dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/staging/brcm80211/brcmsmac/main.c

6103 lines
164 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/pci_ids.h>
#include <net/mac80211.h>
#include <brcm_hw_ids.h>
#include <aiutils.h>
#include "rate.h"
#include "scb.h"
#include "phy/phy_hal.h"
#include "channel.h"
#include "bmac.h"
#include "antsel.h"
#include "stf.h"
#include "ampdu.h"
#include "alloc.h"
#include "mac80211_if.h"
#include "main.h"
/*
* WPA(2) definitions
*/
#define RSN_CAP_4_REPLAY_CNTRS 2
#define RSN_CAP_16_REPLAY_CNTRS 3
#define WPA_CAP_4_REPLAY_CNTRS RSN_CAP_4_REPLAY_CNTRS
#define WPA_CAP_16_REPLAY_CNTRS RSN_CAP_16_REPLAY_CNTRS
/*
* Indication for txflowcontrol that all priority bits in
* TXQ_STOP_FOR_PRIOFC_MASK are to be considered.
*/
#define ALLPRIO -1
/*
* 32 SSID chars, max of 4 chars for each SSID char "\xFF", plus NULL.
*/
#define SSID_FMT_BUF_LEN ((4 * IEEE80211_MAX_SSID_LEN) + 1)
#define TIMER_INTERVAL_WATCHDOG 1000 /* watchdog timer, in unit of ms */
#define TIMER_INTERVAL_RADIOCHK 800 /* radio monitor timer, in unit of ms */
/* Max MPC timeout, in unit of watchdog */
#ifndef BRCMS_MPC_MAX_DELAYCNT
#define BRCMS_MPC_MAX_DELAYCNT 10
#endif
/* Min MPC timeout, in unit of watchdog */
#define BRCMS_MPC_MIN_DELAYCNT 1
#define BRCMS_MPC_THRESHOLD 3 /* MPC count threshold level */
#define BEACON_INTERVAL_DEFAULT 100 /* beacon interval, in unit of 1024TU */
#define DTIM_INTERVAL_DEFAULT 3 /* DTIM interval, in unit of beacon interval */
/* Scale down delays to accommodate QT slow speed */
#define BEACON_INTERVAL_DEF_QT 20 /* beacon interval, in unit of 1024TU */
#define DTIM_INTERVAL_DEF_QT 1 /* DTIM interval, in unit of beacon interval */
#define TBTT_ALIGN_LEEWAY_US 100 /* min leeway before first TBTT in us */
/* Software feature flag defines used by wlfeatureflag */
#define WL_SWFL_NOHWRADIO 0x0004
#define WL_SWFL_FLOWCONTROL 0x0008 /* Enable backpressure to OS stack */
#define WL_SWFL_WLBSSSORT 0x0010 /* Per-port supports sorting of BSS */
/* n-mode support capability */
/* 2x2 includes both 1x1 & 2x2 devices
* reserved #define 2 for future when we want to separate 1x1 & 2x2 and
* control it independently
*/
#define WL_11N_2x2 1
#define WL_11N_3x3 3
#define WL_11N_4x4 4
/* define 11n feature disable flags */
#define WLFEATURE_DISABLE_11N 0x00000001
#define WLFEATURE_DISABLE_11N_STBC_TX 0x00000002
#define WLFEATURE_DISABLE_11N_STBC_RX 0x00000004
#define WLFEATURE_DISABLE_11N_SGI_TX 0x00000008
#define WLFEATURE_DISABLE_11N_SGI_RX 0x00000010
#define WLFEATURE_DISABLE_11N_AMPDU_TX 0x00000020
#define WLFEATURE_DISABLE_11N_AMPDU_RX 0x00000040
#define WLFEATURE_DISABLE_11N_GF 0x00000080
#define EDCF_ACI_MASK 0x60
#define EDCF_ACI_SHIFT 5
#define EDCF_ECWMIN_MASK 0x0f
#define EDCF_ECWMAX_SHIFT 4
#define EDCF_AIFSN_MASK 0x0f
#define EDCF_AIFSN_MAX 15
#define EDCF_ECWMAX_MASK 0xf0
#define EDCF_AC_BE_TXOP_STA 0x0000
#define EDCF_AC_BK_TXOP_STA 0x0000
#define EDCF_AC_VO_ACI_STA 0x62
#define EDCF_AC_VO_ECW_STA 0x32
#define EDCF_AC_VI_ACI_STA 0x42
#define EDCF_AC_VI_ECW_STA 0x43
#define EDCF_AC_BK_ECW_STA 0xA4
#define EDCF_AC_VI_TXOP_STA 0x005e
#define EDCF_AC_VO_TXOP_STA 0x002f
#define EDCF_AC_BE_ACI_STA 0x03
#define EDCF_AC_BE_ECW_STA 0xA4
#define EDCF_AC_BK_ACI_STA 0x27
#define EDCF_AC_VO_TXOP_AP 0x002f
#define EDCF_TXOP2USEC(txop) ((txop) << 5)
#define EDCF_ECW2CW(exp) ((1 << (exp)) - 1)
#define APHY_SYMBOL_TIME 4
#define APHY_PREAMBLE_TIME 16
#define APHY_SIGNAL_TIME 4
#define APHY_SIFS_TIME 16
#define APHY_SERVICE_NBITS 16
#define APHY_TAIL_NBITS 6
#define BPHY_SIFS_TIME 10
#define BPHY_PLCP_SHORT_TIME 96
#define PREN_PREAMBLE 24
#define PREN_MM_EXT 12
#define PREN_PREAMBLE_EXT 4
#define DOT11_MAC_HDR_LEN 24
#define DOT11_ACK_LEN 10
#define DOT11_BA_LEN 4
#define DOT11_OFDM_SIGNAL_EXTENSION 6
#define DOT11_MIN_FRAG_LEN 256
#define DOT11_RTS_LEN 16
#define DOT11_CTS_LEN 10
#define DOT11_BA_BITMAP_LEN 128
#define DOT11_MIN_BEACON_PERIOD 1
#define DOT11_MAX_BEACON_PERIOD 0xFFFF
#define DOT11_MAXNUMFRAGS 16
#define DOT11_MAX_FRAG_LEN 2346
#define BPHY_PLCP_TIME 192
#define RIFS_11N_TIME 2
#define WME_VER 1
#define WME_SUBTYPE_PARAM_IE 1
#define WME_TYPE 2
#define WME_OUI "\x00\x50\xf2"
#define AC_BE 0
#define AC_BK 1
#define AC_VI 2
#define AC_VO 3
/*
* driver maintains internal 'tick'(wlc->pub->now) which increments in 1s OS timer(soft
* watchdog) it is not a wall clock and won't increment when driver is in "down" state
* this low resolution driver tick can be used for maintenance tasks such as phy
* calibration and scb update
*/
/* To inform the ucode of the last mcast frame posted so that it can clear moredata bit */
#define BCMCFID(wlc, fid) brcms_b_write_shm((wlc)->hw, M_BCMC_FID, (fid))
#define BRCMS_WAR16165(wlc) (wlc->pub->sih->bustype == PCI_BUS && \
(!AP_ENAB(wlc->pub)) && (wlc->war16165))
/* debug/trace */
uint brcm_msg_level =
#if defined(BCMDBG)
LOG_ERROR_VAL;
#else
0;
#endif /* BCMDBG */
/* Find basic rate for a given rate */
#define BRCMS_BASIC_RATE(wlc, rspec) (IS_MCS(rspec) ? \
(wlc)->band->basic_rate[mcs_table[rspec & RSPEC_RATE_MASK].leg_ofdm] : \
(wlc)->band->basic_rate[rspec & RSPEC_RATE_MASK])
#define FRAMETYPE(r, mimoframe) (IS_MCS(r) ? mimoframe : (IS_CCK(r) ? FT_CCK : FT_OFDM))
#define RFDISABLE_DEFAULT 10000000 /* rfdisable delay timer 500 ms, runs of ALP clock */
#define BRCMS_TEMPSENSE_PERIOD 10 /* 10 second timeout */
#define SCAN_IN_PROGRESS(x) 0
#define EPI_VERSION_NUM 0x054b0b00
#ifdef BCMDBG
/* pointer to most recently allocated wl/wlc */
static struct brcms_c_info *wlc_info_dbg = (struct brcms_c_info *) (NULL);
#endif
const u8 prio2fifo[NUMPRIO] = {
TX_AC_BE_FIFO, /* 0 BE AC_BE Best Effort */
TX_AC_BK_FIFO, /* 1 BK AC_BK Background */
TX_AC_BK_FIFO, /* 2 -- AC_BK Background */
TX_AC_BE_FIFO, /* 3 EE AC_BE Best Effort */
TX_AC_VI_FIFO, /* 4 CL AC_VI Video */
TX_AC_VI_FIFO, /* 5 VI AC_VI Video */
TX_AC_VO_FIFO, /* 6 VO AC_VO Voice */
TX_AC_VO_FIFO /* 7 NC AC_VO Voice */
};
/* precedences numbers for wlc queues. These are twice as may levels as
* 802.1D priorities.
* Odd numbers are used for HI priority traffic at same precedence levels
* These constants are used ONLY by wlc_prio2prec_map. Do not use them elsewhere.
