libopencm3/include/libopencm3/cm3/scs.h

346 lines
13 KiB
C

/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2011 Gareth McMullin <gareth@blacksphere.co.nz>
* Copyright (C) 2012 Benjamin Vernoux <titanmkd@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBOPENCM3_CM3_SCS_H
#define LIBOPENCM3_CM3_SCS_H
/*
* All the definition hereafter are generic for CortexMx ARMv7-M
* See ARM document "ARMv7-M Architecture Reference Manual" for more details.
* See also ARM document "ARM Compiler toolchain Developing Software for ARM
* Processors" for details on System Timer/SysTick.
*/
/**
* @defgroup cm_scs Cortex-M System Control Space
* @ingroup CM3_defines
* The System Control Space (SCS) is a memory-mapped 4KB address space that
* provides 32-bit registers for configuration, status reporting and control.
* The SCS registers divide into the following groups:
* - system control and identification
* - the CPUID processor identification space
* - system configuration and status
* - fault reporting
* - a system timer, SysTick
* - a Nested Vectored Interrupt Controller (NVIC)
* - a Protected Memory System Architecture (PMSA)
* - system debug.
* @{
*/
/** @defgroup cm_scs_registers SCS Registers
* @ingroup cm_scs
* @{
*/
/** System Handler Priority 8 bits Registers, SHPR1/2/3.
* Note: 12 8bit Registers
* Note: 3 32bit Registers on CM0, requires word access
*/
#if defined(__ARM_ARCH_6M__)
#define SCS_SHPR32(ipr_id) MMIO32(SCS_BASE + 0xD18 + ((ipr_id) * 4))
#else
#define SCS_SHPR(ipr_id) MMIO8(SCS_BASE + 0xD18 + (ipr_id))
#endif
/**
* Debug Halting Control and Status Register (DHCSR).
*
* Purpose Controls halting debug.
* Usage constraints: The effect of modifying the C_STEP or C_MASKINTS bit when
* the system is running with halting debug enabled is UNPREDICTABLE.
* Halting debug is enabled when C_DEBUGEN is set to 1. The system is running
* when S_HALT is set to 0.
* - When C_DEBUGEN is set to 0, the processor ignores the values of all other
* bits in this register.
* - For more information about the use of DHCSR see Debug stepping on page
* C1-824.
* Configurations Always implemented.
*/
#define SCS_DHCSR MMIO32(SCS_BASE + 0xDF0)
/**
* Debug Core Register Selector Register (DCRSR).
*
* Purpose With the DCRDR, the DCRSR provides debug access to the ARM core
* registers, special-purpose registers, and Floating-point extension
* registers. A write to DCRSR specifies the register to transfer, whether the
* transfer is a read or a write, and starts the transfer.
* Usage constraints: Only accessible in Debug state.
* Configurations Always implemented.
*
*/
#define SCS_DCRSR MMIO32(SCS_BASE + 0xDF4)
/**
* Debug Core Register Data Register (DCRDR)
*
* Purpose With the DCRSR, see Debug Core Register Selector Register, the DCRDR
* provides debug access to the ARM core registers, special-purpose registers,
* and Floating-point extension registers. The DCRDR is the data register for
* these accesses.
* - Used on its own, the DCRDR provides a message passing resource between an
* external debugger and a debug agent running on the processor.
* Note:
* The architecture does not define any handshaking mechanism for this use of
* DCRDR.
* Usage constraints: See Use of DCRSR and DCRDR for constraints that apply to
* particular transfers using the DCRSR and DCRDR.
* Configurations Always implemented.
*
*/
#define SCS_DCRDR MMIO32(SCS_BASE + 0xDF8)
/**
* Debug Exception and Monitor Control Register (DEMCR).
*
* Purpose Manages vector catch behavior and DebugMonitor handling when
* debugging.
* Usage constraints:
* - Bits [23:16] provide DebugMonitor exception control.
* - Bits [15:0] provide Debug state, halting debug, control.
* Configurations Always implemented.
