/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @brief libopencm3 STM32F0xx Reset and Clock Control * * @version 1.0.0 * * @date 29 Jun 2013 * * This library supports the Reset and Clock Control System in the STM32F0xx * series of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies */ uint32_t rcc_ahb_frequency = 8000000; /* 8MHz after reset */ uint32_t rcc_apb1_frequency = 8000000; /* 8MHz after reset */ /*---------------------------------------------------------------------------*/ /** @brief RCC Clear the Oscillator Ready Interrupt Flag * * Clear the interrupt flag that was set when a clock oscillator became ready * to use. * * @param osc Oscillator ID */ void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: RCC_CIR |= RCC_CIR_HSI48RDYC; break; case RCC_HSI14: RCC_CIR |= RCC_CIR_HSI14RDYC; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Enable the Oscillator Ready Interrupt * * @param osc Oscillator ID */ void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: RCC_CIR |= RCC_CIR_HSI48RDYIE; break; case RCC_HSI14: RCC_CIR |= RCC_CIR_HSI14RDYIE; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Disable the Oscillator Ready Interrupt * * @param osc Oscillator ID */ void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: RCC_CIR &= ~RCC_CIR_HSI48RDYC; break; case RCC_HSI14: RCC_CIR &= ~RCC_CIR_HSI14RDYC; break; case RCC_HSI: RCC_CIR &= ~RCC_CIR_HSIRDYC; break; case RCC_HSE: RCC_CIR &= ~RCC_CIR_HSERDYC; break; case RCC_PLL: RCC_CIR &= ~RCC_CIR_PLLRDYC; break; case RCC_LSE: RCC_CIR &= ~RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR &= ~RCC_CIR_LSIRDYC; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Read the Oscillator Ready Interrupt Flag * * @param osc Oscillator ID * @returns int. Boolean value for flag set. */ int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: return (RCC_CIR & RCC_CIR_HSI48RDYF) != 0; break; case RCC_HSI14: return (RCC_CIR & RCC_CIR_HSI14RDYF) != 0; break; case RCC_HSI: return (RCC_CIR & RCC_CIR_HSIRDYF) != 0; break; case RCC_HSE: return (RCC_CIR & RCC_CIR_HSERDYF) != 0; break; case RCC_PLL: return (RCC_CIR & RCC_CIR_PLLRDYF) != 0; break; case RCC_LSE: return (RCC_CIR & RCC_CIR_LSERDYF) != 0; break; case RCC_LSI: return (RCC_CIR & RCC_CIR_LSIRDYF) != 0; break; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief RCC Clear the Clock Security System Interrupt Flag */ void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } /*---------------------------------------------------------------------------*/ /** @brief RCC Read the Clock Security System Interrupt Flag * * @returns int. Boolean value for flag set. */ int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: return RCC_CR2 & RCC_CR2_HSI48RDY; case RCC_HSI14: return RCC_CR2 & RCC_CR2_HSI14RDY; case RCC_HSI: return RCC_CR & RCC_CR_HSIRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_LSE: return RCC_BDCR & RCC_BDCR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } /*---------------------------------------------------------------------------*/ /** @brief RCC Turn on an Oscillator. * * Enable an oscillator and power on. Each oscillator requires an amount of * time to settle to a usable state. Refer to datasheets for time delay * information. A status flag is available to indicate when the oscillator * becomes ready (see @ref rcc_osc_ready_int_flag and @ref * rcc_wait_for_osc_ready). * * @param osc Oscillator ID */ void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: RCC_CR2 |= RCC_CR2_HSI48ON; break; case RCC_HSI14: RCC_CR2 |= RCC_CR2_HSI14ON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Turn off an Oscillator. * * Disable an oscillator and power off. * * @note An oscillator cannot be turned off if it is selected as the system * clock. * * @param osc Oscillator ID */ void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_HSI48: RCC_CR2 &= ~RCC_CR2_HSI48ON; break; case RCC_HSI14: RCC_CR2 &= ~RCC_CR2_HSI14ON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; case RCC_PLL: /* don't