*/
#define _BRCMS_PREC_NONE 0 /* None = - */
#define _BRCMS_PREC_BK 2 /* BK - Background */
#define _BRCMS_PREC_BE 4 /* BE - Best-effort */
#define _BRCMS_PREC_EE 6 /* EE - Excellent-effort */
#define _BRCMS_PREC_CL 8 /* CL - Controlled Load */
#define _BRCMS_PREC_VI 10 /* Vi - Video */
#define _BRCMS_PREC_VO 12 /* Vo - Voice */
#define _BRCMS_PREC_NC 14 /* NC - Network Control */
#define MAXMACLIST 64 /* max # source MAC matches */
#define BCN_TEMPLATE_COUNT 2
/* The BSS is generating beacons in HW */
#define BRCMS_BSSCFG_HW_BCN 0x20
#define HWBCN_ENAB(cfg) (((cfg)->flags & BRCMS_BSSCFG_HW_BCN) != 0)
#define MBSS_BCN_ENAB(cfg) 0
#define MBSS_PRB_ENAB(cfg) 0
#define SOFTBCN_ENAB(pub) (0)
/* 802.1D Priority to precedence queue mapping */
const u8 wlc_prio2prec_map[] = {
_BRCMS_PREC_BE, /* 0 BE - Best-effort */
_BRCMS_PREC_BK, /* 1 BK - Background */
_BRCMS_PREC_NONE, /* 2 None = - */
_BRCMS_PREC_EE, /* 3 EE - Excellent-effort */
_BRCMS_PREC_CL, /* 4 CL - Controlled Load */
_BRCMS_PREC_VI, /* 5 Vi - Video */
_BRCMS_PREC_VO, /* 6 Vo - Voice */
_BRCMS_PREC_NC, /* 7 NC - Network Control */
};
/* Check if a particular BSS config is AP or STA */
#define BSSCFG_AP(cfg) (0)
#define BSSCFG_STA(cfg) (1)
#define BSSCFG_IBSS(cfg) (!(cfg)->BSS)
/* As above for all non-NULL BSS configs */
#define FOREACH_BSS(wlc, idx, cfg) \
for (idx = 0; (int) idx < BRCMS_MAXBSSCFG; idx++) \
if ((cfg = (wlc)->bsscfg[idx]))
/* TX FIFO number to WME/802.1E Access Category */
const u8 wme_fifo2ac[] = { AC_BK, AC_BE, AC_VI, AC_VO, AC_BE, AC_BE };
/* WME/802.1E Access Category to TX FIFO number */
static const u8 wme_ac2fifo[] = { 1, 0, 2, 3 };
static bool in_send_q;
/* Shared memory location index for various AC params */
#define wme_shmemacindex(ac) wme_ac2fifo[ac]
#ifdef BCMDBG
static const char * const fifo_names[] = {
"AC_BK", "AC_BE", "AC_VI", "AC_VO", "BCMC", "ATIM" };
#else
static const char fifo_names[6][0];
#endif
static const u8 acbitmap2maxprio[] = {
PRIO_8021D_BE, PRIO_8021D_BE, PRIO_8021D_BK, PRIO_8021D_BK,
PRIO_8021D_VI, PRIO_8021D_VI, PRIO_8021D_VI, PRIO_8021D_VI,
PRIO_8021D_VO, PRIO_8021D_VO, PRIO_8021D_VO, PRIO_8021D_VO,
PRIO_8021D_VO, PRIO_8021D_VO, PRIO_8021D_VO, PRIO_8021D_VO
};
/* currently the best mechanism for determining SIFS is the band in use */
#define SIFS(band) ((band)->bandtype == BRCM_BAND_5G ? APHY_SIFS_TIME : \
BPHY_SIFS_TIME);
/* local prototypes */
static u16 brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc,
struct ieee80211_hw *hw,
struct sk_buff *p,
struct scb *scb, uint frag,
uint nfrags, uint queue,
uint next_frag_len,
struct wsec_key *key,
ratespec_t rspec_override);
static void brcms_c_bss_default_init(struct brcms_c_info *wlc);
static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc);
static ratespec_t mac80211_wlc_set_nrate(struct brcms_c_info *wlc,
struct brcms_band *cur_band,
u32 int_val);
static void brcms_c_tx_prec_map_init(struct brcms_c_info *wlc);
static void brcms_c_watchdog(void *arg);
static void brcms_c_watchdog_by_timer(void *arg);
static u16 brcms_c_rate_shm_offset(struct brcms_c_info *wlc, u8 rate);
static int brcms_c_set_rateset(struct brcms_c_info *wlc, wlc_rateset_t *rs_arg);
static u8 brcms_c_local_constraint_qdbm(struct brcms_c_info *wlc);
/* send and receive */
static struct brcms_txq_info *brcms_c_txq_alloc(struct brcms_c_info *wlc);
static void brcms_c_txq_free(struct brcms_c_info *wlc,
struct brcms_txq_info *qi);
static void brcms_c_txflowcontrol_signal(struct brcms_c_info *wlc,
struct brcms_txq_info *qi,
bool on, int prio);
static void brcms_c_txflowcontrol_reset(struct brcms_c_info *wlc);
static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, ratespec_t rate,
uint length, u8 *plcp);
static void brcms_c_compute_ofdm_plcp(ratespec_t rate, uint length, u8 *plcp);
static void brcms_c_compute_mimo_plcp(ratespec_t rate, uint length, u8 *plcp);
static u16 brcms_c_compute_frame_dur(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type, uint next_frag_len);
static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc,
struct brcms_d11rxhdr *rxh);
static void brcms_c_recvctl(struct brcms_c_info *wlc,
struct d11rxhdr *rxh, struct sk_buff *p);
static uint brcms_c_calc_frame_len(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type, uint dur);
static uint brcms_c_calc_ack_time(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type);
static uint brcms_c_calc_cts_time(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type);
/* interrupt, up/down, band */
static void brcms_c_setband(struct brcms_c_info *wlc, uint bandunit);
static chanspec_t brcms_c_init_chanspec(struct brcms_c_info *wlc);
static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc,
chanspec_t chanspec);
static void brcms_c_bsinit(struct brcms_c_info *wlc);
static int brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle,
bool isOFDM, bool writeToShm);
static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc);
static bool brcms_c_radio_monitor_start(struct brcms_c_info *wlc);
static void brcms_c_radio_timer(void *arg);
static void brcms_c_radio_enable(struct brcms_c_info *wlc);
static void brcms_c_radio_upd(struct brcms_c_info *wlc);
/* scan, association, BSS */
static uint brcms_c_calc_ba_time(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type);
static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap);
static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val);
static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val);
static void brcms_c_war16165(struct brcms_c_info *wlc, bool tx);
static void brcms_c_wme_retries_write(struct brcms_c_info *wlc);
static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc);
static uint brcms_c_attach_module(struct brcms_c_info *wlc);
static void brcms_c_detach_module(struct brcms_c_info *wlc);
static void brcms_c_timers_deinit(struct brcms_c_info *wlc);
static void brcms_c_down_led_upd(struct brcms_c_info *wlc);
static uint brcms_c_down_del_timer(struct brcms_c_info *wlc);
static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc);
static int _brcms_c_ioctl(struct brcms_c_info *wlc, int cmd, void *arg, int len,
struct brcms_c_if *wlcif);
/* conditions under which the PM bit should be set in outgoing frames and STAY_AWAKE is meaningful
*/
bool brcms_c_ps_allowed(struct brcms_c_info *wlc)
{
int idx;
struct brcms_bss_cfg *cfg;
/* disallow PS when one of the following global conditions meets */
if (!wlc->pub->associated)
return false;
/* disallow PS when one of these meets when not scanning */
if (AP_ACTIVE(wlc) || wlc->monitor)
return false;
for (idx = 0; idx < BRCMS_MAXBSSCFG; idx++) {
cfg = wlc->bsscfg[idx];
if (cfg && BSSCFG_STA(cfg) && cfg->associated) {
/*
* disallow PS when one of the following
* bsscfg specific conditions meets
*/
if (!cfg->BSS || !BRCMS_PORTOPEN(cfg))
return false;
if (!cfg->dtim_programmed)
return false;
}
}
return true;
}
void brcms_c_reset(struct brcms_c_info *wlc)
{
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
/* slurp up hw mac counters before core reset */
brcms_c_statsupd(wlc);
/* reset our snapshot of macstat counters */
memset((char *)wlc->core->macstat_snapshot, 0,
sizeof(struct macstat));
brcms_b_reset(wlc->hw);
}
void brcms_c_fatal_error(struct brcms_c_info *wlc)
{
wiphy_err(wlc->wiphy, "wl%d: fatal error, reinitializing\n",
wlc->pub->unit);
brcms_init(wlc->wl);
}
/* Return the channel the driver should initialize during brcms_c_init.
* the channel may have to be changed from the currently configured channel
* if other configurations are in conflict (bandlocked, 11n mode disabled,
* invalid channel for current country, etc.)
*/
static chanspec_t brcms_c_init_chanspec(struct brcms_c_info *wlc)
{
chanspec_t chanspec =
1 | WL_CHANSPEC_BW_20 | WL_CHANSPEC_CTL_SB_NONE |
WL_CHANSPEC_BAND_2G;
return chanspec;
}
struct scb global_scb;
static void brcms_c_init_scb(struct brcms_c_info *wlc, struct scb *scb)
{
int i;
scb->flags = SCB_WMECAP | SCB_HTCAP;
for (i = 0; i < NUMPRIO; i++)
scb->seqnum[i] = 0;
}
void brcms_c_init(struct brcms_c_info *wlc)
{
d11regs_t *regs;
chanspec_t chanspec;
int i;
struct brcms_bss_cfg *bsscfg;
bool mute = false;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
regs = wlc->regs;
/* This will happen if a big-hammer was executed. In that case, we want to go back
* to the channel that we were on and not new channel
*/
if (wlc->pub->associated)
chanspec = wlc->home_chanspec;
else
chanspec = brcms_c_init_chanspec(wlc);
brcms_b_init(wlc->hw, chanspec, mute);
/* update beacon listen interval */
brcms_c_bcn_li_upd(wlc);
/* the world is new again, so is our reported rate */
brcms_c_reprate_init(wlc);
/* write ethernet address to core */
FOREACH_BSS(wlc, i, bsscfg) {
brcms_c_set_mac(bsscfg);
brcms_c_set_bssid(bsscfg);
}
/* Update tsf_cfprep if associated and up */
if (wlc->pub->associated) {
FOREACH_BSS(wlc, i, bsscfg) {
if (bsscfg->up) {
u32 bi;
/* get beacon period and convert to uS */
bi = bsscfg->current_bss->beacon_period << 10;
/*
* update since init path would reset
* to default value
*/
W_REG(&regs->tsf_cfprep,
(bi << CFPREP_CBI_SHIFT));
/* Update maccontrol PM related bits */
brcms_c_set_ps_ctrl(wlc);
break;
}
}
}
brcms_c_bandinit_ordered(wlc, chanspec);
brcms_c_init_scb(wlc, &global_scb);
/* init probe response timeout */
brcms_c_write_shm(wlc, M_PRS_MAXTIME, wlc->prb_resp_timeout);
/* init max burst txop (framebursting) */
brcms_c_write_shm(wlc, M_MBURST_TXOP,
(wlc->
_rifs ? (EDCF_AC_VO_TXOP_AP << 5) : MAXFRAMEBURST_TXOP));
/* initialize maximum allowed duty cycle */
brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_ofdm, true, true);
brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_cck, false, true);
/* Update some shared memory locations related to max AMPDU size allowed to received */
brcms_c_ampdu_shm_upd(wlc->ampdu);
/* band-specific inits */
brcms_c_bsinit(wlc);
/* Enable EDCF mode (while the MAC is suspended) */
if (EDCF_ENAB(wlc->pub)) {
OR_REG(&regs->ifs_ctl, IFS_USEEDCF);
brcms_c_edcf_setparams(wlc, false);
}
/* Init precedence maps for empty FIFOs */
brcms_c_tx_prec_map_init(wlc);
/* read the ucode version if we have not yet done so */
if (wlc->ucode_rev == 0) {
wlc->ucode_rev =
brcms_c_read_shm(wlc, M_BOM_REV_MAJOR) << NBITS(u16);
wlc->ucode_rev |= brcms_c_read_shm(wlc, M_BOM_REV_MINOR);
}
/* ..now really unleash hell (allow the MAC out of suspend) */
brcms_c_enable_mac(wlc);
/* clear tx flow control */
brcms_c_txflowcontrol_reset(wlc);
/* clear tx data fifo suspends */
wlc->tx_suspended = false;
/* enable the RF Disable Delay timer */
W_REG(&wlc->regs->rfdisabledly, RFDISABLE_DEFAULT);
/* initialize mpc delay */
wlc->mpc_delay_off = wlc->mpc_dlycnt = BRCMS_MPC_MIN_DELAYCNT;
/*
* Initialize WME parameters; if they haven't been set by some other
* mechanism (IOVar, etc) then read them from the hardware.
