libopencm3/lib/stm32/f2/rcc.c

445 lines
10 KiB
C

/** @defgroup rcc_file RCC peripheral API
*
* @ingroup peripheral_apis
*
* @section rcc_f2_api_ex Reset and Clock Control API.
*
* @brief <b>libopencm3 STM32F2xx Reset and Clock Control</b>
*
* @author @htmlonly &copy; @endhtmlonly 2013 Frantisek Burian <BuFran at seznam.cz>
*
* @date 18 Jun 2013
*
* This library supports the Reset and Clock Control System in the STM32 series
* of ARM Cortex Microcontrollers by ST Microelectronics.
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2009 Federico Ruiz-Ugalde <memeruiz at gmail dot com>
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2010 Thomas Otto <tommi@viadmin.org>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/cm3/assert.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/flash.h>
/**@{*/
/* Set the default clock frequencies after reset. */
uint32_t rcc_ahb_frequency = 16000000;
uint32_t rcc_apb1_frequency = 16000000;
uint32_t rcc_apb2_frequency = 16000000;
const struct rcc_clock_scale rcc_hse_8mhz_3v3[RCC_CLOCK_3V3_END] = {
{ /* 120MHz */
.pllm = 8,
.plln = 240,
.pllp = 2,
.pllq = 5,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre1 = RCC_CFGR_PPRE_DIV4,
.ppre2 = RCC_CFGR_PPRE_DIV2,
.flash_config = FLASH_ACR_DCEN | FLASH_ACR_ICEN |
FLASH_ACR_LATENCY_3WS,
.apb1_frequency = 30000000,
.apb2_frequency = 60000000,
},
};
void rcc_osc_ready_int_clear(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR |= RCC_CIR_PLLRDYC;
break;
case RCC_HSE:
RCC_CIR |= RCC_CIR_HSERDYC;
break;
case RCC_HSI:
RCC_CIR |= RCC_CIR_HSIRDYC;
break;
case RCC_LSE:
RCC_CIR |= RCC_CIR_LSERDYC;
break;
case RCC_LSI:
RCC_CIR |= RCC_CIR_LSIRDYC;
break;
}
}
void rcc_osc_ready_int_enable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR |= RCC_CIR_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIR |= RCC_CIR_HSERDYIE;
break;
case RCC_HSI:
RCC_CIR |= RCC_CIR_HSIRDYIE;
break;
case RCC_LSE:
RCC_CIR |= RCC_CIR_LSERDYIE;
break;
case RCC_LSI:
RCC_CIR |= RCC_CIR_LSIRDYIE;
break;
}
}
void rcc_osc_ready_int_disable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR &= ~RCC_CIR_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIR &= ~RCC_CIR_HSERDYIE;
break;
case RCC_HSI:
RCC_CIR &= ~RCC_CIR_HSIRDYIE;
break;
case RCC_LSE:
RCC_CIR &= ~RCC_CIR_LSERDYIE;
break;
case RCC_LSI:
RCC_CIR &= ~RCC_CIR_LSIRDYIE;
break;
}
}
int rcc_osc_ready_int_flag(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0);
break;
case RCC_HSE:
return ((RCC_CIR & RCC_CIR_HSERDYF) != 0);
break;
case RCC_HSI:
return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0);
break;
case RCC_LSE:
return ((RCC_CIR & RCC_CIR_LSERDYF) != 0);
break;
case RCC_LSI:
return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0);
break;
}
cm3_assert_not_reached();
}
void rcc_css_int_clear(void)
{
RCC_CIR |= RCC_CIR_CSSC;
}
int rcc_css_int_flag(void)
{
return ((RCC_CIR & RCC_CIR_CSSF) != 0);
}
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return RCC_CR & RCC_CR_PLLRDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_HSI:
return RCC_CR & RCC_CR_HSIRDY;
case RCC_LSE:
return RCC_BDCR & RCC_BDCR_LSERDY;
case RCC_LSI:
return RCC_CSR & RCC_CSR_LSIRDY;
}
return false;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
void rcc_wait_for_sysclk_status(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_PLL);
break;
case RCC_HSE:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_HSE);
break;
case RCC_HSI:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_HSI);
break;
default:
/* Shouldn't be reached. */
break;
}
}
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR |= RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR |= RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR |= RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR |= RCC_CSR_LSION;
break;
}
}
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR &= ~RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR &= ~RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR &= ~RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR &= ~RCC_CSR_LSION;
break;
}
}
void rcc_css_enable(void)
{
RCC_CR |= RCC_CR_CSSON;
}
void rcc_css_disable(void)
{
RCC_CR &= ~RCC_CR_CSSON;
}
void rcc_set_sysclk_source(uint32_t clk)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | clk);
