Merging pull request #76 "LM4F clock api"

Merge remote-tracking branch 'mrnuke/lm4f_clock_api'
This commit is contained in:
Piotr Esden-Tempski 2013-02-18 13:53:57 -08:00
commit daf4cc0feb
7 changed files with 1109 additions and 40 deletions

View File

@ -2,8 +2,21 @@
README
------------------------------------------------------------------------------
Flashes the Red, Green and Blue diodes on the board, in order.
RED controlled by PF1
Green controlled by PF3
Blue controlled by PF2
This example demonstrates the following:
* Configuriong GPIO pins
* Toggling GPIO pins
* Setting up and using GPIO interrupts
* Unlocking protected GPIO pins
* Controlling the system clock
* Changing the system clock on the fly
Flashes the Red, Green and Blue diodes on the board, in order. The system clock
starts at 80MHz.
Pressing SW2 toggles the system clock between 80MHz, 57MHz, 40MHz ,20MHz, and
16MHz by changing the PLL divisor.
Pressing SW1 bypasses the PLL completely, and runs off the raw 16MHz clock
provided by the external crystal oscillator.
The LEDs will toggle at different speeds, depending on the system clock. The
system clock changes are handled within the interrupt service routine.

View File

@ -2,7 +2,7 @@
* This file is part of the libopencm3 project.
*
* Copyright (C) 2011 Gareth McMullin <gareth@blacksphere.co.nz>
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
* Copyright (C) 2012-2013 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@ -27,66 +27,193 @@
* Green controlled by PF3
* Blue controlled by PF2
*/
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/lm4f/systemcontrol.h>
#include <libopencm3/lm4f/rcc.h>
#include <libopencm3/lm4f/gpio.h>
#include <libopencm3/lm4f/nvic.h>
void gpio_setup(void)
#include <stdbool.h>
#include <stdio.h>
/* This is how the RGB LED is connected on the stellaris launchpad */
#define RGB_PORT GPIOF
enum {
LED_R = GPIO1,
LED_G = GPIO3,
LED_B = GPIO2,
};
/* This is how the user switches are connected to GPIOF */
enum {
USR_SW1 = GPIO4,
USR_SW2 = GPIO0,
};
/* The divisors we loop through when the user presses SW2 */
enum {
PLL_DIV_80MHZ = 5,
PLL_DIV_57MHZ = 7,
PLL_DIV_40MHZ = 10,
PLL_DIV_20MHZ = 20,
PLL_DIV_16MHZ = 25,
};
static const u8 plldiv[] = {
PLL_DIV_80MHZ,
PLL_DIV_57MHZ,
PLL_DIV_40MHZ,
PLL_DIV_20MHZ,
PLL_DIV_16MHZ,
0
};
/* The PLL divisor we are currently on */
static size_t ipll = 0;
/* Are we bypassing the PLL, or not? */
static bool bypass = false;
/*
* Clock setup:
* Take the main crystal oscillator at 16MHz, run it through the PLL, and divide
* the 400MHz PLL clock to get a system clock of 80MHz.
*/
static void clock_setup(void)
{
SYSCTL_RCGCGPIO |= 0x20; /* Enable GPIOF in run mode. */
const u32 outpins = ((1<<3) | (1<<2) | (1<<1));
rcc_sysclk_config(OSCSRC_MOSC, XTAL_16M, PLL_DIV_80MHZ);
}
GPIO_DIR(GPIOF) |= outpins; /* Configure outputs. */
GPIO_DEN(GPIOF) |= outpins; /* Enable digital function on outputs. */
/*
* GPIO setup:
* Enable the pins driving the RGB LED as outputs.
*/
static void gpio_setup(void)
{
/*
* Configure GPIOF
* This port is used to control the RGB LED
*/
periph_clock_enable(RCC_GPIOF);