*/
if (BRCMS_WME_RETRY_SHORT_GET(wlc, 0) == 0) {
/* Uninitialized; read from HW */
int ac;
for (ac = 0; ac < AC_COUNT; ac++) {
wlc->wme_retries[ac] =
brcms_c_read_shm(wlc, M_AC_TXLMT_ADDR(ac));
}
}
}
void brcms_c_mac_bcn_promisc_change(struct brcms_c_info *wlc, bool promisc)
{
wlc->bcnmisc_monitor = promisc;
brcms_c_mac_bcn_promisc(wlc);
}
void brcms_c_mac_bcn_promisc(struct brcms_c_info *wlc)
{
if ((AP_ENAB(wlc->pub) && (N_ENAB(wlc->pub) || wlc->band->gmode)) ||
wlc->bcnmisc_ibss || wlc->bcnmisc_scan || wlc->bcnmisc_monitor)
brcms_c_mctrl(wlc, MCTL_BCNS_PROMISC, MCTL_BCNS_PROMISC);
else
brcms_c_mctrl(wlc, MCTL_BCNS_PROMISC, 0);
}
/* set or clear maccontrol bits MCTL_PROMISC and MCTL_KEEPCONTROL */
void brcms_c_mac_promisc(struct brcms_c_info *wlc)
{
u32 promisc_bits = 0;
/* promiscuous mode just sets MCTL_PROMISC
* Note: APs get all BSS traffic without the need to set the MCTL_PROMISC bit
* since all BSS data traffic is directed at the AP
*/
if (PROMISC_ENAB(wlc->pub) && !AP_ENAB(wlc->pub))
promisc_bits |= MCTL_PROMISC;
/* monitor mode needs both MCTL_PROMISC and MCTL_KEEPCONTROL
* Note: monitor mode also needs MCTL_BCNS_PROMISC, but that is
* handled in brcms_c_mac_bcn_promisc()
*/
if (MONITOR_ENAB(wlc))
promisc_bits |= MCTL_PROMISC | MCTL_KEEPCONTROL;
brcms_c_mctrl(wlc, MCTL_PROMISC | MCTL_KEEPCONTROL, promisc_bits);
}
/* push sw hps and wake state through hardware */
void brcms_c_set_ps_ctrl(struct brcms_c_info *wlc)
{
u32 v1, v2;
bool hps;
bool awake_before;
hps = PS_ALLOWED(wlc);
BCMMSG(wlc->wiphy, "wl%d: hps %d\n", wlc->pub->unit, hps);
v1 = R_REG(&wlc->regs->maccontrol);
v2 = MCTL_WAKE;
if (hps)
v2 |= MCTL_HPS;
brcms_c_mctrl(wlc, MCTL_WAKE | MCTL_HPS, v2);
awake_before = ((v1 & MCTL_WAKE) || ((v1 & MCTL_HPS) == 0));
if (!awake_before)
brcms_b_wait_for_wake(wlc->hw);
}
/*
* Write this BSS config's MAC address to core.
* Updates RXE match engine.
*/
int brcms_c_set_mac(struct brcms_bss_cfg *cfg)
{
int err = 0;
struct brcms_c_info *wlc = cfg->wlc;
if (cfg == wlc->cfg) {
/* enter the MAC addr into the RXE match registers */
brcms_c_set_addrmatch(wlc, RCM_MAC_OFFSET, cfg->cur_etheraddr);
}
brcms_c_ampdu_macaddr_upd(wlc);
return err;
}
/* Write the BSS config's BSSID address to core (set_bssid in d11procs.tcl).
* Updates RXE match engine.
*/
void brcms_c_set_bssid(struct brcms_bss_cfg *cfg)
{
struct brcms_c_info *wlc = cfg->wlc;
/* if primary config, we need to update BSSID in RXE match registers */
if (cfg == wlc->cfg) {
brcms_c_set_addrmatch(wlc, RCM_BSSID_OFFSET, cfg->BSSID);
}
#ifdef SUPPORT_HWKEYS
else if (BSSCFG_STA(cfg) && cfg->BSS) {
brcms_c_rcmta_add_bssid(wlc, cfg);
}
#endif
}
/*
* Suspend the the MAC and update the slot timing
* for standard 11b/g (20us slots) or shortslot 11g (9us slots).
*/
void brcms_c_switch_shortslot(struct brcms_c_info *wlc, bool shortslot)
{
int idx;
struct brcms_bss_cfg *cfg;
/* use the override if it is set */
if (wlc->shortslot_override != BRCMS_SHORTSLOT_AUTO)
shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON);
if (wlc->shortslot == shortslot)
return;
wlc->shortslot = shortslot;
/* update the capability based on current shortslot mode */
FOREACH_BSS(wlc, idx, cfg) {
if (!cfg->associated)
continue;
cfg->current_bss->capability &=
~WLAN_CAPABILITY_SHORT_SLOT_TIME;
if (wlc->shortslot)
cfg->current_bss->capability |=
WLAN_CAPABILITY_SHORT_SLOT_TIME;
}
brcms_b_set_shortslot(wlc->hw, shortslot);
}
static u8 brcms_c_local_constraint_qdbm(struct brcms_c_info *wlc)
{
u8 local;
s16 local_max;
local = BRCMS_TXPWR_MAX;
if (wlc->pub->associated &&
(brcmu_chspec_ctlchan(wlc->chanspec) ==
brcmu_chspec_ctlchan(wlc->home_chanspec))) {
/* get the local power constraint if we are on the AP's
* channel [802.11h, 7.3.2.13]
*/
/* Clamp the value between 0 and BRCMS_TXPWR_MAX w/o
* overflowing the target */
local_max =
(wlc->txpwr_local_max -
wlc->txpwr_local_constraint) * BRCMS_TXPWR_DB_FACTOR;
if (local_max > 0 && local_max < BRCMS_TXPWR_MAX)
return (u8) local_max;
if (local_max < 0)
return 0;
}
return local;
}
/* propagate home chanspec to all bsscfgs in case bsscfg->current_bss->chanspec is referenced */
void brcms_c_set_home_chanspec(struct brcms_c_info *wlc, chanspec_t chanspec)
{
if (wlc->home_chanspec != chanspec) {
int idx;
struct brcms_bss_cfg *cfg;
wlc->home_chanspec = chanspec;
FOREACH_BSS(wlc, idx, cfg) {
if (!cfg->associated)
continue;
cfg->current_bss->chanspec = chanspec;
}
}
}
static void brcms_c_set_phy_chanspec(struct brcms_c_info *wlc,
chanspec_t chanspec)
{
/* Save our copy of the chanspec */
wlc->chanspec = chanspec;
/* Set the chanspec and power limits for this locale after computing
* any 11h local tx power constraints.
*/
brcms_c_channel_set_chanspec(wlc->cmi, chanspec,
brcms_c_local_constraint_qdbm(wlc));
if (wlc->stf->ss_algosel_auto)
brcms_c_stf_ss_algo_channel_get(wlc, &wlc->stf->ss_algo_channel,
chanspec);
brcms_c_stf_ss_update(wlc, wlc->band);
}
void brcms_c_set_chanspec(struct brcms_c_info *wlc, chanspec_t chanspec)
{
uint bandunit;
bool switchband = false;
chanspec_t old_chanspec = wlc->chanspec;
if (!brcms_c_valid_chanspec_db(wlc->cmi, chanspec)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Bad channel %d\n",
wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec));
return;
}
/* Switch bands if necessary */
if (NBANDS(wlc) > 1) {
bandunit = CHSPEC_BANDUNIT(chanspec);
if (wlc->band->bandunit != bandunit || wlc->bandinit_pending) {
switchband = true;
if (wlc->bandlocked) {
wiphy_err(wlc->wiphy, "wl%d: %s: chspec %d "
"band is locked!\n",
wlc->pub->unit, __func__,
CHSPEC_CHANNEL(chanspec));
return;
}
/*
* should the setband call come after the
* brcms_b_chanspec() ? if the setband updates
* (brcms_c_bsinit) use low level calls to inspect and
* set state, the state inspected may be from the wrong
* band, or the following brcms_b_set_chanspec() may
* undo the work.
*/
brcms_c_setband(wlc, bandunit);
}
}
/* sync up phy/radio chanspec */
brcms_c_set_phy_chanspec(wlc, chanspec);
/* init antenna selection */
if (CHSPEC_WLC_BW(old_chanspec) != CHSPEC_WLC_BW(chanspec)) {
brcms_c_antsel_init(wlc->asi);
/* Fix the hardware rateset based on bw.
* Mainly add MCS32 for 40Mhz, remove MCS 32 for 20Mhz
*/
brcms_c_rateset_bw_mcs_filter(&wlc->band->hw_rateset,
wlc->band->
mimo_cap_40 ? CHSPEC_WLC_BW(chanspec)
: 0);
}
/* update some mac configuration since chanspec changed */
brcms_c_ucode_mac_upd(wlc);
}
ratespec_t brcms_c_lowest_basic_rspec(struct brcms_c_info *wlc,
wlc_rateset_t *rs)
{
ratespec_t lowest_basic_rspec;
uint i;
/* Use the lowest basic rate */
lowest_basic_rspec = rs->rates[0] & BRCMS_RATE_MASK;
for (i = 0; i < rs->count; i++) {
if (rs->rates[i] & BRCMS_RATE_FLAG) {
lowest_basic_rspec = rs->rates[i] & BRCMS_RATE_MASK;
break;
}
}
#if NCONF
/* pick siso/cdd as default for OFDM (note no basic rate MCSs are supported yet) */
if (IS_OFDM(lowest_basic_rspec)) {
lowest_basic_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT);
}
#endif
return lowest_basic_rspec;
}
/* This function changes the phytxctl for beacon based on current beacon ratespec AND txant
* setting as per this table:
* ratespec CCK ant = wlc->stf->txant
* OFDM ant = 3
*/
void brcms_c_beacon_phytxctl_txant_upd(struct brcms_c_info *wlc,
ratespec_t bcn_rspec)
{
u16 phyctl;
u16 phytxant = wlc->stf->phytxant;
u16 mask = PHY_TXC_ANT_MASK;
/* for non-siso rates or default setting, use the available chains */
if (BRCMS_PHY_11N_CAP(wlc->band))
phytxant = brcms_c_stf_phytxchain_sel(wlc, bcn_rspec);
phyctl = brcms_c_read_shm(wlc, M_BCN_PCTLWD);
phyctl = (phyctl & ~mask) | phytxant;
brcms_c_write_shm(wlc, M_BCN_PCTLWD, phyctl);
}
/* centralized protection config change function to simplify debugging, no consistency checking
* this should be called only on changes to avoid overhead in periodic function
*/
void brcms_c_protection_upd(struct brcms_c_info *wlc, uint idx, int val)
{
BCMMSG(wlc->wiphy, "idx %d, val %d\n", idx, val);
switch (idx) {
case BRCMS_PROT_G_SPEC:
wlc->protection->_g = (bool) val;
break;
case BRCMS_PROT_G_OVR:
wlc->protection->g_override = (s8) val;
break;
case BRCMS_PROT_G_USER:
wlc->protection->gmode_user = (u8) val;
break;
case BRCMS_PROT_OVERLAP:
wlc->protection->overlap = (s8) val;
break;
case BRCMS_PROT_N_USER:
wlc->protection->nmode_user = (s8) val;
break;
case BRCMS_PROT_N_CFG:
wlc->protection->n_cfg = (s8) val;
break;
case BRCMS_PROT_N_CFG_OVR:
wlc->protection->n_cfg_override = (s8) val;
break;
case BRCMS_PROT_N_NONGF:
wlc->protection->nongf = (bool) val;
break;
case BRCMS_PROT_N_NONGF_OVR:
wlc->protection->nongf_override = (s8) val;
break;
case BRCMS_PROT_N_PAM_OVR:
wlc->protection->n_pam_override = (s8) val;
break;
case BRCMS_PROT_N_OBSS:
wlc->protection->n_obss = (bool) val;
break;
default:
break;
}
}
static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val)
{
wlc->ht_cap.cap_info &= ~(IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_SGI_40);
wlc->ht_cap.cap_info |= (val & BRCMS_N_SGI_20) ?