do anything */ break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Enable the Clock Security System. */ void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } /*---------------------------------------------------------------------------*/ /** @brief RCC Disable the Clock Security System. */ void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the Source for the System Clock. * * @param clk Oscillator ID. Only HSE, LSE and PLL have * effect. */ void rcc_set_sysclk_source(enum rcc_osc clk) { switch (clk) { case RCC_HSI: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_HSI; break; case RCC_HSE: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_HSE; break; case RCC_PLL: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_PLL; break; case RCC_HSI48: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW) | RCC_CFGR_SW_HSI48; break; case RCC_LSI: case RCC_LSE: case RCC_HSI14: /* do nothing */ break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the Source for the USB Clock. * * @param clk Oscillator ID. Only HSI48 or PLL have * effect. */ void rcc_set_usbclk_source(enum rcc_osc clk) { switch (clk) { case RCC_PLL: RCC_CFGR3 |= RCC_CFGR3_USBSW; break; case RCC_HSI48: RCC_CFGR3 &= ~RCC_CFGR3_USBSW; break; case RCC_HSI: case RCC_HSE: case RCC_LSI: case RCC_LSE: case RCC_HSI14: /* do nothing */ break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Enable the RTC clock */ void rcc_enable_rtc_clock(void) { RCC_BDCR |= RCC_BDCR_RTCEN; } /*---------------------------------------------------------------------------*/ /** @brief RCC Disable the RTC clock */ void rcc_disable_rtc_clock(void) { RCC_BDCR &= ~RCC_BDCR_RTCEN; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the Source for the RTC clock @param[in] clk RTC clock source. Only HSE/32, LSE and LSI. */ void rcc_set_rtc_clock_source(enum rcc_osc clk) { switch (clk) { case RCC_HSE: RCC_BDCR = (RCC_BDCR & ~RCC_BDCR_RTCSEL) | RCC_BDCR_RTCSEL_HSE; break; case RCC_LSE: RCC_BDCR = (RCC_BDCR & ~RCC_BDCR_RTCSEL) | RCC_BDCR_RTCSEL_LSE; break; case RCC_LSI: RCC_BDCR = (RCC_BDCR & ~RCC_BDCR_RTCSEL) | RCC_BDCR_RTCSEL_LSI; break; default: /* do nothing */ break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the PLL Multiplication Factor. * * @note This only has effect when the PLL is disabled. * * @param[in] mul Unsigned int32. PLL multiplication factor @ref rcc_cfgr_pmf */ void rcc_set_pll_multiplication_factor(uint32_t mul) { RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_PLLMUL) | mul; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the PLL Clock Source. @note This only has effect when the PLL is disabled. @param[in] pllsrc Unsigned int32. PLL clock source @ref rcc_cfgr_pcs */ void rcc_set_pll_source(uint32_t pllsrc) { RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_PLLSRC) | (pllsrc << 16); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the HSE Frequency Divider used as PLL Clock Source. @note This only has effect when the PLL is disabled. @param[in] pllxtpre Unsigned int32. HSE division factor @ref rcc_cfgr_hsepre */ void rcc_set_pllxtpre(uint32_t pllxtpre) { RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_PLLXTPRE) | (pllxtpre << 17); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the APB Prescale Factor. * * @param[in] ppre Unsigned int32. APB prescale factor @ref rcc_cfgr_apb1pre */ void rcc_set_ppre(uint32_t ppre) { RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_PPRE) | ppre; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the AHB Prescale Factor. * * @param[in] hpre Unsigned int32. AHB prescale factor @ref rcc_cfgr_ahbpre */ void rcc_set_hpre(uint32_t hpre) { RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_HPRE) | hpre; } /** * Set PLL Source pre-divider **CAUTION**. * On F03x and F05, prediv only applies to HSE source. On others, this * is _after_ source selection. See also f3. * @param[in] prediv division by prediv+1 @ref rcc_cfgr2_prediv */ void rcc_set_prediv(uint32_t prediv) { RCC_CFGR2 = (RCC_CFGR2 & ~RCC_CFGR2_PREDIV) | prediv; } /*---------------------------------------------------------------------------*/ /** @brief RCC Get the System Clock Source. * * @returns current system clock source */ enum rcc_osc rcc_system_clock_source(void) { /* Return the clock source which is used as system clock. */ switch (RCC_CFGR & RCC_CFGR_SWS) { case RCC_CFGR_SWS_HSI: return RCC_HSI; case RCC_CFGR_SWS_HSE: return RCC_HSE; case RCC_CFGR_SWS_PLL: return RCC_PLL; case RCC_CFGR_SWS_HSI48: return RCC_HSI48; } cm3_assert_not_reached(); } void rcc_set_i2c_clock_hsi(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 &= ~RCC_CFGR3_I2C1SW; } } void rcc_set_i2c_clock_sysclk(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 |= RCC_CFGR3_I2C1SW; } } uint32_t rcc_get_i2c_clocks(void) { return RCC_CFGR3 & RCC_CFGR3_I2C1SW; } /*---------------------------------------------------------------------------*/ /** @brief RCC Get the USB Clock Source. * * @returns Currently selected USB clock source */ enum rcc_osc rcc_usb_clock_source(void) { return (RCC_CFGR3 & RCC_CFGR3_USBSW) ? RCC_PLL : RCC_HSI48; } /** * Set System Clock PLL at 48MHz from HSE at 8MHz. */ void rcc_clock_setup_in_hse_8mhz_out_48mhz(void) { rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); rcc_set_sysclk_source(RCC_HSE); rcc_set_hpre(RCC_CFGR_HPRE_NODIV); rcc_set_ppre(RCC_CFGR_PPRE_NODIV); flash_prefetch_enable(); flash_set_ws(FLASH_ACR_LATENCY_024_048MHZ); /* PLL: 8MHz * 6 = 48MHz */ rcc_set_pll_multiplication_factor(RCC_CFGR_PLLMUL_MUL6); rcc_set_pll_source(RCC_CFGR_PLLSRC_HSE_CLK); rcc_set_pllxtpre(RCC_CFGR_PLLXTPRE_HSE_CLK); rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); rcc_set_sysclk_source(RCC_PLL); rcc_apb1_frequency = 48000000; rcc_ahb_frequency = 48000000; } /** * Set System Clock PLL at 48MHz from HSI */ void rcc_clock_setup_in_hsi_out_48mhz(void) { rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); rcc_set_sysclk_source(RCC_HSI); rcc_set_hpre(RCC_CFGR_HPRE_NODIV); rcc_set_ppre(RCC_CFGR_PPRE_NODIV); flash_prefetch_enable(); flash_set_ws(FLASH_ACR_LATENCY_024_048MHZ); /* 8MHz * 12 / 2 = 48MHz */ rcc_set_pll_multiplication_factor(RCC_CFGR_PLLMUL_MUL12); rcc_set_pll_source(RCC_CFGR_PLLSRC_HSI_CLK_DIV2); rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); rcc_set_sysclk_source(RCC_PLL); rcc_apb1_frequency = 48000000; rcc_ahb_frequency = 48000000; } /** * Set System Clock HSI48 at 48MHz */ void rcc_clock_setup_in_hsi48_out_48mhz(void) { rcc_osc_on(RCC_HSI48); rcc_wait_for_osc_ready(RCC_HSI48); rcc_set_hpre(RCC_CFGR_HPRE_NODIV); rcc_set_ppre(RCC_CFGR_PPRE_NODIV); flash_prefetch_enable(); flash_set_ws(FLASH_ACR_LATENCY_024_048MHZ); rcc_set_sysclk_source(RCC_HSI48); rcc_apb1_frequency = 48000000; rcc_ahb_frequency = 48000000; } static uint32_t rcc_get_usart_clksel_freq(uint8_t shift) { uint8_t clksel = (RCC_CFGR3 >> shift) & RCC_CFGR3_USARTxSW_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_CFGR3_USART1SW_PCLK: return rcc_apb1_frequency; case RCC_CFGR3_USART1SW_SYSCLK: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_CFGR3_USART1SW_HSI: return 8000000U; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { if (usart == USART1_BASE) { return rcc_get_usart_clksel_freq(RCC_CFGR3_USART1SW_SHIFT); } else if (usart == USART2_BASE) { return rcc_get_usart_clksel_freq(RCC_CFGR3_USART2SW_SHIFT); } else if (usart == USART3_BASE) { return rcc_get_usart_clksel_freq(RCC_CFGR3_USART3SW_SHIFT); } else { return rcc_apb1_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer __attribute__((unused))) { uint8_t ppre = (RCC_CFGR >> RCC_CFGR_PPRE_SHIFT) & RCC_CFGR_PPRE_MASK; return (ppre == RCC_CFGR_PPRE_NODIV) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c) { if (i2c == I2C1_BASE) { if (RCC_CFGR3 & RCC_CFGR3_I2C1SW) { uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); } else { return 8000000U; } } else { return rcc_apb1_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi __attribute__((unused))) { return rcc_apb1_frequency; } /**@}*/