const u32 outpins = (LED_R | LED_G | LED_B);
GPIO_DIR(RGB_PORT) |= outpins; /* Configure outputs. */
GPIO_DEN(RGB_PORT) |= outpins; /* Enable digital function on outputs. */
/*
* Now take care of our buttons
*/
const u32 btnpins = USR_SW1 | USR_SW2;
/*
* PF0 is locked by default. We need to unlock the GPIO_CR register,
* then enable PF0 commit. After we do this, we can setup PF0. If we
* don't do this, any configuration done to PF0 is lost, and we will not
* have a PF0 interrupt.
*/
GPIO_LOCK(GPIOF) = 0x4C4F434B;
GPIO_CR(GPIOF) |= USR_SW2;
/* Configure pins as inputs. */
GPIO_DIR(GPIOF) &= ~btnpins;
/* Enable digital function on the pins. */
GPIO_DEN(GPIOF) |= btnpins;
/* Pull-up the pins. We don't have an external pull-up */
GPIO_PUR(GPIOF) |= btnpins;
}
/*
* IRQ setup:
* Trigger an interrupt whenever a button is depressed.
*/
static void irq_setup(void)
{
const u32 btnpins = USR_SW1 | USR_SW2;
/* Configure interrupt as edge-sensitive */
GPIO_IS(GPIOF) &= ~btnpins;
/* Interrupt only respond to rising or falling edge (single-edge) */
GPIO_IBE(GPIOF) &= ~btnpins;
/* Trigger interrupt on rising-edge (when button is depressed) */
GPIO_IEV(GPIOF) |= btnpins;
/* Finally, Enable interrupt */
GPIO_IM(GPIOF) |= btnpins;
/* Enable the interrupt in the NVIC as well */
nvic_enable_irq(NVIC_GPIOF_IRQ);
}
#define FLASH_DELAY 800000
static void delay(void)
{
int i;
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
}
int main(void)
{
int i;
clock_setup();
gpio_setup();
irq_setup();
/* Blink STATUS LED (PF0) on the board. */
/* Blink each color of the RGB LED in order. */
while (1) {
/*
* Flash the Red diode
*/
gpio_set(GPIOF, GPIO1);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_clear(GPIOF, GPIO1);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_set(RGB_PORT, LED_R);
delay(); /* Wait a bit. */
gpio_clear(RGB_PORT, LED_R);
delay(); /* Wait a bit. */
/*
* Flash the Green diode
*/
gpio_set(GPIOF, GPIO3);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_clear(GPIOF, GPIO3);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_set(RGB_PORT, LED_G);
delay(); /* Wait a bit. */
gpio_clear(RGB_PORT, LED_G);
delay(); /* Wait a bit. */
/*
* Flash the Blue diode
*/
gpio_set(GPIOF, GPIO2);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_clear(GPIOF, GPIO2);
for (i = 0; i < FLASH_DELAY; i++) /* Wait a bit. */
__asm__("nop");
gpio_set(RGB_PORT, LED_B);
delay(); /* Wait a bit. */
gpio_clear(RGB_PORT, LED_B);
delay(); /* Wait a bit. */
}
return 0;
}
void gpiof_isr(void)
{
if (GPIO_RIS(GPIOF) & USR_SW1) {
/* SW1 was just depressed */
bypass = !bypass;
if (bypass) {
rcc_pll_bypass_enable();
/*
* The divisor is still applied to the raw clock.
* Disable the divisor, or we'll divide the raw clock.
*/
SYSCTL_RCC &= ~SYSCTL_RCC_USESYSDIV;
}
else
{
rcc_change_pll_divisor(plldiv[ipll]);
}
/* Clear interrupt source */
GPIO_ICR(GPIOF) = USR_SW1;
}
if (GPIO_RIS(GPIOF) & USR_SW2) {
/* SW2 was just depressed */
if (!bypass) {
if (plldiv[++ipll] == 0)
ipll = 0;
rcc_change_pll_divisor(plldiv[ipll]);
}
/* Clear interrupt source */
GPIO_ICR(GPIOF) = USR_SW2;
}
}