IEEE80211_HT_CAP_SGI_20 : 0;
wlc->ht_cap.cap_info |= (val & BRCMS_N_SGI_40) ?
IEEE80211_HT_CAP_SGI_40 : 0;
if (wlc->pub->up) {
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, true);
}
}
static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val)
{
wlc->stf->ldpc = val;
wlc->ht_cap.cap_info &= ~IEEE80211_HT_CAP_LDPC_CODING;
if (wlc->stf->ldpc != OFF)
wlc->ht_cap.cap_info |= IEEE80211_HT_CAP_LDPC_CODING;
if (wlc->pub->up) {
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, true);
wlc_phy_ldpc_override_set(wlc->band->pi, (val ? true : false));
}
}
/*
* ucode, hwmac update
* Channel dependent updates for ucode and hw
*/
static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc)
{
/* enable or disable any active IBSSs depending on whether or not
* we are on the home channel
*/
if (wlc->home_chanspec == BRCMS_BAND_PI_RADIO_CHANSPEC) {
if (wlc->pub->associated) {
/* BMAC_NOTE: This is something that should be fixed in ucode inits.
* I think that the ucode inits set up the bcn templates and shm values
* with a bogus beacon. This should not be done in the inits. If ucode needs
* to set up a beacon for testing, the test routines should write it down,
* not expect the inits to populate a bogus beacon.
*/
if (BRCMS_PHY_11N_CAP(wlc->band)) {
brcms_c_write_shm(wlc, M_BCN_TXTSF_OFFSET,
wlc->band->bcntsfoff);
}
}
} else {
/* disable an active IBSS if we are not on the home channel */
}
/* update the various promisc bits */
brcms_c_mac_bcn_promisc(wlc);
brcms_c_mac_promisc(wlc);
}
static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc,
chanspec_t chanspec)
{
wlc_rateset_t default_rateset;
uint parkband;
uint i, band_order[2];
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
/*
* We might have been bandlocked during down and the chip power-cycled (hibernate).
* figure out the right band to park on
*/
if (wlc->bandlocked || NBANDS(wlc) == 1) {
/* updated in brcms_c_bandlock() */
parkband = wlc->band->bandunit;
band_order[0] = band_order[1] = parkband;
} else {
/* park on the band of the specified chanspec */
parkband = CHSPEC_BANDUNIT(chanspec);
/* order so that parkband initialize last */
band_order[0] = parkband ^ 1;
band_order[1] = parkband;
}
/* make each band operational, software state init */
for (i = 0; i < NBANDS(wlc); i++) {
uint j = band_order[i];
wlc->band = wlc->bandstate[j];
brcms_default_rateset(wlc, &default_rateset);
/* fill in hw_rate */
brcms_c_rateset_filter(&default_rateset, &wlc->band->hw_rateset,
false, BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK,
(bool) N_ENAB(wlc->pub));
/* init basic rate lookup */
brcms_c_rate_lookup_init(wlc, &default_rateset);
}
/* sync up phy/radio chanspec */
brcms_c_set_phy_chanspec(wlc, chanspec);
}
/* band-specific init */
static void brcms_c_bsinit(struct brcms_c_info *wlc)
{
BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n",
wlc->pub->unit, wlc->band->bandunit);
/* write ucode ACK/CTS rate table */
brcms_c_set_ratetable(wlc);
/* update some band specific mac configuration */
brcms_c_ucode_mac_upd(wlc);
/* init antenna selection */
brcms_c_antsel_init(wlc->asi);
}
/* switch to and initialize new band */
static void brcms_c_setband(struct brcms_c_info *wlc,
uint bandunit)
{
int idx;
struct brcms_bss_cfg *cfg;
wlc->band = wlc->bandstate[bandunit];
if (!wlc->pub->up)
return;
/* wait for at least one beacon before entering sleeping state */
for (idx = 0; idx < BRCMS_MAXBSSCFG; idx++) {
cfg = wlc->bsscfg[idx];
if (cfg && BSSCFG_STA(cfg) && cfg->associated)
cfg->PMawakebcn = true;
}
brcms_c_set_ps_ctrl(wlc);
/* band-specific initializations */
brcms_c_bsinit(wlc);
}
/* Initialize a WME Parameter Info Element with default STA parameters from WMM Spec, Table 12 */
void
brcms_c_wme_initparams_sta(struct brcms_c_info *wlc, struct wme_param_ie *pe)
{
static const struct wme_param_ie stadef = {
WME_OUI,
WME_TYPE,
WME_SUBTYPE_PARAM_IE,
WME_VER,
0,
0,
{
{EDCF_AC_BE_ACI_STA, EDCF_AC_BE_ECW_STA,
cpu_to_le16(EDCF_AC_BE_TXOP_STA)},
{EDCF_AC_BK_ACI_STA, EDCF_AC_BK_ECW_STA,
cpu_to_le16(EDCF_AC_BK_TXOP_STA)},
{EDCF_AC_VI_ACI_STA, EDCF_AC_VI_ECW_STA,
cpu_to_le16(EDCF_AC_VI_TXOP_STA)},
{EDCF_AC_VO_ACI_STA, EDCF_AC_VO_ECW_STA,
cpu_to_le16(EDCF_AC_VO_TXOP_STA)}
}
};
memcpy(pe, &stadef, sizeof(*pe));
}
void brcms_c_wme_setparams(struct brcms_c_info *wlc, u16 aci,
const struct ieee80211_tx_queue_params *params,
bool suspend)
{
int i;
struct shm_acparams acp_shm;
u16 *shm_entry;
/* Only apply params if the core is out of reset and has clocks */
if (!wlc->clk) {
wiphy_err(wlc->wiphy, "wl%d: %s : no-clock\n", wlc->pub->unit,
__func__);
return;
}
do {
memset((char *)&acp_shm, 0, sizeof(struct shm_acparams));
/* fill in shm ac params struct */
acp_shm.txop = le16_to_cpu(params->txop);
/* convert from units of 32us to us for ucode */
wlc->edcf_txop[aci & 0x3] = acp_shm.txop =
EDCF_TXOP2USEC(acp_shm.txop);
acp_shm.aifs = (params->aifs & EDCF_AIFSN_MASK);
if (aci == AC_VI && acp_shm.txop == 0
&& acp_shm.aifs < EDCF_AIFSN_MAX)
acp_shm.aifs++;
if (acp_shm.aifs < EDCF_AIFSN_MIN
|| acp_shm.aifs > EDCF_AIFSN_MAX) {
wiphy_err(wlc->wiphy, "wl%d: edcf_setparams: bad "
"aifs %d\n", wlc->pub->unit, acp_shm.aifs);
continue;
}
acp_shm.cwmin = params->cw_min;
acp_shm.cwmax = params->cw_max;
acp_shm.cwcur = acp_shm.cwmin;
acp_shm.bslots =
R_REG(&wlc->regs->tsf_random) & acp_shm.cwcur;
acp_shm.reggap = acp_shm.bslots + acp_shm.aifs;
/* Indicate the new params to the ucode */
acp_shm.status = brcms_c_read_shm(wlc, (M_EDCF_QINFO +
wme_shmemacindex(aci) *
M_EDCF_QLEN +
M_EDCF_STATUS_OFF));
acp_shm.status |= WME_STATUS_NEWAC;
/* Fill in shm acparam table */
shm_entry = (u16 *) &acp_shm;
for (i = 0; i < (int)sizeof(struct shm_acparams); i += 2)
brcms_c_write_shm(wlc,
M_EDCF_QINFO +
wme_shmemacindex(aci) * M_EDCF_QLEN + i,
*shm_entry++);
} while (0);
if (suspend)
brcms_c_suspend_mac_and_wait(wlc);
if (suspend)
brcms_c_enable_mac(wlc);
}
void brcms_c_edcf_setparams(struct brcms_c_info *wlc, bool suspend)
{
u16 aci;
int i_ac;
struct edcf_acparam *edcf_acp;
struct ieee80211_tx_queue_params txq_pars;
struct ieee80211_tx_queue_params *params = &txq_pars;
/*
* AP uses AC params from wme_param_ie_ap.
* AP advertises AC params from wme_param_ie.
* STA uses AC params from wme_param_ie.
*/
edcf_acp = (struct edcf_acparam *) &wlc->wme_param_ie.acparam[0];
for (i_ac = 0; i_ac < AC_COUNT; i_ac++, edcf_acp++) {
/* find out which ac this set of params applies to */
aci = (edcf_acp->ACI & EDCF_ACI_MASK) >> EDCF_ACI_SHIFT;
/* fill in shm ac params struct */
params->txop = edcf_acp->TXOP;
params->aifs = edcf_acp->ACI;
/* CWmin = 2^(ECWmin) - 1 */
params->cw_min = EDCF_ECW2CW(edcf_acp->ECW & EDCF_ECWMIN_MASK);
/* CWmax = 2^(ECWmax) - 1 */
params->cw_max = EDCF_ECW2CW((edcf_acp->ECW & EDCF_ECWMAX_MASK)
>> EDCF_ECWMAX_SHIFT);
brcms_c_wme_setparams(wlc, aci, params, suspend);
}
if (suspend)
brcms_c_suspend_mac_and_wait(wlc);
if (AP_ENAB(wlc->pub) && WME_ENAB(wlc->pub)) {
brcms_c_update_beacon(wlc);
brcms_c_update_probe_resp(wlc, false);
}
if (suspend)
brcms_c_enable_mac(wlc);
}
bool brcms_c_timers_init(struct brcms_c_info *wlc, int unit)
{
wlc->wdtimer = brcms_init_timer(wlc->wl, brcms_c_watchdog_by_timer,
wlc, "watchdog");
if (!wlc->wdtimer) {
wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for wdtimer "
"failed\n", unit);
goto fail;
}
wlc->radio_timer = brcms_init_timer(wlc->wl, brcms_c_radio_timer,
wlc, "radio");
if (!wlc->radio_timer) {
wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for radio_timer "
"failed\n", unit);
goto fail;
}
return true;
fail:
return false;
}
/*
* Initialize brcms_c_info default values ...