*
*/
#define SCS_DEMCR MMIO32(SCS_BASE + 0xDFC)
/**@}*/
/* Debug Halting Control and Status Register (DHCSR) */
#define SCS_DHCSR_DBGKEY 0xA05F0000
#define SCS_DHCSR_C_DEBUGEN 0x00000001
#define SCS_DHCSR_C_HALT 0x00000002
#define SCS_DHCSR_C_STEP 0x00000004
#define SCS_DHCSR_C_MASKINTS 0x00000008
#define SCS_DHCSR_C_SNAPSTALL 0x00000020
#define SCS_DHCSR_S_REGRDY 0x00010000
#define SCS_DHCSR_S_HALT 0x00020000
#define SCS_DHCSR_S_SLEEP 0x00040000
#define SCS_DHCSR_S_LOCKUP 0x00080000
#define SCS_DHCSR_S_RETIRE_ST 0x01000000
#define SCS_DHCSR_S_RESET_ST 0x02000000
/* Debug Core Register Selector Register (DCRSR) */
#define SCS_DCRSR_REGSEL_MASK 0x0000001F
#define SCS_DCRSR_REGSEL_XPSR 0x00000010
#define SCS_DCRSR_REGSEL_MSP 0x00000011
#define SCS_DCRSR_REGSEL_PSP 0x00000012
/* Debug Exception and Monitor Control Register (DEMCR) */
/* Bits 31:25 - Reserved */
#define SCS_DEMCR_TRCENA (1 << 24)
/* Bits 23:20 - Reserved */
#define SCS_DEMCR_MON_REQ (1 << 19)
#define SCS_DEMCR_MON_STEP (1 << 18)
#define SCS_DEMCR_VC_MON_PEND (1 << 17)
#define SCS_DEMCR_VC_MON_EN (1 << 16)
/* Bits 15:11 - Reserved */
#define SCS_DEMCR_VC_HARDERR (1 << 10)
#define SCS_DEMCR_VC_INTERR (1 << 9)
#define SCS_DEMCR_VC_BUSERR (1 << 8)
#define SCS_DEMCR_VC_STATERR (1 << 7)
#define SCS_DEMCR_VC_CHKERR (1 << 6)
#define SCS_DEMCR_VC_NOCPERR (1 << 5)
#define SCS_DEMCR_VC_MMERR (1 << 4)
/* Bits 3:1 - Reserved */
#define SCS_DEMCR_VC_CORERESET (1 << 0)
/*
* System Control Space (SCS) => System timer register support in the SCS.
* To configure SysTick, load the interval required between SysTick events to
* the SysTick Reload Value register. The timer interrupt, or COUNTFLAG bit in
* the SysTick Control and Status register, is activated on the transition from
* 1 to 0, therefore it activates every n+1 clock ticks. If you require a
* period of 100, write 99 to the SysTick Reload Value register. The SysTick
* Reload Value register supports values between 0x1 and 0x00FFFFFF.
*
* If you want to use SysTick to generate an event at a timed interval, for
* example 1ms, you can use the SysTick Calibration Value Register to scale
* your value for the Reload register. The SysTick Calibration Value Register
* is a read-only register that contains the number of pulses for a period of
* 10ms, in the TENMS field, bits[23:0].
*
* This register also has a SKEW bit. Bit[30] == 1 indicates that the
* calibration for 10ms in the TENMS section is not exactly 10ms due to clock
* frequency. Bit[31] == 1 indicates that the reference clock is not provided.
*/
/*
* SysTick Control and Status Register (CSR).
* Purpose Controls the system timer and provides status data.
* Usage constraints: There are no usage constraints.
* Configurations Always implemented.
*/
#define SCS_SYST_CSR MMIO32(SCS_BASE + 0x10)
/* SysTick Reload Value Register (CVR).
* Purpose Reads or clears the current counter value.
* Usage constraints:
* - Any write to the register clears the register to zero.
* - The counter does not provide read-modify-write protection.
* - Unsupported bits are read as zero
* Configurations Always implemented.
*/
#define CM_SCS_SYST_RVR MMIO32(SCS_BASE + 0x14)
/* SysTick Current Value Register (RVR).
* Purpose Holds the reload value of the SYST_CVR.
* Usage constraints There are no usage constraints.
* Configurations Always implemented.
*/
#define CM_SCS_SYST_CVR MMIO32(SCS_BASE + 0x18)
/*
* SysTick Calibration value Register(Read Only) (CALIB)
* Purpose Reads the calibration value and parameters for SysTick.
* Usage constraints: There are no usage constraints.
* Configurations Always implemented.
*/
#define CM_SCS_SYST_CALIB MMIO32(SCS_BASE + 0x1C)
/* --- SCS_SYST_CSR values ----------------------------------------------- */
/* Counter is operating. */
#define SCS_SYST_CSR_ENABLE (BIT0)
/* Count to 0 changes the SysTick exception status to pending. */
#define SCS_SYST_CSR_TICKINT (BIT1)
/* SysTick uses the processor clock. */
#define SCS_SYST_CSR_CLKSOURCE (BIT2)
/*
* Indicates whether the counter has counted to 0 since the last read of this
* register:
* 0 = Timer has not counted to 0
* 1 = Timer has counted to 0.
*/
#define SCS_SYST_CSR_COUNTFLAG (BIT16)
/* --- CM_SCS_SYST_RVR values ---------------------------------------------- */
/* Bit 0 to 23 => RELOAD The value to load into the SYST_CVR when the counter
* reaches 0.