View File

@ -0,0 +1,126 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @defgroup rcc_defines RCC Defines
*
* @ingroup LM4F_defines
*
* \brief <b>Defined Constants and Types for the LM4F Clock control API</b>
* @{
*/
#ifndef LM4F_RCC_H
#define LM4F_RCC_H
#include <libopencm3/lm4f/systemcontrol.h>
/**
* \brief Oscillator source values
*
* Possible values of the oscillator source.
*/
typedef enum {
OSCSRC_MOSC = SYSCTL_RCC2_OSCSRC2_MOSC,
OSCSRC_PIOSC = SYSCTL_RCC2_OSCSRC2_PIOSC,
OSCSRC_PIOSC_D4 = SYSCTL_RCC2_OSCSRC2_PIOSC_D4,
OSCSRC_30K_INT = SYSCTL_RCC2_OSCSRC2_30K,
OSCSRC_32K_EXT = SYSCTL_RCC2_OSCSRC2_32K768,
} osc_src_t;
/**
* \brief PWM clock divisor values
*
* Possible values of the binary divisor used to predivide the system clock down
* for use as the timing reference for the PWM module.
*/
typedef enum {
PWMDIV_2 = SYSCTL_RCC_PWMDIV_2,
PWMDIV_4 = SYSCTL_RCC_PWMDIV_4,
PWMDIV_8 = SYSCTL_RCC_PWMDIV_8,
PWMDIV_16 = SYSCTL_RCC_PWMDIV_16,
PWMDIV_32 = SYSCTL_RCC_PWMDIV_32,
PWMDIV_64 = SYSCTL_RCC_PWMDIV_64,
} pwm_clkdiv_t;
/**
* \brief Predefined crystal values
*
* Predefined crystal values for the XTAL field in SYSCTL_RCC.
* Using these predefined values in the XTAL field, the SYSCTL_PLLFREQ0 and
* SYSCTL_PLLFREQ1 are automatically adjusted in hardware to provide a PLL clock
* of 400MHz.
*/
typedef enum {
XTAL_4M = SYSCTL_RCC_XTAL_4M,
XTAL_4M_096 = SYSCTL_RCC_XTAL_4M_096,
XTAL_4M_9152 = SYSCTL_RCC_XTAL_4M_9152,
XTAL_5M = SYSCTL_RCC_XTAL_5M,
XTAL_5M_12 = SYSCTL_RCC_XTAL_5M_12,
XTAL_6M = SYSCTL_RCC_XTAL_6M,
XTAL_6M_144 = SYSCTL_RCC_XTAL_6M_144,
XTAL_7M_3728 = SYSCTL_RCC_XTAL_7M_3728,
XTAL_8M = SYSCTL_RCC_XTAL_8M,
XTAL_8M_192 = SYSCTL_RCC_XTAL_8M_192,
XTAL_10M = SYSCTL_RCC_XTAL_10M,
XTAL_12M = SYSCTL_RCC_XTAL_12M,
XTAL_12M_288 = SYSCTL_RCC_XTAL_12M_288,
XTAL_13M_56 = SYSCTL_RCC_XTAL_13M_56,
XTAL_14M_31818 = SYSCTL_RCC_XTAL_14M_31818,
XTAL_16M = SYSCTL_RCC_XTAL_16M,
XTAL_16M_384 = SYSCTL_RCC_XTAL_16M_384,
XTAL_18M = SYSCTL_RCC_XTAL_18M,
XTAL_20M = SYSCTL_RCC_XTAL_20M,
XTAL_24M = SYSCTL_RCC_XTAL_24M,
XTAL_25M = SYSCTL_RCC_XTAL_25M,
} xtal_t;
/**
* @}
*/
/* =============================================================================
* Function prototypes
* ---------------------------------------------------------------------------*/
BEGIN_DECLS
/* Low-level clock API */
void rcc_configure_xtal(xtal_t xtal);
void rcc_disable_main_osc(void);
void rcc_disable_interal_osc(void);
void rcc_enable_main_osc(void);
void rcc_enable_interal_osc(void);
void rcc_enable_rcc2(void);
void rcc_pll_off(void);
void rcc_pll_on(void);
void rcc_set_osc_source(osc_src_t src);
void rcc_pll_bypass_disable(void);
void rcc_pll_bypass_enable(void);
void rcc_set_pll_divisor(u8 div400);
void rcc_set_pwm_divisor(pwm_clkdiv_t div);
void rcc_usb_pll_off(void);
void rcc_usb_pll_on(void);
void rcc_wait_for_pll_ready(void);
/* High-level clock API */
void rcc_change_pll_divisor(u8 plldiv400);
u32 rcc_get_system_clock_frequency(void);
void rcc_sysclk_config(osc_src_t src, xtal_t xtal, u8 pll_div400);
END_DECLS
#endif /* LM4F_RCC_H */