* may get overrides later in this function
*/
void brcms_c_info_init(struct brcms_c_info *wlc, int unit)
{
int i;
/* Assume the device is there until proven otherwise */
wlc->device_present = true;
/* Save our copy of the chanspec */
wlc->chanspec = CH20MHZ_CHSPEC(1);
/* various 802.11g modes */
wlc->shortslot = false;
wlc->shortslot_override = BRCMS_SHORTSLOT_AUTO;
brcms_c_protection_upd(wlc, BRCMS_PROT_G_OVR, BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_G_SPEC, false);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG_OVR,
BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_CFG, BRCMS_N_PROTECTION_OFF);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF_OVR,
BRCMS_PROTECTION_AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_NONGF, false);
brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR, AUTO);
brcms_c_protection_upd(wlc, BRCMS_PROT_OVERLAP,
BRCMS_PROTECTION_CTL_OVERLAP);
/* 802.11g draft 4.0 NonERP elt advertisement */
wlc->include_legacy_erp = true;
wlc->stf->ant_rx_ovr = ANT_RX_DIV_DEF;
wlc->stf->txant = ANT_TX_DEF;
wlc->prb_resp_timeout = BRCMS_PRB_RESP_TIMEOUT;
wlc->usr_fragthresh = DOT11_DEFAULT_FRAG_LEN;
for (i = 0; i < NFIFO; i++)
wlc->fragthresh[i] = DOT11_DEFAULT_FRAG_LEN;
wlc->RTSThresh = DOT11_DEFAULT_RTS_LEN;
/* default rate fallback retry limits */
wlc->SFBL = RETRY_SHORT_FB;
wlc->LFBL = RETRY_LONG_FB;
/* default mac retry limits */
wlc->SRL = RETRY_SHORT_DEF;
wlc->LRL = RETRY_LONG_DEF;
/* Set flag to indicate that hw keys should be used when available. */
wlc->wsec_swkeys = false;
/* init the 4 static WEP default keys */
for (i = 0; i < WSEC_MAX_DEFAULT_KEYS; i++) {
wlc->wsec_keys[i] = wlc->wsec_def_keys[i];
wlc->wsec_keys[i]->idx = (u8) i;
}
/* WME QoS mode is Auto by default */
wlc->pub->_wme = AUTO;
#ifdef BCMSDIODEV_ENABLED
wlc->pub->_priofc = true; /* enable priority flow control for sdio dongle */
#endif
wlc->pub->_ampdu = AMPDU_AGG_HOST;
wlc->pub->bcmerror = 0;
wlc->pub->_coex = ON;
/* initialize mpc delay */
wlc->mpc_delay_off = wlc->mpc_dlycnt = BRCMS_MPC_MIN_DELAYCNT;
}
static bool brcms_c_state_bmac_sync(struct brcms_c_info *wlc)
{
struct brcms_b_state state_bmac;
if (brcms_b_state_get(wlc->hw, &state_bmac) != 0)
return false;
wlc->machwcap = state_bmac.machwcap;
brcms_c_protection_upd(wlc, BRCMS_PROT_N_PAM_OVR,
(s8) state_bmac.preamble_ovr);
return true;
}
static uint brcms_c_attach_module(struct brcms_c_info *wlc)
{
uint err = 0;
uint unit;
unit = wlc->pub->unit;
wlc->asi = brcms_c_antsel_attach(wlc);
if (wlc->asi == NULL) {
wiphy_err(wlc->wiphy, "wl%d: attach: antsel_attach "
"failed\n", unit);
err = 44;
goto fail;
}
wlc->ampdu = brcms_c_ampdu_attach(wlc);
if (wlc->ampdu == NULL) {
wiphy_err(wlc->wiphy, "wl%d: attach: ampdu_attach "
"failed\n", unit);
err = 50;
goto fail;
}
if ((brcms_c_stf_attach(wlc) != 0)) {
wiphy_err(wlc->wiphy, "wl%d: attach: stf_attach "
"failed\n", unit);
err = 68;
goto fail;
}
fail:
return err;
}
struct brcms_pub *brcms_c_pub(void *wlc)
{
return ((struct brcms_c_info *) wlc)->pub;
}
#define CHIP_SUPPORTS_11N(wlc) 1
/*
* The common driver entry routine. Error codes should be unique
*/
void *brcms_c_attach(struct brcms_info *wl, u16 vendor, u16 device, uint unit,
bool piomode, void *regsva, uint bustype, void *btparam,
uint *perr)
{
struct brcms_c_info *wlc;
uint err = 0;
uint j;
struct brcms_pub *pub;
uint n_disabled;
/* allocate struct brcms_c_info state and its substructures */
wlc = (struct brcms_c_info *) brcms_c_attach_malloc(unit, &err, device);
if (wlc == NULL)
goto fail;
wlc->wiphy = wl->wiphy;
pub = wlc->pub;
#if defined(BCMDBG)
wlc_info_dbg = wlc;
#endif
wlc->band = wlc->bandstate[0];
wlc->core = wlc->corestate;
wlc->wl = wl;
pub->unit = unit;
pub->_piomode = piomode;
wlc->bandinit_pending = false;
/* populate struct brcms_c_info with default values */
brcms_c_info_init(wlc, unit);
/* update sta/ap related parameters */
brcms_c_ap_upd(wlc);
/* 11n_disable nvram */
n_disabled = getintvar(pub->vars, "11n_disable");
/*
* low level attach steps(all hw accesses go
* inside, no more in rest of the attach)
*/
err = brcms_b_attach(wlc, vendor, device, unit, piomode, regsva,
bustype, btparam);
if (err)
goto fail;
/* for some states, due to different info pointer(e,g, wlc, wlc_hw) or master/slave split,
* HIGH driver(both monolithic and HIGH_ONLY) needs to sync states FROM BMAC portion driver
*/
if (!brcms_c_state_bmac_sync(wlc)) {
err = 20;
goto fail;
}
pub->phy_11ncapable = BRCMS_PHY_11N_CAP(wlc->band);
/* propagate *vars* from BMAC driver to high driver */
brcms_b_copyfrom_vars(wlc->hw, &pub->vars, &wlc->vars_size);
/* set maximum allowed duty cycle */
wlc->tx_duty_cycle_ofdm =
(u16) getintvar(pub->vars, "tx_duty_cycle_ofdm");
wlc->tx_duty_cycle_cck =
(u16) getintvar(pub->vars, "tx_duty_cycle_cck");
brcms_c_stf_phy_chain_calc(wlc);
/* txchain 1: txant 0, txchain 2: txant 1 */
if (BRCMS_ISNPHY(wlc->band) && (wlc->stf->txstreams == 1))
wlc->stf->txant = wlc->stf->hw_txchain - 1;
/* push to BMAC driver */
wlc_phy_stf_chain_init(wlc->band->pi, wlc->stf->hw_txchain,
wlc->stf->hw_rxchain);
/* pull up some info resulting from the low attach */
{
int i;
for (i = 0; i < NFIFO; i++)
wlc->core->txavail[i] = wlc->hw->txavail[i];
}
brcms_b_hw_etheraddr(wlc->hw, wlc->perm_etheraddr);
memcpy(&pub->cur_etheraddr, &wlc->perm_etheraddr, ETH_ALEN);
for (j = 0; j < NBANDS(wlc); j++) {
/* Use band 1 for single band 11a */
if (IS_SINGLEBAND_5G(wlc->deviceid))
j = BAND_5G_INDEX;
wlc->band = wlc->bandstate[j];
if (!brcms_c_attach_stf_ant_init(wlc)) {
err = 24;
goto fail;
}
/* default contention windows size limits */
wlc->band->CWmin = APHY_CWMIN;
wlc->band->CWmax = PHY_CWMAX;
/* init gmode value */
if (BAND_2G(wlc->band->bandtype)) {
wlc->band->gmode = GMODE_AUTO;
brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER,
wlc->band->gmode);
}
/* init _n_enab supported mode */
if (BRCMS_PHY_11N_CAP(wlc->band) && CHIP_SUPPORTS_11N(wlc)) {
if (n_disabled & WLFEATURE_DISABLE_11N) {
pub->_n_enab = OFF;
brcms_c_protection_upd(wlc, BRCMS_PROT_N_USER,
OFF);
} else {
pub->_n_enab = SUPPORT_11N;
brcms_c_protection_upd(wlc, BRCMS_PROT_N_USER,
((pub->_n_enab ==
SUPPORT_11N) ? WL_11N_2x2 :
WL_11N_3x3));
}
}
/* init per-band default rateset, depend on band->gmode */
brcms_default_rateset(wlc, &wlc->band->defrateset);
/* fill in hw_rateset (used early by BRCM_SET_RATESET) */
brcms_c_rateset_filter(&wlc->band->defrateset,
&wlc->band->hw_rateset, false,
BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK,
(bool) N_ENAB(wlc->pub));
}
/* update antenna config due to wlc->stf->txant/txchain/ant_rx_ovr change */
brcms_c_stf_phy_txant_upd(wlc);
/* attach each modules */
err = brcms_c_attach_module(wlc);
if (err != 0)
goto fail;
if (!brcms_c_timers_init(wlc, unit)) {
wiphy_err(wl->wiphy, "wl%d: %s: init_timer failed\n", unit,
__func__);
err = 32;
goto fail;
}
/* depend on rateset, gmode */
wlc->cmi = brcms_c_channel_mgr_attach(wlc);
if (!wlc->cmi) {
wiphy_err(wl->wiphy, "wl%d: %s: channel_mgr_attach failed"
"\n", unit, __func__);
err = 33;
goto fail;
}
/* init default when all parameters are ready, i.e. ->rateset */
brcms_c_bss_default_init(wlc);
/*
* Complete the wlc default state initializations..