}
void rcc_set_pll_source(uint32_t pllsrc)
{
uint32_t reg32;
reg32 = RCC_PLLCFGR;
reg32 &= ~(1 << 22);
RCC_PLLCFGR = (reg32 | (pllsrc << 22));
}
void rcc_set_ppre2(uint32_t ppre2)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 13) | (1 << 14) | (1 << 15));
RCC_CFGR = (reg32 | (ppre2 << 13));
}
void rcc_set_ppre1(uint32_t ppre1)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 10) | (1 << 11) | (1 << 12));
RCC_CFGR = (reg32 | (ppre1 << 10));
}
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 4) | (1 << 5) | (1 << 6) | (1 << 7));
RCC_CFGR = (reg32 | (hpre << 4));
}
void rcc_set_rtcpre(uint32_t rtcpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 16) | (1 << 17) | (1 << 18) | (1 << 19) | (1 << 20));
RCC_CFGR = (reg32 | (rtcpre << 16));
}
void rcc_set_main_pll_hsi(uint32_t pllm, uint32_t plln, uint32_t pllp,
uint32_t pllq)
{
RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) |
(plln << RCC_PLLCFGR_PLLN_SHIFT) |
(((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) |
(pllq << RCC_PLLCFGR_PLLQ_SHIFT);
}
void rcc_set_main_pll_hse(uint32_t pllm, uint32_t plln, uint32_t pllp,
uint32_t pllq)
{
RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) |
(plln << RCC_PLLCFGR_PLLN_SHIFT) |
(((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) |
RCC_PLLCFGR_PLLSRC |
(pllq << RCC_PLLCFGR_PLLQ_SHIFT);
}
uint32_t rcc_system_clock_source(void)
{
/* Return the clock source which is used as system clock. */
return (RCC_CFGR & 0x000c) >> 2;
}
void rcc_clock_setup_hse_3v3(const struct rcc_clock_scale *clock)
{
/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
rcc_wait_for_osc_ready(RCC_HSI);
/* Select HSI as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_HSI);
/* Enable external high-speed oscillator 8MHz. */
rcc_osc_on(RCC_HSE);
rcc_wait_for_osc_ready(RCC_HSE);
/*
* Set prescalers for AHB, ADC, APB1, APB2.
* Do this before touching the PLL (TODO: why?).
*/
rcc_set_hpre(clock->hpre);
rcc_set_ppre1(clock->ppre1);
rcc_set_ppre2(clock->ppre2);
/* Disable PLL oscillator before changing its configuration. */
rcc_osc_off(RCC_PLL);
/* Configure the PLL oscillator. */
rcc_set_main_pll_hse(clock->pllm, clock->plln,
clock->pllp, clock->pllq);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
/* Configure flash settings. */
flash_set_ws(clock->flash_config);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_PLL);
/* Wait for PLL clock to be selected. */
rcc_wait_for_sysclk_status(RCC_PLL);
/* Set the peripheral clock frequencies used. */
rcc_apb1_frequency = clock->apb1_frequency;
rcc_apb2_frequency = clock->apb2_frequency;
}
void rcc_backupdomain_reset(void)
{
/* Set the backup domain software reset. */
RCC_BDCR |= RCC_BDCR_BDRST;
/* Clear the backup domain software reset. */
RCC_BDCR &= ~RCC_BDCR_BDRST;
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the USART at base specified.
* @param usart Base address of USART to get clock frequency for.
*/
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
{
if (usart == USART1_BASE || usart == USART6_BASE) {
return rcc_apb2_frequency;
} else {
return rcc_apb1_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the Timer at base specified.
* @param timer Base address of TIM to get clock frequency for.
*/
uint32_t rcc_get_timer_clk_freq(uint32_t timer)
{
/* Handle APB1 timer clocks. */
if (timer >= TIM2_BASE && timer <= TIM14_BASE) {
uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK;
return (ppre1 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb1_frequency
: 2 * rcc_apb1_frequency;
} else {
uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK;
return (ppre2 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb2_frequency
: 2 * rcc_apb2_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the I2C device at base specified.
* @param i2c Base address of I2C to get clock frequency for.
*/
uint32_t rcc_get_i2c_clk_freq(uint32_t i2c __attribute__((unused)))
{
return rcc_apb1_frequency;
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the SPI device at base specified.
* @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE).
*/
uint32_t rcc_get_spi_clk_freq(uint32_t spi) {
if (spi == SPI1_BASE) {
return rcc_apb2_frequency;
} else {
return rcc_apb1_frequency;
}
}
/**@}*/