View File

@ -21,6 +21,7 @@
#define LM4F_SYSTEMCONTROL_H
#include <libopencm3/cm3/common.h>
#include <libopencm3/lm4f/memorymap.h>
#define SYSCTL_DID0 MMIO32(SYSCTL_BASE + 0x000)
#define SYSCTL_DID1 MMIO32(SYSCTL_BASE + 0x004)
@ -369,9 +370,11 @@
/** Auto Clock Gating */
#define SYSCTL_RCC2_ACG (1 << 27)
/** System Clock Divisor 2 */
#define SYSCTL_RCC2_SYSDIV2_MASK (0xF << 23)
#define SYSCTL_RCC2_SYSDIV2_MASK (0x3F << 23)
/** Additional LSB for SYSDIV2 */
#define SYSCTL_RCC2_SYSDIV2LSB (1 << 22)
/** System clock divisor mask when RCC2_DIV400 is set */
#define SYSCTL_RCC2_SYSDIV400_MASK (0x7F << 22)
/** Power-Down USB PLL */
#define SYSCTL_RCC2_USBPWRDN (1 << 14)
/** PLL Power Down 2 */
@ -450,6 +453,273 @@
/** PLL lock */
#define SYSCTL_PLLSTAT_LOCK (1 << 0)
/* =============================================================================
* Convenience definitions for a readable API
* ---------------------------------------------------------------------------*/
/**
* \brief Clock enable definitions
*
* The definitions are specified in the form
* 31:5 register offset from SYSCTL_BASE for the clock register
* 4:0 bit offset for the given peripheral
*
* The names have the form [clock_type]_[periph_type]_[periph_number]
* Where clock_type is
* RCC for run clock
* SCC for sleep clock
* DCC for deep-sleep clock
*/
typedef enum {
/*
* Run clock control
*/
RCC_WD0 = ((u32)&SYSCTL_RCGCWD - SYSCTL_BASE) << 5,
RCC_WD1,
RCC_TIMER0 = ((u32)&SYSCTL_RCGCTIMER - SYSCTL_BASE) << 5,
RCC_TIMER1,
RCC_TIMER2,
RCC_TIMER3,
RCC_TIMER4,
RCC_TIMER5,
RCC_GPIOA = ((u32)&SYSCTL_RCGCGPIO - SYSCTL_BASE) << 5,
RCC_GPIOB,
RCC_GPIOC,
RCC_GPIOD,
RCC_GPIOE,
RCC_GPIOF,
RCC_GPIOG,
RCC_GPIOH,
RCC_GPIOJ,
RCC_GPIOK,
RCC_GPIOL,
RCC_GPIOM,
RCC_GPION,
RCC_GPIOP,
RCC_GPIOQ,
RCC_DMA = ((u32)&SYSCTL_RCGCDMA - SYSCTL_BASE) << 5,
RCC_HIB = ((u32)&SYSCTL_RCGCGPIO - SYSCTL_BASE) << 5,
RCC_UART0 = ((u32)&SYSCTL_RCGCUART - SYSCTL_BASE) << 5,
RCC_UART1,
RCC_UART2,
RCC_UART3,
RCC_UART4,
RCC_UART5,
RCC_UART6,
RCC_UART7,
RCC_SSI0 = ((u32)&SYSCTL_RCGCSSI - SYSCTL_BASE) << 5,
RCC_SSI1,
RCC_SSI2,
RCC_SSI3,
RCC_I2C0 = ((u32)&SYSCTL_RCGCI2C - SYSCTL_BASE) << 5,
RCC_I2C1,
RCC_I2C2,
RCC_I2C3,
RCC_I2C4,
RCC_I2C5,
RCC_USB0 = ((u32)&SYSCTL_RCGCUSB - SYSCTL_BASE) << 5,
RCC_CAN0 = ((u32)&SYSCTL_RCGCCAN - SYSCTL_BASE) << 5,
RCC_CAN1,
RCC_ADC0 = ((u32)&SYSCTL_RCGCADC - SYSCTL_BASE) << 5,
RCC_ADC1,
RCC_ACMP0 = ((u32)&SYSCTL_RCGCACMP - SYSCTL_BASE) << 5,
RCC_PWM0 = ((u32)&SYSCTL_RCGCPWM - SYSCTL_BASE) << 5,
RCC_PWM1,
RCC_QEI0 = ((u32)&SYSCTL_RCGCQEI - SYSCTL_BASE) << 5,
RCC_QEI1,
RCC_EEPROM0 = ((u32)&SYSCTL_RCGCEEPROM - SYSCTL_BASE) << 5,
RCC_WTIMER0 = ((u32)&SYSCTL_RCGCWTIMER - SYSCTL_BASE) << 5,
RCC_WTIMER1,
RCC_WTIMER2,
RCC_WTIMER3,
RCC_WTIMER4,
RCC_WTIMER5,
/*
* Sleep clock control
*/
SCC_WD0 = ((u32)&SYSCTL_SCGCWD - SYSCTL_BASE) << 5,
SCC_WD1,
SCC_TIMER0 = ((u32)&SYSCTL_SCGCTIMER - SYSCTL_BASE) << 5,
SCC_TIMER1,
SCC_TIMER2,
SCC_TIMER3,
SCC_TIMER4,