*/
/* allocate our initial queue */
wlc->pkt_queue = brcms_c_txq_alloc(wlc);
if (wlc->pkt_queue == NULL) {
wiphy_err(wl->wiphy, "wl%d: %s: failed to malloc tx queue\n",
unit, __func__);
err = 100;
goto fail;
}
wlc->bsscfg[0] = wlc->cfg;
wlc->cfg->_idx = 0;
wlc->cfg->wlc = wlc;
pub->txmaxpkts = MAXTXPKTS;
brcms_c_wme_initparams_sta(wlc, &wlc->wme_param_ie);
wlc->mimoft = FT_HT;
wlc->ht_cap.cap_info = HT_CAP;
if (HT_ENAB(wlc->pub))
wlc->stf->ldpc = AUTO;
wlc->mimo_40txbw = AUTO;
wlc->ofdm_40txbw = AUTO;
wlc->cck_40txbw = AUTO;
brcms_c_update_mimo_band_bwcap(wlc, BRCMS_N_BW_20IN2G_40IN5G);
/* Set default values of SGI */
if (BRCMS_SGI_CAP_PHY(wlc)) {
brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
BRCMS_N_SGI_40));
wlc->sgi_tx = AUTO;
} else if (BRCMS_ISSSLPNPHY(wlc->band)) {
brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
BRCMS_N_SGI_40));
wlc->sgi_tx = AUTO;
} else {
brcms_c_ht_update_sgi_rx(wlc, 0);
wlc->sgi_tx = OFF;
}
/* *******nvram 11n config overrides Start ********* */
/* apply the sgi override from nvram conf */
if (n_disabled & WLFEATURE_DISABLE_11N_SGI_TX)
wlc->sgi_tx = OFF;
if (n_disabled & WLFEATURE_DISABLE_11N_SGI_RX)
brcms_c_ht_update_sgi_rx(wlc, 0);
/* apply the stbc override from nvram conf */
if (n_disabled & WLFEATURE_DISABLE_11N_STBC_TX) {
wlc->bandstate[BAND_2G_INDEX]->band_stf_stbc_tx = OFF;
wlc->bandstate[BAND_5G_INDEX]->band_stf_stbc_tx = OFF;
wlc->ht_cap.cap_info &= ~IEEE80211_HT_CAP_TX_STBC;
}
if (n_disabled & WLFEATURE_DISABLE_11N_STBC_RX)
brcms_c_stf_stbc_rx_set(wlc, HT_CAP_RX_STBC_NO);
/* apply the GF override from nvram conf */
if (n_disabled & WLFEATURE_DISABLE_11N_GF)
wlc->ht_cap.cap_info &= ~IEEE80211_HT_CAP_GRN_FLD;
/* initialize radio_mpc_disable according to wlc->mpc */
brcms_c_radio_mpc_upd(wlc);
brcms_b_antsel_set(wlc->hw, wlc->asi->antsel_avail);
if (perr)
*perr = 0;
return (void *)wlc;
fail:
wiphy_err(wl->wiphy, "wl%d: %s: failed with err %d\n",
unit, __func__, err);
if (wlc)
brcms_c_detach(wlc);
if (perr)
*perr = err;
return NULL;
}
static void brcms_c_attach_antgain_init(struct brcms_c_info *wlc)
{
uint unit;
unit = wlc->pub->unit;
if ((wlc->band->antgain == -1) && (wlc->pub->sromrev == 1)) {
/* default antenna gain for srom rev 1 is 2 dBm (8 qdbm) */
wlc->band->antgain = 8;
} else if (wlc->band->antgain == -1) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in"
" srom, using 2dB\n", unit, __func__);
wlc->band->antgain = 8;
} else {
s8 gain, fract;
/* Older sroms specified gain in whole dbm only. In order
* be able to specify qdbm granularity and remain backward compatible
* the whole dbms are now encoded in only low 6 bits and remaining qdbms
* are encoded in the hi 2 bits. 6 bit signed number ranges from
* -32 - 31. Examples: 0x1 = 1 db,
* 0xc1 = 1.75 db (1 + 3 quarters),
* 0x3f = -1 (-1 + 0 quarters),
* 0x7f = -.75 (-1 in low 6 bits + 1 quarters in hi 2 bits) = -3 qdbm.
* 0xbf = -.50 (-1 in low 6 bits + 2 quarters in hi 2 bits) = -2 qdbm.
*/
gain = wlc->band->antgain & 0x3f;
gain <<= 2; /* Sign extend */
gain >>= 2;
fract = (wlc->band->antgain & 0xc0) >> 6;
wlc->band->antgain = 4 * gain + fract;
}
}
static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc)
{
int aa;
uint unit;
char *vars;
int bandtype;
unit = wlc->pub->unit;
vars = wlc->pub->vars;
bandtype = wlc->band->bandtype;
/* get antennas available */
aa = (s8) getintvar(vars, (BAND_5G(bandtype) ? "aa5g" : "aa2g"));
if (aa == 0)
aa = (s8) getintvar(vars,
(BAND_5G(bandtype) ? "aa1" : "aa0"));
if ((aa < 1) || (aa > 15)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in"
" srom (0x%x), using 3\n", unit, __func__, aa);
aa = 3;
}
/* reset the defaults if we have a single antenna */
if (aa == 1) {
wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_0;
wlc->stf->txant = ANT_TX_FORCE_0;
} else if (aa == 2) {
wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_1;
wlc->stf->txant = ANT_TX_FORCE_1;
} else {
}
/* Compute Antenna Gain */
wlc->band->antgain =
(s8) getintvar(vars, (BAND_5G(bandtype) ? "ag1" : "ag0"));
brcms_c_attach_antgain_init(wlc);
return true;
}
static void brcms_c_timers_deinit(struct brcms_c_info *wlc)
{
/* free timer state */
if (wlc->wdtimer) {
brcms_free_timer(wlc->wl, wlc->wdtimer);
wlc->wdtimer = NULL;
}
if (wlc->radio_timer) {
brcms_free_timer(wlc->wl, wlc->radio_timer);
wlc->radio_timer = NULL;
}
}
static void brcms_c_detach_module(struct brcms_c_info *wlc)
{
if (wlc->asi) {
brcms_c_antsel_detach(wlc->asi);
wlc->asi = NULL;
}
if (wlc->ampdu) {
brcms_c_ampdu_detach(wlc->ampdu);
wlc->ampdu = NULL;
}
brcms_c_stf_detach(wlc);
}
/*
* Return a count of the number of driver callbacks still pending.
*
* General policy is that brcms_c_detach can only dealloc/free software states.
* It can NOT touch hardware registers since the d11core may be in reset and
* clock may not be available.
* One exception is sb register access, which is possible if crystal is turned
* on after "down" state, driver should avoid software timer with the exception
* of radio_monitor.
*/
uint brcms_c_detach(struct brcms_c_info *wlc)
{
uint callbacks = 0;
if (wlc == NULL)
return 0;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
callbacks += brcms_b_detach(wlc);
/* delete software timers */
if (!brcms_c_radio_monitor_stop(wlc))
callbacks++;
brcms_c_channel_mgr_detach(wlc->cmi);
brcms_c_timers_deinit(wlc);
brcms_c_detach_module(wlc);
while (wlc->tx_queues != NULL)
brcms_c_txq_free(wlc, wlc->tx_queues);
brcms_c_detach_mfree(wlc);
return callbacks;
}
/* update state that depends on the current value of "ap" */
void brcms_c_ap_upd(struct brcms_c_info *wlc)
{
if (AP_ENAB(wlc->pub))
/* AP: short not allowed, but not enforced */
wlc->PLCPHdr_override = BRCMS_PLCP_AUTO;
else
/* STA-BSS; short capable */
wlc->PLCPHdr_override = BRCMS_PLCP_SHORT;
/* fixup mpc */
wlc->mpc = true;
}
/* read hwdisable state and propagate to wlc flag */
static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc)
{
if (wlc->pub->wlfeatureflag & WL_SWFL_NOHWRADIO || wlc->pub->hw_off)
return;
if (brcms_b_radio_read_hwdisabled(wlc->hw)) {
mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
} else {
mboolclr(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
}
}
/* return true if Minimum Power Consumption should be entered, false otherwise */
bool brcms_c_is_non_delay_mpc(struct brcms_c_info *wlc)
{
return false;
}
bool brcms_c_ismpc(struct brcms_c_info *wlc)
{
return (wlc->mpc_delay_off == 0) && (brcms_c_is_non_delay_mpc(wlc));
}
void brcms_c_radio_mpc_upd(struct brcms_c_info *wlc)
{
bool mpc_radio, radio_state;
/*
* Clear the WL_RADIO_MPC_DISABLE bit when mpc feature is disabled
* in case the WL_RADIO_MPC_DISABLE bit was set. Stop the radio
* monitor also when WL_RADIO_MPC_DISABLE is the only reason that
* the radio is going down.
