libopencm3/examples/stm32/f1/lisa-m-2/adc_injec_timtrig_irq_4ch/adc_injec_timtrig_irq_4ch.c

231 lines
6.8 KiB
C

/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2010 Thomas Otto <tommi@viadmin.org>
* Copyright (C) 2012 Piotr Esden-Tempski <piotr@esden.net>
* Copyright (C) 2012 Stephen Dwyer <dwyer.sc@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/stm32/f1/rcc.h>
#include <libopencm3/stm32/f1/flash.h>
#include <libopencm3/stm32/f1/gpio.h>
#include <libopencm3/stm32/f1/adc.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/timer.h>
#include <libopencm3/cm3/nvic.h>
volatile u16 temperature = 0;
volatile u16 v_refint = 0;
volatile u16 lisam_adc1 = 0;
volatile u16 lisam_adc2 = 0;
u8 channel_array[4]; /* for injected sampling, 4 channels max, for regular, 16 max */
static void usart_setup(void)
{
/* Enable clocks for GPIO port A (for GPIO_USART1_TX) and USART1. */
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN);
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_USART2EN);
/* Setup GPIO pin GPIO_USART1_TX/GPIO9 on GPIO port A for transmit. */
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_USART2_TX);
/* Setup UART parameters. */
usart_set_baudrate(USART2, 115200);
usart_set_databits(USART2, 8);
usart_set_stopbits(USART2, USART_STOPBITS_1);
usart_set_mode(USART2, USART_MODE_TX_RX);
usart_set_parity(USART2, USART_PARITY_NONE);
usart_set_flow_control(USART2, USART_FLOWCONTROL_NONE);
/* Finally enable the USART. */
usart_enable(USART2);
}
static void gpio_setup(void)
{
/* Enable GPIO clocks. */
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN);
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPCEN);
/* Setup the LEDs. */
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, GPIO8);
gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, GPIO15);
/* Setup Lisa/M v2 ADC1,2 on ANALOG1 connector */
gpio_set_mode(GPIOC, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, \
GPIO3 | GPIO0 );
}
static void timer_setup(void)
{
/* Set up the timer TIM2 for injected sampling */
uint32_t timer;
volatile uint32_t *rcc_apbenr;
uint32_t rcc_apb;
timer = TIM2;
rcc_apbenr = &RCC_APB1ENR;
rcc_apb = RCC_APB1ENR_TIM2EN;
rcc_peripheral_enable_clock(rcc_apbenr, rcc_apb);
/* Time Base configuration */
timer_reset(timer);
timer_set_mode(timer, TIM_CR1_CKD_CK_INT,
TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
timer_set_period(timer, 0xFF);
timer_set_prescaler(timer, 0x8);
timer_set_clock_division(timer, 0x0);
/* Generate TRGO on every update. */
timer_set_master_mode(timer, TIM_CR2_MMS_UPDATE);
timer_enable_counter(timer);
}
static void irq_setup(void)
{
/* Enable the adc1_2_isr() routine */
nvic_set_priority(NVIC_ADC1_2_IRQ, 0);
nvic_enable_irq(NVIC_ADC1_2_IRQ);
}
static void adc_setup(void)
{
int i;
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN);
/* Make sure the ADC doesn't run during config. */
adc_off(ADC1);
/* We configure everything for one single timer triggered injected conversion with interrupt generation. */
/* While not needed for a single channel, try out scan mode which does all channels in one sweep and
* generates the interrupt/EOC/JEOC flags set at the end of all channels, not each one.
*/
adc_enable_scan_mode(ADC1);
adc_set_single_conversion_mode(ADC1);
/* We want to start the injected conversion with the TIM2 TRGO */
adc_enable_external_trigger_injected(ADC1,ADC_CR2_JEXTSEL_TIM2_TRGO);
/* Generate the ADC1_2_IRQ */
adc_enable_eoc_interrupt_injected(ADC1);
adc_set_right_aligned(ADC1);
/* We want to read the temperature sensor, so we have to enable it. */
adc_enable_temperature_sensor(ADC1);
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC);
/* Select the channels we want to convert.
* 16=temperature_sensor, 17=Vrefint, 13=ADC1, 10=ADC2
*/
channel_array[0] = 16;
channel_array[1] = 17;
channel_array[2] = 13;
channel_array[3] = 10;
adc_set_injected_sequence(ADC1, 4, channel_array);
adc_power_on(ADC1);
/* Wait for ADC starting up. */
for (i = 0; i < 800000; i++) /* Wait a bit. */
__asm__("nop");
adc_reset_calibration(ADC1);
while ((ADC_CR2(ADC1) & ADC_CR2_RSTCAL) != 0); //added this check
adc_calibration(ADC1);
while ((ADC_CR2(ADC1) & ADC_CR2_CAL) != 0); //added this check
}
static void my_usart_print_int(u32 usart, int value)
{
s8 i;
u8 nr_digits = 0;
char buffer[25];
if (value < 0) {
usart_send_blocking(usart, '-');
value = value * -1;
}
while (value > 0) {
buffer[nr_digits++] = "0123456789"[value % 10];
value /= 10;
}
for (i = (nr_digits - 1); i >= 0; i--) {
usart_send_blocking(usart, buffer[i]);
}
//usart_send_blocking(usart, '\r');
}
int main(void)
{
rcc_clock_setup_in_hse_12mhz_out_72mhz();
gpio_setup();
usart_setup();
timer_setup();
irq_setup();
adc_setup();
gpio_set(GPIOA, GPIO8); /* LED1 off */
gpio_set(GPIOC, GPIO15); /* LED5 off */
/* Send a message on USART1. */
usart_send_blocking(USART2, 's');
usart_send_blocking(USART2, 't');
usart_send_blocking(USART2, 'm');
usart_send_blocking(USART2, '\r');
usart_send_blocking(USART2, '\n');
/* Moved the channel selection and sequence init to adc_setup() */
/* Continously convert and poll the temperature ADC. */
while (1) {
/*
* Since sampling is triggered by the timer and copying the values
* out of the data registers is handled by the interrupt routine,
* we just need to print the values and toggle the LED. It may be useful
* to buffer the adc values in some cases.
*/
my_usart_print_int(USART2, temperature);
usart_send_blocking(USART2, ' ');
my_usart_print_int(USART2, v_refint);
usart_send_blocking(USART2, ' ');
my_usart_print_int(USART2, lisam_adc1);
usart_send_blocking(USART2, ' ');
my_usart_print_int(USART2, lisam_adc2);
usart_send_blocking(USART2, '\r');
gpio_toggle(GPIOA, GPIO8); /* LED2 on */
}
return 0;
}
void adc1_2_isr(void)
{
/* Clear Injected End Of Conversion (JEOC) */
ADC_SR(ADC1) &= ~ADC_SR_JEOC;
temperature = adc_read_injected(ADC1,1);
v_refint = adc_read_injected(ADC1,2);
lisam_adc1 = adc_read_injected(ADC1,3);
lisam_adc2 = adc_read_injected(ADC1,4);
}