SCC_TIMER5,
SCC_GPIOA = ((u32)&SYSCTL_SCGCGPIO - SYSCTL_BASE) << 5,
SCC_GPIOB,
SCC_GPIOC,
SCC_GPIOD,
SCC_GPIOE,
SCC_GPIOF,
SCC_GPIOG,
SCC_GPIOH,
SCC_GPIOJ,
SCC_GPIOK,
SCC_GPIOL,
SCC_GPIOM,
SCC_GPION,
SCC_GPIOP,
SCC_GPIOQ,
SCC_DMA = ((u32)&SYSCTL_SCGCDMA - SYSCTL_BASE) << 5,
SCC_HIB = ((u32)&SYSCTL_SCGCGPIO - SYSCTL_BASE) << 5,
SCC_UART0 = ((u32)&SYSCTL_SCGCUART - SYSCTL_BASE) << 5,
SCC_UART1,
SCC_UART2,
SCC_UART3,
SCC_UART4,
SCC_UART5,
SCC_UART6,
SCC_UART7,
SCC_SSI0 = ((u32)&SYSCTL_SCGCSSI - SYSCTL_BASE) << 5,
SCC_SSI1,
SCC_SSI2,
SCC_SSI3,
SCC_I2C0 = ((u32)&SYSCTL_SCGCI2C - SYSCTL_BASE) << 5,
SCC_I2C1,
SCC_I2C2,
SCC_I2C3,
SCC_I2C4,
SCC_I2C5,
SCC_USB0 = ((u32)&SYSCTL_SCGCUSB - SYSCTL_BASE) << 5,
SCC_CAN0 = ((u32)&SYSCTL_SCGCCAN - SYSCTL_BASE) << 5,
SCC_CAN1,
SCC_ADC0 = ((u32)&SYSCTL_SCGCADC - SYSCTL_BASE) << 5,
SCC_ADC1,
SCC_ACMP0 = ((u32)&SYSCTL_SCGCACMP - SYSCTL_BASE) << 5,
SCC_PWM0 = ((u32)&SYSCTL_SCGCPWM - SYSCTL_BASE) << 5,
SCC_PWM1,
SCC_QEI0 = ((u32)&SYSCTL_SCGCQEI - SYSCTL_BASE) << 5,
SCC_QEI1,
SCC_EEPROM0 = ((u32)&SYSCTL_SCGCEEPROM - SYSCTL_BASE) << 5,
SCC_WTIMER0 = ((u32)&SYSCTL_SCGCWTIMER - SYSCTL_BASE) << 5,
SCC_WTIMER1,
SCC_WTIMER2,
SCC_WTIMER3,
SCC_WTIMER4,
SCC_WTIMER5,
/*
* Deep-sleep clock control
*/
DCC_WD0 = ((u32)&SYSCTL_DCGCWD - SYSCTL_BASE) << 5,
DCC_WD1,
DCC_TIMER0 = ((u32)&SYSCTL_DCGCTIMER - SYSCTL_BASE) << 5,
DCC_TIMER1,
DCC_TIMER2,
DCC_TIMER3,
DCC_TIMER4,
DCC_TIMER5,
DCC_GPIOA = ((u32)&SYSCTL_DCGCGPIO - SYSCTL_BASE) << 5,
DCC_GPIOB,
DCC_GPIOC,
DCC_GPIOD,
DCC_GPIOE,
DCC_GPIOF,
DCC_GPIOG,
DCC_GPIOH,
DCC_GPIOJ,
DCC_GPIOK,
DCC_GPIOL,
DCC_GPIOM,
DCC_GPION,
DCC_GPIOP,
DCC_GPIOQ,
DCC_DMA = ((u32)&SYSCTL_DCGCDMA - SYSCTL_BASE) << 5,
DCC_HIB = ((u32)&SYSCTL_DCGCGPIO - SYSCTL_BASE) << 5,
DCC_UART0 = ((u32)&SYSCTL_DCGCUART - SYSCTL_BASE) << 5,
DCC_UART1,
DCC_UART2,
DCC_UART3,
DCC_UART4,
DCC_UART5,
DCC_UART6,
DCC_UART7,
DCC_SSI0 = ((u32)&SYSCTL_DCGCSSI - SYSCTL_BASE) << 5,
DCC_SSI1,
DCC_SSI2,
DCC_SSI3,
DCC_I2C0 = ((u32)&SYSCTL_DCGCI2C - SYSCTL_BASE) << 5,
DCC_I2C1,
DCC_I2C2,
DCC_I2C3,
DCC_I2C4,
DCC_I2C5,
DCC_USB0 = ((u32)&SYSCTL_DCGCUSB - SYSCTL_BASE) << 5,
DCC_CAN0 = ((u32)&SYSCTL_DCGCCAN - SYSCTL_BASE) << 5,
DCC_CAN1,
DCC_ADC0 = ((u32)&SYSCTL_DCGCADC - SYSCTL_BASE) << 5,
DCC_ADC1,
DCC_ACMP0 = ((u32)&SYSCTL_DCGCACMP - SYSCTL_BASE) << 5,
DCC_PWM0 = ((u32)&SYSCTL_DCGCPWM - SYSCTL_BASE) << 5,
DCC_PWM1,
DCC_QEI0 = ((u32)&SYSCTL_DCGCQEI - SYSCTL_BASE) << 5,
DCC_QEI1,
DCC_EEPROM0 = ((u32)&SYSCTL_DCGCEEPROM - SYSCTL_BASE) << 5,
DCC_WTIMER0 = ((u32)&SYSCTL_DCGCWTIMER - SYSCTL_BASE) << 5,
DCC_WTIMER1,
DCC_WTIMER2,
DCC_WTIMER3,
DCC_WTIMER4,
DCC_WTIMER5,
} clken_t;
/* =============================================================================
* Function prototypes
* ---------------------------------------------------------------------------*/
BEGIN_DECLS
void periph_clock_enable(clken_t periph);
void periph_clock_disable(clken_t periph);
END_DECLS
#endif /* LM4F_SYSTEMCONTROL_H */