*/
/* Bit 24 to 31 are Reserved */
/* --- CM_SCS_SYST_CVR values ---------------------------------------------- */
/* Bit0 to 31 => Reads or clears the current counter value. */
/* --- CM_SCS_SYST_CALIB values -------------------------------------------- */
/*
* Bit0 to 23 => TENMS Optionally, holds a reload value to be used for 10ms
* (100Hz) timing, subject to system clock skew errors. If this field is zero,
* the calibration value is not known.
*/
#define SCS_SYST_SYST_CALIB_TENMS_MASK (BIT24-1)
/*
* Bit30 => SKEW Indicates whether the 10ms calibration value is exact:
* 0 = 10ms calibration value is exact.
* 1 = 10ms calibration value is inexact, because of the clock frequency
*/
#define SCS_SYST_SYST_CALIB_VALUE_INEXACT (BIT30)
/*
* Bit31 => NOREF Indicates whether the IMPLEMENTATION DEFINED reference clock
* is implemented:
* 0 = The reference clock is implemented.
* 1 = The reference clock is not implemented.
* When this bit is 1, the CLKSOURCE bit of the SYST_CSR register is forced to
* 1 and cannot be cleared to 0.
*/
#define SCS_SYST_SYST_CALIB_REF_NOT_IMPLEMENTED (BIT31)
/*
* System Control Space (SCS) => Data Watchpoint and Trace (DWT).
* See "ARMv7-M Architecture Reference Manual"
* (https://github.com/libopencm3/libopencm3-archive/blob/master/arm/
* ARMv7-M_ARM.pdf)
* The DWT is an optional debug unit that provides watchpoints, data tracing,
* and system profiling for the processor.
*/
/*
* DWT Control register
* Purpose Provides configuration and status information for the DWT block, and
* used to control features of the block
* Usage constraints: There are no usage constraints.
* Configurations Always implemented.
*/
#define SCS_DWT_CTRL MMIO32(DWT_BASE + 0x00)
/*
* DWT_CYCCNT register
* Cycle Count Register (Shows or sets the value of the processor cycle
* counter, CYCCNT)
* When enabled, CYCCNT increments on each processor clock cycle. On overflow,
* CYCCNT wraps to zero.
*
* Purpose Shows or sets the value of the processor cycle counter, CYCCNT.
* Usage constraints: The DWT unit suspends CYCCNT counting when the processor
* is in Debug state.
* Configurations Implemented: only when DWT_CTRL.NOCYCCNT is RAZ, see Control
* register, DWT_CTRL.
* When DWT_CTRL.NOCYCCNT is RAO no cycle counter is implemented and this
* register is UNK/SBZP.
*/
#define SCS_DWT_CYCCNT MMIO32(DWT_BASE + 0x04)
/* DWT_CPICNT register
* Purpose Counts additional cycles required to execute multi-cycle
* instructions and instruction fetch stalls.
* Usage constraints: The counter initializes to 0 when software enables its
* counter overflow event by
* setting the DWT_CTRL.CPIEVTENA bit to 1.
* Configurations Implemented: only when DWT_CTRL.NOPRFCNT is RAZ, see Control
* register, DWT_CTRL.
* If DWT_CTRL.NOPRFCNT is RAO, indicating that the implementation does not
* include the profiling counters, this register is UNK/SBZP.
*/
#define SCS_DWT_CPICNT MMIO32(DWT_BASE + 0x08)
/* DWT_EXCCNT register */
#define SCS_DWT_EXCCNT MMIO32(DWT_BASE + 0x0C)
/* DWT_EXCCNT register */
#define SCS_DWT_SLEEPCNT MMIO32(DWT_BASE + 0x10)
/* DWT_EXCCNT register */
#define SCS_DWT_LSUCNT MMIO32(DWT_BASE + 0x14)
/* DWT_EXCCNT register */
#define SCS_DWT_FOLDCNT MMIO32(DWT_BASE + 0x18)
/* DWT_PCSR register */
#define SCS_DWT_PCSR MMIO32(DWT_BASE + 0x18)
/* CoreSight Lock Status Register for this peripheral */
#define SCS_DWT_LSR MMIO32(SCS_DWT_BASE + 0xFB4)
/* CoreSight Lock Access Register for this peripheral */
#define SCS_DWT_LAR MMIO32(SCS_DWT_BASE + 0xFB0)
/* --- SCS_DWT_CTRL values ------------------------------------------------- */
/*
* Enables CYCCNT:
* 0 = Disabled, 1 = Enabled
* This bit is UNK/SBZP if the NOCYCCNT bit is RAO.
*/
#define SCS_DWT_CTRL_CYCCNTENA (BIT0)
/* CoreSight Lock Status Register lock status bit */
#define SCS_LSR_SLK (1<<1)
/* CoreSight Lock Status Register lock availability bit */
#define SCS_LSR_SLI (1<<0)
/* CoreSight Lock Access key, common for all */
#define SCS_LAR_KEY 0xC5ACCE55
/**@}*/
#endif