*/
if (!wlc->mpc) {
if (!wlc->pub->radio_disabled)
return;
mboolclr(wlc->pub->radio_disabled, WL_RADIO_MPC_DISABLE);
brcms_c_radio_upd(wlc);
if (!wlc->pub->radio_disabled)
brcms_c_radio_monitor_stop(wlc);
return;
}
/*
* sync ismpc logic with WL_RADIO_MPC_DISABLE bit in wlc->pub->radio_disabled
* to go ON, always call radio_upd synchronously
* to go OFF, postpone radio_upd to later when context is safe(e.g. watchdog)
*/
radio_state =
(mboolisset(wlc->pub->radio_disabled, WL_RADIO_MPC_DISABLE) ? OFF :
ON);
mpc_radio = (brcms_c_ismpc(wlc) == true) ? OFF : ON;
if (radio_state == ON && mpc_radio == OFF)
wlc->mpc_delay_off = wlc->mpc_dlycnt;
else if (radio_state == OFF && mpc_radio == ON) {
mboolclr(wlc->pub->radio_disabled, WL_RADIO_MPC_DISABLE);
brcms_c_radio_upd(wlc);
if (wlc->mpc_offcnt < BRCMS_MPC_THRESHOLD)
wlc->mpc_dlycnt = BRCMS_MPC_MAX_DELAYCNT;
else
wlc->mpc_dlycnt = BRCMS_MPC_MIN_DELAYCNT;
wlc->mpc_dur += OSL_SYSUPTIME() - wlc->mpc_laston_ts;
}
/* Below logic is meant to capture the transition from mpc off to mpc on for reasons
* other than wlc->mpc_delay_off keeping the mpc off. In that case reset
* wlc->mpc_delay_off to wlc->mpc_dlycnt, so that we restart the countdown of mpc_delay_off
*/
if ((wlc->prev_non_delay_mpc == false) &&
(brcms_c_is_non_delay_mpc(wlc) == true) && wlc->mpc_delay_off) {
wlc->mpc_delay_off = wlc->mpc_dlycnt;
}
wlc->prev_non_delay_mpc = brcms_c_is_non_delay_mpc(wlc);
}
/*
* centralized radio disable/enable function,
* invoke radio enable/disable after updating hwradio status
*/
static void brcms_c_radio_upd(struct brcms_c_info *wlc)
{
if (wlc->pub->radio_disabled) {
brcms_c_radio_disable(wlc);
} else {
brcms_c_radio_enable(wlc);
}
}
/* maintain LED behavior in down state */
static void brcms_c_down_led_upd(struct brcms_c_info *wlc)
{
/* maintain LEDs while in down state, turn on sbclk if not available yet */
/* turn on sbclk if necessary */
if (!AP_ENAB(wlc->pub)) {
brcms_c_pllreq(wlc, true, BRCMS_PLLREQ_FLIP);
brcms_c_pllreq(wlc, false, BRCMS_PLLREQ_FLIP);
}
}
/* update hwradio status and return it */
bool brcms_c_check_radio_disabled(struct brcms_c_info *wlc)
{
brcms_c_radio_hwdisable_upd(wlc);
return mboolisset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE) ? true : false;
}
void brcms_c_radio_disable(struct brcms_c_info *wlc)
{
if (!wlc->pub->up) {
brcms_c_down_led_upd(wlc);
return;
}
brcms_c_radio_monitor_start(wlc);
brcms_down(wlc->wl);
}
static void brcms_c_radio_enable(struct brcms_c_info *wlc)
{
if (wlc->pub->up)
return;
if (DEVICEREMOVED(wlc))
return;
brcms_up(wlc->wl);
}
/* periodical query hw radio button while driver is "down" */
static void brcms_c_radio_timer(void *arg)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
if (DEVICEREMOVED(wlc)) {
wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit,
__func__);
brcms_down(wlc->wl);
return;
}
/* cap mpc off count */
if (wlc->mpc_offcnt < BRCMS_MPC_MAX_DELAYCNT)
wlc->mpc_offcnt++;
brcms_c_radio_hwdisable_upd(wlc);
brcms_c_radio_upd(wlc);
}
static bool brcms_c_radio_monitor_start(struct brcms_c_info *wlc)
{
/* Don't start the timer if HWRADIO feature is disabled */
if (wlc->radio_monitor || (wlc->pub->wlfeatureflag & WL_SWFL_NOHWRADIO))
return true;
wlc->radio_monitor = true;
brcms_c_pllreq(wlc, true, BRCMS_PLLREQ_RADIO_MON);
brcms_add_timer(wlc->wl, wlc->radio_timer, TIMER_INTERVAL_RADIOCHK,
true);
return true;
}
bool brcms_c_radio_monitor_stop(struct brcms_c_info *wlc)
{
if (!wlc->radio_monitor)
return true;
wlc->radio_monitor = false;
brcms_c_pllreq(wlc, false, BRCMS_PLLREQ_RADIO_MON);
return brcms_del_timer(wlc->wl, wlc->radio_timer);
}
static void brcms_c_watchdog_by_timer(void *arg)
{
brcms_c_watchdog(arg);
}
/* common watchdog code */
static void brcms_c_watchdog(void *arg)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
int i;
struct brcms_bss_cfg *cfg;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
if (!wlc->pub->up)
return;
if (DEVICEREMOVED(wlc)) {
wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit,
__func__);
brcms_down(wlc->wl);
return;
}
/* increment second count */
wlc->pub->now++;
/* delay radio disable */
if (wlc->mpc_delay_off) {
if (--wlc->mpc_delay_off == 0) {
mboolset(wlc->pub->radio_disabled,
WL_RADIO_MPC_DISABLE);
if (wlc->mpc && brcms_c_ismpc(wlc))
wlc->mpc_offcnt = 0;
wlc->mpc_laston_ts = OSL_SYSUPTIME();
}
}
/* mpc sync */
brcms_c_radio_mpc_upd(wlc);
/* radio sync: sw/hw/mpc --> radio_disable/radio_enable */
brcms_c_radio_hwdisable_upd(wlc);
brcms_c_radio_upd(wlc);
/* if radio is disable, driver may be down, quit here */
if (wlc->pub->radio_disabled)
return;
brcms_b_watchdog(wlc);
/* occasionally sample mac stat counters to detect 16-bit counter wrap */
if ((wlc->pub->now % SW_TIMER_MAC_STAT_UPD) == 0)
brcms_c_statsupd(wlc);
/* Manage TKIP countermeasures timers */
FOREACH_BSS(wlc, i, cfg) {
if (cfg->tk_cm_dt) {
cfg->tk_cm_dt--;
}
if (cfg->tk_cm_bt) {
cfg->tk_cm_bt--;
}
}
/* Call any registered watchdog handlers */
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (wlc->modulecb[i].watchdog_fn)
wlc->modulecb[i].watchdog_fn(wlc->modulecb[i].hdl);
}
if (BRCMS_ISNPHY(wlc->band) && !wlc->pub->tempsense_disable &&
((wlc->pub->now - wlc->tempsense_lasttime) >=
BRCMS_TEMPSENSE_PERIOD)) {
wlc->tempsense_lasttime = wlc->pub->now;
brcms_c_tempsense_upd(wlc);
}
}
/* make interface operational */
int brcms_c_up(struct brcms_c_info *wlc)
{
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
/* HW is turned off so don't try to access it */
if (wlc->pub->hw_off || DEVICEREMOVED(wlc))
return -ENOMEDIUM;
if (!wlc->pub->hw_up) {
brcms_b_hw_up(wlc->hw);
wlc->pub->hw_up = true;
}
if ((wlc->pub->boardflags & BFL_FEM)
&& (wlc->pub->sih->chip == BCM4313_CHIP_ID)) {
if (wlc->pub->boardrev >= 0x1250
&& (wlc->pub->boardflags & BFL_FEM_BT)) {
brcms_c_mhf(wlc, MHF5, MHF5_4313_GPIOCTRL,
MHF5_4313_GPIOCTRL, BRCM_BAND_ALL);
} else {
brcms_c_mhf(wlc, MHF4, MHF4_EXTPA_ENABLE,
MHF4_EXTPA_ENABLE, BRCM_BAND_ALL);
}
}
/*
* Need to read the hwradio status here to cover the case where the system
* is loaded with the hw radio disabled. We do not want to bring the driver up in this case.
* if radio is disabled, abort up, lower power, start radio timer and return 0(for NDIS)
* don't call radio_update to avoid looping brcms_c_up.
*
* brcms_b_up_prep() returns either 0 or -BCME_RADIOOFF only
*/
if (!wlc->pub->radio_disabled) {
int status = brcms_b_up_prep(wlc->hw);
if (status == -ENOMEDIUM) {
if (!mboolisset
(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE)) {
int idx;
struct brcms_bss_cfg *bsscfg;
mboolset(wlc->pub->radio_disabled,
WL_RADIO_HW_DISABLE);
FOREACH_BSS(wlc, idx, bsscfg) {
if (!BSSCFG_STA(bsscfg)
|| !bsscfg->enable || !bsscfg->BSS)
continue;
wiphy_err(wlc->wiphy, "wl%d.%d: up"
": rfdisable -> "
"bsscfg_disable()\n",
wlc->pub->unit, idx);
}
}
}
}
if (wlc->pub->radio_disabled) {
brcms_c_radio_monitor_start(wlc);
return 0;
}
/* brcms_b_up_prep has done brcms_c_corereset(). so clk is on, set it */
wlc->clk = true;
brcms_c_radio_monitor_stop(wlc);
/* Set EDCF hostflags */
if (EDCF_ENAB(wlc->pub)) {
brcms_c_mhf(wlc, MHF1, MHF1_EDCF, MHF1_EDCF, BRCM_BAND_ALL);
} else {
brcms_c_mhf(wlc, MHF1, MHF1_EDCF, 0, BRCM_BAND_ALL);
}
if (BRCMS_WAR16165(wlc))
brcms_c_mhf(wlc, MHF2, MHF2_PCISLOWCLKWAR, MHF2_PCISLOWCLKWAR,
BRCM_BAND_ALL);
brcms_init(wlc->wl);
wlc->pub->up = true;
if (wlc->bandinit_pending) {
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_set_chanspec(wlc, wlc->default_bss->chanspec);
wlc->bandinit_pending = false;
brcms_c_enable_mac(wlc);
}
brcms_b_up_finish(wlc->hw);
/* other software states up after ISR is running */
/* start APs that were to be brought up but are not up yet */
/* if (AP_ENAB(wlc->pub)) brcms_c_restart_ap(wlc->ap); */
/* Program the TX wme params with the current settings */
brcms_c_wme_retries_write(wlc);
/* start one second watchdog timer */
brcms_add_timer(wlc->wl, wlc->wdtimer, TIMER_INTERVAL_WATCHDOG, true);
wlc->WDarmed = true;
/* ensure antenna config is up to date */
brcms_c_stf_phy_txant_upd(wlc);
/* ensure LDPC config is in sync */
brcms_c_ht_update_ldpc(wlc, wlc->stf->ldpc);
return 0;
}
/* Initialize the base precedence map for dequeueing from txq based on WME settings */
static void brcms_c_tx_prec_map_init(struct brcms_c_info *wlc)
{
wlc->tx_prec_map = BRCMS_PREC_BMP_ALL;
memset(wlc->fifo2prec_map, 0, NFIFO * sizeof(u16));
/* For non-WME, both fifos have overlapping MAXPRIO. So just disable all precedences
* if either is full.
*/
if (!EDCF_ENAB(wlc->pub)) {
wlc->fifo2prec_map[TX_DATA_FIFO] = BRCMS_PREC_BMP_ALL;
wlc->fifo2prec_map[TX_CTL_FIFO] = BRCMS_PREC_BMP_ALL;
} else {
wlc->fifo2prec_map[TX_AC_BK_FIFO] = BRCMS_PREC_BMP_AC_BK;
wlc->fifo2prec_map[TX_AC_BE_FIFO] = BRCMS_PREC_BMP_AC_BE;
wlc->fifo2prec_map[TX_AC_VI_FIFO] = BRCMS_PREC_BMP_AC_VI;
wlc->fifo2prec_map[TX_AC_VO_FIFO] = BRCMS_PREC_BMP_AC_VO;
}
}
static uint brcms_c_down_del_timer(struct brcms_c_info *wlc)
{
uint callbacks = 0;
return callbacks;
}
/*
* Mark the interface nonoperational, stop the software mechanisms,
* disable the hardware, free any transient buffer state.
* Return a count of the number of driver callbacks still pending.