View File

@ -28,7 +28,7 @@ CFLAGS = -Os -g -Wall -Wextra -I../../include -fno-common \
-ffunction-sections -fdata-sections -MD -DLM4F
# ARFLAGS = rcsv
ARFLAGS = rcs
OBJS = gpio.o vector.o assert.o
OBJS = gpio.o vector.o assert.o systemcontrol.o rcc.o
VPATH += ../cm3

493
lib/lm4f/rcc.c Normal file
View File

@ -0,0 +1,493 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* @defgroup rcc_file RCC
*
* @ingroup LM4F
*
* \brief <b>libopencm3 LM4F Clock control API</b>
*
* The LM$F clock API provides functionaliity for manipulating the system clock,
* oscillator, and PLL. Functions are provided for fine-grained control of clock
* control registers, while also providing higher level functionality to easily
* configure the main system clock source.
*
* The following code snippet uses fine-grained mechanisms to configures the
* chip to run off an external 16MHz crystal, and use the PLL to derive a clock
* frequency of 80MHz.
* @code{.c}
* // A divisor of 5 gives us a clock of 400/5 = 80MHz
* #define PLLDIV_80MHZ 5
*
* // Enable the main oscillator
* rcc_enable_main_osc();
*
* // Make RCC2 override RCC
* rcc_enable_rcc2();
*
* // Set XTAL value to 16MHz
* rcc_configure_xtal(XTAL_16M);
* // Set the oscillator source as the main oscillator
* rcc_set_osc_source(OSCSRC_MOSC);
* // Enable the PLL
* rcc_pll_on();
*
* // Change the clock divisor
* rcc_set_pll_divisor(PLLDIV_80MHZ);
*
* // We cannot use the PLL as a clock source until it locks
* rcc_wait_for_pll_ready();
* // Disable PLL bypass to derive the system clock from the PLL clock
* rcc_pll_bypass_disable();
*
* // Keep track of frequency
* lm4f_rcc_sysclk_freq = 80E6;
* @endcode
*
* The same can be achieved by a simple call to high-level routines:
* @code
* // A divisor of 5 gives us a clock of 400/5 = 80MHz
* #define PLLDIV_80MHZ 5
*
* rcc_sysclk_config(OSCSRC_MOSC, XTAL_16M, PLLDIV_80MHZ);
* @endcode
*
* @{
*/
#include <libopencm3/lm4f/rcc.h>
/**
* @defgroup rcc_low_level Low-level clock control API
* @{
*/
/**
* \brief System clock frequency
*
* This variable is provided to keep track of the system clock frequency. It
* should be updated every time the system clock is changed via the fine-grained
* mechanisms. The initial value is 16MHz, which corresponds to the clock of the
* internal 16MHz oscillator.
*
* High-level routines update the system clock automatically.
* For read access, it is recommended to acces this variable via
* @code
* rcc_get_system_clock_frequency();
* @endcode
*
* If write access is desired (i.e. when changing the system clock via the
* fine-grained mechanisms), then include the following line in your code:
* @code
* extern u32 lm4f_rcc_sysclk_freq;
* @endcode
*/
u32 lm4f_rcc_sysclk_freq = 16000000;
/**
* \brief Configure the crystal type connected to the device.
*
* Configure the crystal type connected between the OSCO and OSCI pins by
* writing the appropriate value to the XTAL field in SYSCTL_RCC. The PLL
* parameters are automatically adjusted in hardware to provide a PLL clock of
* 400MHz.
*
* @param[in] xtal predefined crystal type @see xtal_t
*/
void rcc_configure_xtal(xtal_t xtal)
{
u32 reg32;
reg32 = SYSCTL_RCC;
reg32 &= ~SYSCTL_RCC_XTAL_MASK;
reg32 |= (xtal & SYSCTL_RCC_XTAL_MASK);
SYSCTL_RCC = reg32;
}
/**
* \brief Disable the main oscillator
*
* Sets the IOSCDIS bit in SYSCTL_RCC, disabling the main oscillator.
*/
void rcc_disable_main_osc(void)
{
SYSCTL_RCC |= SYSCTL_RCC_MOSCDIS;
}
/**
* \brief Disable the internal oscillator
*
* Sets the IOSCDIS bit in SYSCTL_RCC, disabling the internal oscillator.
*/
void rcc_disable_interal_osc(void)
{
SYSCTL_RCC |= SYSCTL_RCC_IOSCDIS;
}
/**
* \brief Enable the main oscillator
*
* Clears the MOSCDIS bit in SYSCTL_RCC, enabling the main oscillator.
*/
void rcc_enable_main_osc(void)
{
SYSCTL_RCC &= ~SYSCTL_RCC_MOSCDIS;
}
/**
* \brief Enable the internal oscillator
*
* Clears the IOSCDIS bit in SYSCTL_RCC, enabling the internal oscillator.
*/
void rcc_enable_interal_osc(void)
{
SYSCTL_RCC &= ~SYSCTL_RCC_IOSCDIS;
}
/**
* \brief Enable the use of SYSCTL_RCC2 register for clock control
*
* Enables the USERCC2 bit in SYSCTTL_RCC2. Settings in SYSCTL_RCC2 will
* override settings in SYSCTL_RCC.
* This function must be called before other calls to manipulate the clock, as
* libopencm3 uses the SYSCTL_RCC2 register.
