, (hri_nvmctrl_addr_reg_t)(_NVM_USER_ROW_BASE + i * 16));
hri_nvmctrl_write_CTRLB_reg(hw, NVMCTRL_CTRLB_CMD_WQW | NVMCTRL_CTRLB_CMDEX_KEY);
while (!hri_nvmctrl_get_STATUS_READY_bit(hw)) {
/* Wait until this module isn't busy */
}
}
/* Restore CTRLA */
hri_nvmctrl_write_CTRLA_reg(NVMCTRL, ctrla);
return ERR_NONE;
}
int32_t _user_area_write(void *base, const uint32_t offset, const uint8_t *buf, const uint32_t size)
{
uint32_t _row[NVMCTRL_PAGE_SIZE / 4]; /* Copy of user row. */
/** Parameter check. */
if (_IS_NVM_USER_ROW(base)) {
if (!_IN_NVM_USER_ROW(base, offset)) {
return ERR_BAD_ADDRESS;
} else if (!_IN_NVM_USER_ROW(base, offset + size - 1)) {
return ERR_INVALID_ARG;
}
} else if (_IS_NVM_SW_CALIB_AREA(base)) {
return ERR_DENIED;
} else {
return ERR_UNSUPPORTED_OP;
}
memcpy(_row, base, NVMCTRL_PAGE_SIZE); /* Store previous data. */
memcpy((uint8_t *)_row + offset, buf, size); /* Modify with buf data. */
return _user_row_write_exec(_row);
}
int32_t _user_area_write_bits(void *base, const uint32_t bit_offset, const uint32_t bits, const uint8_t n_bits)
{
uint32_t _row[NVMCTRL_PAGE_SIZE / 4]; /* Copy of user row. */
uint32_t l_off, l_bits;
uint32_t r_off, r_bits;
/** Parameter check. */
if (_IS_NVM_USER_ROW(base)) {
if (!_IN_NVM_USER_ROW(base, bit_offset >> 3)) {
return ERR_BAD_ADDRESS;
} else if (!_IN_NVM_USER_ROW(base, (bit_offset + n_bits - 1) >> 3)) {
return ERR_INVALID_ARG;
}
} else if (_IS_NVM_SW_CALIB_AREA(base)) {
return ERR_DENIED;
} else {
return ERR_UNSUPPORTED_OP;
}
/* Since the bitfield can cross 32-bits boundaries,
* left and right bits are splitted for 32-bit aligned address
* and then saved. */
l_off = bit_offset & (~(32 - 1));
r_off = l_off + 32;
l_bits = 32 - (bit_offset & (32 - 1));
if (n_bits > l_bits) {
r_bits = n_bits - l_bits;
} else {
l_bits = n_bits;
r_bits = 0;
}
memcpy(_row, base, NVMCTRL_PAGE_SIZE); /* Store previous data. */
if (l_bits) {
uint32_t l_mask = ((1 << l_bits) - 1) << (bit_offset & (32 - 1));
_row[bit_offset >> 5] &= ~l_mask;
_row[bit_offset >> 5] |= (bits << (bit_offset & (32 - 1))) & l_mask;
}
if (r_bits) {
uint32_t r_mask = (1 << r_bits) - 1;
_row[r_off >> 5] &= ~r_mask;
_row[r_off >> 5] |= bits >> l_bits;
}
return _user_row_write_exec(_row);
}