*/
void rcc_enable_rcc2(void)
{
SYSCTL_RCC2 |= SYSCTL_RCC2_USERCC2;
}
/**
* \brief Power down the main PLL
*
* Sets the SYSCTL_RCC2_PWRDN2 in SYSCTL_RCC2 to power down the PLL.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_pll_off(void)
{
SYSCTL_RCC2 |= SYSCTL_RCC2_PWRDN2;
}
/**
* \brief Power up the main PLL
*
* Clears the PWRDN2 in SYSCTL_RCC2 to power on the PLL.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_pll_on(void)
{
SYSCTL_RCC2 &= ~SYSCTL_RCC2_PWRDN2;
}
/**
* \brief Set the oscillator source to be used by the system clock
*
* Set the clock source for the system clock.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_set_osc_source(osc_src_t src)
{
u32 reg32;
reg32 = SYSCTL_RCC2;
reg32 &= ~SYSCTL_RCC2_OSCSRC2_MASK;
reg32 |= (src & SYSCTL_RCC2_OSCSRC2_MASK);
SYSCTL_RCC2 = reg32;
}
/**
* \brief Disable the PLL bypass and use the PLL clock
*
* Clear BYPASS2 in SYSCTL_RCC2. The system clock is derived from the PLL
* clock divided by the divisor specified in SYSDIV2.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_pll_bypass_disable(void)
{
SYSCTL_RCC2 &= ~SYSCTL_RCC2_BYPASS2;
}
/**
* \brief Enable the PLL bypass and use the oscillator clock
*
* Set BYPASS2 in SYSCTL_RCC2. The system clock is derived from the oscillator
* clock divided by the divisor specified in SYSDIV2.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_pll_bypass_enable(void)
{
SYSCTL_RCC2 |= SYSCTL_RCC2_BYPASS2;
}
/**
* \brief Set the PLL clock divisor (from 400MHz)
*
* Set the binary divisor used to predivide the system clock down for use as the
* timing reference for the PWM module. The divisor is expected to be a divisor
* from 400MHz, not 200MHz. The DIV400 is also set.
*
* Specifies the divisor that used to generate the system clock from either the
* PLL output or the oscillator source (depending on the BYPASS2 bit in
* SYSCTL_RCC2). SYSDIV2 is used for the divisor when both the USESYSDIV bit in
* SYSCTL_RCC is set.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*
* @param[in] div clock divisor to apply to the 400MHz PLL clock. It is the
* caller's responsibility to ensure that the divisor will not create
* a system clock that is out of spec.
*/
void rcc_set_pll_divisor(u8 div400)
{
u32 reg32;
SYSCTL_RCC |= SYSCTL_RCC_USESYSDIV;
reg32 = SYSCTL_RCC2;
reg32 &= ~SYSCTL_RCC2_SYSDIV400_MASK;
reg32 |= (div400 << 22) & SYSCTL_RCC2_SYSDIV400_MASK;
/* We are expecting a divider from 400MHz */
reg32 |= SYSCTL_RCC2_DIV400;
SYSCTL_RCC2 = reg32;
}
/**
* \brief Set the PWM unit clock divisor
*
* Set the binary divisor used to predivide the system clock down for use as the
* timing reference for the PWM module.
*
* @param[in] div clock divisor to use @see pwm_clkdiv_t
*/
void rcc_set_pwm_divisor(pwm_clkdiv_t div)
{
u32 reg32;
reg32 = SYSCTL_RCC;
reg32 &= ~SYSCTL_RCC_PWMDIV_MASK;
reg32 |= (div & SYSCTL_RCC_PWMDIV_MASK);
SYSCTL_RCC = reg32;
}
/**
* \brief Power down the USB PLL
*
* Sets the USBPWRDN in SYSCTL_RCC2 to power down the USB PLL.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_usb_pll_off(void)
{
SYSCTL_RCC2 |= SYSCTL_RCC2_USBPWRDN;
}
/**
* \brief Power up the USB PLL
*
* Clears the USBPWRDN in SYSCTL_RCC2 to power on the USB PLL.
*
* USERCC2 must have been set by a call to rcc_enable_rcc2() before calling this
* function.
*/
void rcc_usb_pll_on(void)
{
SYSCTL_RCC2 &= ~SYSCTL_RCC2_USBPWRDN;
}
/**
* \brief Wait for main PLL to lock
*
* Waits until the LOCK bit in SYSCTL_PLLSTAT is set. This guarantees that the
* PLL is locked, and ready to use.
*/
void rcc_wait_for_pll_ready(void)
{
while(!(SYSCTL_PLLSTAT & SYSCTL_PLLSTAT_LOCK));
}
/**
* @}
*/
/**
* @defgroup rcc_high_level High-level clock control API
* @{
*/
/**
* \brief Change the PLL divisor
*
* Changes the divisor applied to the 400MHz PLL clock. The PLL must have
* previously been configured by selecting an appropriate XTAL value, and
* turning on the PLL. This function does not reconfigure the XTAL value or
* oscillator source. It only changes the PLL divisor.
*
* The PLL is bypassed before modifying the divisor, and the function blocks
* until the PLL is locked, then the bypass is disabled, before returning.
*
* @param [in] pll_div400 The clock divisor to apply to the 400MHz PLL clock.
*/
void rcc_change_pll_divisor(u8 pll_div400)
{
/* Bypass the PLL while its settings are modified */
rcc_pll_bypass_enable();
/* Change the clock divisor */
rcc_set_pll_divisor(pll_div400);
/* We cannot use the PLL as a clock source until it locks */
rcc_wait_for_pll_ready();
/* Disable PLL bypass to derive the system clock from the PLL clock */
rcc_pll_bypass_disable();
/* Update the system clock frequency for housekeeping */
lm4f_rcc_sysclk_freq = (u32)400E6 / pll_div400;
}
/**
* \brief Get the system clock frequency
*
* @return System clock frequency in Hz
*/
u32 rcc_get_system_clock_frequency(void)
{
return lm4f_rcc_sysclk_freq;
}
/* Get the clock frequency corresponging to a given XTAL value */
static u32 xtal_to_freq(xtal_t xtal)
{
const u32 freqs[] = {
4000000, /* XTAL_4M */
4096000, /* XTAL_4M_096 */
4915200, /* XTAL_4M_9152 */
5000000, /* ,XTAL_5M */
5120000, /* XTAL_5M_12 */
6000000, /* XTAL_6M */
6144000, /* XTAL_6M_144 */
7372800, /* XTAL_7M_3728 */
8000000, /* XTAL_8M */
8192000, /* XTAL_8M_192 */
10000000, /* XTAL_10M */
12000000, /* XTAL_12M */
12288000, /* XTAL_12M_288 */
13560000, /* XTAL_13M_56 */
14318180, /* XTAL_14M_31818 */
16000000, /* XTAL_16M */
16384000, /* XTAL_16M_384 */
18000000, /* XTAL_18M */
20000000, /* XTAL_20M */
24000000, /* XTAL_24M */
25000000, /* XTAL_25M */
};
return freqs[xtal - XTAL_4M];
}
/**
* \brief Configure the system clock source
*
* Sets up the system clock, including configuring the oscillator source, and
* PLL to acheve the desired system clock frequency. Where applicable, The LM4F
* clock API uses the new RCC2 register to configure clock parameters.
*
* Enables the main oscillator if the clock source is OSCSRC_MOSC. If the main
* oscillator was previously enabled, it will not be disabled. If desired, it
* can be separately disabled by a call to rcc_disable_main_osc().
*
* Configures the system clock to run from the 400MHz PLL with a divisor of
* pll_div400 applied. If pll_div400 is 0, then the PLL is disabled, and the
* system clock is configured to run off a "raw" clock. If the PLL was
* previously powered on, it will not be disabled. If desired, it can de powered
* off by a call to rcc_pll_off().
*
* @param [in] osc_src Oscillator from where to derive the system clock.
* @param [in] xtal Type of crystal connected to the OSCO/OSCI pins
* @param [in] pll_div400 The clock divisor to apply to the 400MHz PLL clock.
* If 0, then the PLL is disabled, and the system runs
* off a "raw" clock.
*
* @return System clock frequency in Hz
*/
void rcc_sysclk_config(osc_src_t osc_src, xtal_t xtal, u8 pll_div400)
{
/*
* We could be using the PLL at this point, or we could be running of a
* raw clock. Either way, it is safer to bypass the PLL now.
*/
rcc_pll_bypass_enable();
/* Enable the main oscillator, if needed */
if (osc_src == OSCSRC_MOSC)
rcc_enable_main_osc();
/* Make RCC2 override RCC */
rcc_enable_rcc2();
/* Set XTAL value to 16MHz */
rcc_configure_xtal(xtal);
/* Set the oscillator source */
rcc_set_osc_source(osc_src);
if (pll_div400) {
/* Enable the PLL */
rcc_pll_on();
/* Configure the PLL to the divisor we want */
rcc_change_pll_divisor(pll_div400);
} else {
/* We are running off a raw clock */
switch (osc_src) {
case OSCSRC_PIOSC:
lm4f_rcc_sysclk_freq = 16000000;
break;
case OSCSRC_PIOSC_D4:
lm4f_rcc_sysclk_freq = 4000000;
break;
case OSCSRC_MOSC:
lm4f_rcc_sysclk_freq = xtal_to_freq(xtal);
break;
case OSCSRC_32K_EXT:
lm4f_rcc_sysclk_freq = 32768;
break;
case OSCSRC_30K_INT: /* Fall through. */
default:
/*
* We either are running off the internal 30KHz
* oscillator, which is +- 50% imprecise, or we got a
* bad osc_src parameter.
*/
lm4f_rcc_sysclk_freq = 0;
}
}
}
/**
* @}
* @}
*/

40
lib/lm4f/systemcontrol.c Normal file
View File

@ -0,0 +1,40 @@
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <libopencm3/lm4f/systemcontrol.h>
/**
* \brief Enable the clock source for the peripheral
*
* @param[in] periph peripheral and clock type to enable @see clken_t
*/
void periph_clock_enable(clken_t periph)
{
MMIO32(SYSCTL_BASE + (periph >> 5)) |= 1 << (periph & 0x1f);
}
/**
* \brief Disable the clock source for the peripheral
*
* @param[in] periph peripheral and clock type to enable @see clken_t
*/
void periph_clock_disable(clken_t periph)
{
MMIO32(SYSCTL_BASE + (periph >> 5)) &= ~(1 << (periph & 0x1f));
}