*/
uint brcms_c_down(struct brcms_c_info *wlc)
{
uint callbacks = 0;
int i;
bool dev_gone = false;
struct brcms_txq_info *qi;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
/* check if we are already in the going down path */
if (wlc->going_down) {
wiphy_err(wlc->wiphy, "wl%d: %s: Driver going down so return"
"\n", wlc->pub->unit, __func__);
return 0;
}
if (!wlc->pub->up)
return callbacks;
/* in between, mpc could try to bring down again.. */
wlc->going_down = true;
callbacks += brcms_b_bmac_down_prep(wlc->hw);
dev_gone = DEVICEREMOVED(wlc);
/* Call any registered down handlers */
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (wlc->modulecb[i].down_fn)
callbacks +=
wlc->modulecb[i].down_fn(wlc->modulecb[i].hdl);
}
/* cancel the watchdog timer */
if (wlc->WDarmed) {
if (!brcms_del_timer(wlc->wl, wlc->wdtimer))
callbacks++;
wlc->WDarmed = false;
}
/* cancel all other timers */
callbacks += brcms_c_down_del_timer(wlc);
wlc->pub->up = false;
wlc_phy_mute_upd(wlc->band->pi, false, PHY_MUTE_ALL);
/* clear txq flow control */
brcms_c_txflowcontrol_reset(wlc);
/* flush tx queues */
for (qi = wlc->tx_queues; qi != NULL; qi = qi->next) {
brcmu_pktq_flush(&qi->q, true, NULL, NULL);
}
callbacks += brcms_b_down_finish(wlc->hw);
/* brcms_b_down_finish has done brcms_c_coredisable(). so clk is off */
wlc->clk = false;
wlc->going_down = false;
return callbacks;
}
/* Set the current gmode configuration */
int brcms_c_set_gmode(struct brcms_c_info *wlc, u8 gmode, bool config)
{
int ret = 0;
uint i;
wlc_rateset_t rs;
/* Default to 54g Auto */
/* Advertise and use shortslot (-1/0/1 Auto/Off/On) */
s8 shortslot = BRCMS_SHORTSLOT_AUTO;
bool shortslot_restrict = false; /* Restrict association to stations that support shortslot
*/
bool ofdm_basic = false; /* Make 6, 12, and 24 basic rates */
/* Advertise and use short preambles (-1/0/1 Auto/Off/On) */
int preamble = BRCMS_PLCP_LONG;
bool preamble_restrict = false; /* Restrict association to stations that support short
* preambles
*/
struct brcms_band *band;
/* if N-support is enabled, allow Gmode set as long as requested
* Gmode is not GMODE_LEGACY_B
*/
if (N_ENAB(wlc->pub) && gmode == GMODE_LEGACY_B)
return -ENOTSUPP;
/* verify that we are dealing with 2G band and grab the band pointer */
if (wlc->band->bandtype == BRCM_BAND_2G)
band = wlc->band;
else if ((NBANDS(wlc) > 1) &&
(wlc->bandstate[OTHERBANDUNIT(wlc)]->bandtype == BRCM_BAND_2G))
band = wlc->bandstate[OTHERBANDUNIT(wlc)];
else
return -EINVAL;
/* Legacy or bust when no OFDM is supported by regulatory */
if ((brcms_c_channel_locale_flags_in_band(wlc->cmi, band->bandunit) &
BRCMS_NO_OFDM) && (gmode != GMODE_LEGACY_B))
return -EINVAL;
/* update configuration value */
if (config == true)
brcms_c_protection_upd(wlc, BRCMS_PROT_G_USER, gmode);
/* Clear supported rates filter */
memset(&wlc->sup_rates_override, 0, sizeof(wlc_rateset_t));
/* Clear rateset override */
memset(&rs, 0, sizeof(wlc_rateset_t));
switch (gmode) {
case GMODE_LEGACY_B:
shortslot = BRCMS_SHORTSLOT_OFF;
brcms_c_rateset_copy(&gphy_legacy_rates, &rs);
break;
case GMODE_LRS:
if (AP_ENAB(wlc->pub))
brcms_c_rateset_copy(&cck_rates,
&wlc->sup_rates_override);
break;
case GMODE_AUTO:
/* Accept defaults */
break;
case GMODE_ONLY:
ofdm_basic = true;
preamble = BRCMS_PLCP_SHORT;
preamble_restrict = true;
break;
case GMODE_PERFORMANCE:
if (AP_ENAB(wlc->pub)) /* Put all rates into the Supported Rates element */
brcms_c_rateset_copy(&cck_ofdm_rates,
&wlc->sup_rates_override);
shortslot = BRCMS_SHORTSLOT_ON;
shortslot_restrict = true;
ofdm_basic = true;
preamble = BRCMS_PLCP_SHORT;
preamble_restrict = true;
break;
default:
/* Error */
wiphy_err(wlc->wiphy, "wl%d: %s: invalid gmode %d\n",
wlc->pub->unit, __func__, gmode);
return -ENOTSUPP;
}
/*
* If we are switching to gmode == GMODE_LEGACY_B,
* clean up rate info that may refer to OFDM rates.
*/
if ((gmode == GMODE_LEGACY_B) && (band->gmode != GMODE_LEGACY_B)) {
band->gmode = gmode;
if (band->rspec_override && !IS_CCK(band->rspec_override)) {
band->rspec_override = 0;
brcms_c_reprate_init(wlc);
}
if (band->mrspec_override && !IS_CCK(band->mrspec_override)) {
band->mrspec_override = 0;
}
}
band->gmode = gmode;
wlc->shortslot_override = shortslot;
if (AP_ENAB(wlc->pub)) {
/* wlc->ap->shortslot_restrict = shortslot_restrict; */
wlc->PLCPHdr_override =
(preamble !=
BRCMS_PLCP_LONG) ? BRCMS_PLCP_SHORT : BRCMS_PLCP_AUTO;
}
if ((AP_ENAB(wlc->pub) && preamble != BRCMS_PLCP_LONG)
|| preamble == BRCMS_PLCP_SHORT)
wlc->default_bss->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
else
wlc->default_bss->capability &= ~WLAN_CAPABILITY_SHORT_PREAMBLE;
/* Update shortslot capability bit for AP and IBSS */
if ((AP_ENAB(wlc->pub) && shortslot == BRCMS_SHORTSLOT_AUTO) ||
shortslot == BRCMS_SHORTSLOT_ON)
wlc->default_bss->capability |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
else
wlc->default_bss->capability &=
~WLAN_CAPABILITY_SHORT_SLOT_TIME;
/* Use the default 11g rateset */
if (!rs.count)
brcms_c_rateset_copy(&cck_ofdm_rates, &rs);
if (ofdm_basic) {
for (i = 0; i < rs.count; i++) {
if (rs.rates[i] == BRCM_RATE_6M
|| rs.rates[i] == BRCM_RATE_12M
|| rs.rates[i] == BRCM_RATE_24M)
rs.rates[i] |= BRCMS_RATE_FLAG;
}
}
/* Set default bss rateset */
wlc->default_bss->rateset.count = rs.count;
memcpy(wlc->default_bss->rateset.rates, rs.rates,
sizeof(wlc->default_bss->rateset.rates));
return ret;
}
static int brcms_c_nmode_validate(struct brcms_c_info *wlc, s32 nmode)
{
int err = 0;
switch (nmode) {
case OFF:
break;
case AUTO:
case WL_11N_2x2:
case WL_11N_3x3:
if (!(BRCMS_PHY_11N_CAP(wlc->band)))
err = -EINVAL;
break;
default:
err = -EINVAL;
break;
}
return err;
}
int brcms_c_set_nmode(struct brcms_c_info *wlc, s32 nmode)
{
uint i;
int err;
err = brcms_c_nmode_validate(wlc, nmode);
if (err)
return err;
switch (nmode) {
case OFF:
wlc->pub->_n_enab = OFF;
wlc->default_bss->flags &= ~BRCMS_BSS_HT;
/* delete the mcs rates from the default and hw ratesets */
brcms_c_rateset_mcs_clear(&wlc->default_bss->rateset);
for (i = 0; i < NBANDS(wlc); i++) {
memset(wlc->bandstate[i]->hw_rateset.mcs, 0,
MCSSET_LEN);
if (IS_MCS(wlc->band->rspec_override)) {
wlc->bandstate[i]->rspec_override = 0;
brcms_c_reprate_init(wlc);
}
if (IS_MCS(wlc->band->mrspec_override))
wlc->bandstate[i]->mrspec_override = 0;
}
break;
case AUTO:
if (wlc->stf->txstreams == WL_11N_3x3)
nmode = WL_11N_3x3;
else
nmode = WL_11N_2x2;
case WL_11N_2x2:
case WL_11N_3x3:
/* force GMODE_AUTO if NMODE is ON */
brcms_c_set_gmode(wlc, GMODE_AUTO, true);
if (nmode == WL_11N_3x3)
wlc->pub->_n_enab = SUPPORT_HT;
else
wlc->pub->_n_enab = SUPPORT_11N;
wlc->default_bss->flags |= BRCMS_BSS_HT;
/* add the mcs rates to the default and hw ratesets */
brcms_c_rateset_mcs_build(&wlc->default_bss->rateset,
wlc->stf->txstreams);
for (i = 0; i < NBANDS(wlc); i++)
memcpy(wlc->bandstate[i]->hw_rateset.mcs,
wlc->default_bss->rateset.mcs, MCSSET_LEN);
break;
default:
break;
}
return err;
}
static int brcms_c_set_rateset(struct brcms_c_info *wlc, wlc_rateset_t *rs_arg)
{
wlc_rateset_t rs, new;
uint bandunit;
memcpy(&rs, rs_arg, sizeof(wlc_rateset_t));
/* check for bad count value */
if ((rs.count == 0) || (rs.count > BRCMS_NUMRATES))
return -EINVAL;
/* try the current band */
bandunit = wlc->band->bandunit;
memcpy(&new, &rs, sizeof(wlc_rateset_t));
if (brcms_c_rate_hwrs_filter_sort_validate
(&new, &wlc->bandstate[bandunit]->hw_rateset, true,
wlc->stf->txstreams))
goto good;
/* try the other band */
if (IS_MBAND_UNLOCKED(wlc)) {
bandunit = OTHERBANDUNIT(wlc);
memcpy(&new, &rs, sizeof(wlc_rateset_t));
if (brcms_c_rate_hwrs_filter_sort_validate(&new,
&wlc->
bandstate[bandunit]->
hw_rateset, true,
wlc->stf->txstreams))
goto good;
}
return -EBADE;
good:
/* apply new rateset */
memcpy(&wlc->default_bss->rateset, &new, sizeof(wlc_rateset_t));
memcpy(&wlc->bandstate[bandunit]->defrateset, &new,
sizeof(wlc_rateset_t));
return 0;
}
/* simplified integer set interface for common ioctl handler */
int brcms_c_set(struct brcms_c_info *wlc, int cmd, int arg)
{
return brcms_c_ioctl(wlc, cmd, (void *)&arg, sizeof(arg), NULL);
}
/* simplified integer get interface for common ioctl handler */
int brcms_c_get(struct brcms_c_info *wlc, int cmd, int *arg)
{
return brcms_c_ioctl(wlc, cmd, arg, sizeof(int), NULL);
}
static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc)
{
u8 r;
bool war = false;
if (wlc->cfg->associated)
r = wlc->cfg->current_bss->rateset.rates[0];
else
r = wlc->default_bss->rateset.rates[0];
wlc_phy_ofdm_rateset_war(wlc->band->pi, war);
return;
}
int
brcms_c_ioctl(struct brcms_c_info *wlc, int cmd, void *arg, int len,
struct brcms_c_if *wlcif)
{
return _brcms_c_ioctl(wlc, cmd, arg, len, wlcif);
}
/* common ioctl handler. return: 0=ok, -1=error, positive=particular error */
static int
_brcms_c_ioctl(struct brcms_c_info *wlc, int cmd, void *arg, int len,
struct brcms_c_if *wlcif)
{
int val, *pval;
bool bool_val;
int bcmerror;
struct scb *nextscb;
bool ta_ok;
uint band;
struct brcms_bss_cfg *bsscfg;
struct brcms_bss_info *current_bss;
/* update bsscfg pointer */
bsscfg = wlc->cfg;
current_bss = bsscfg->current_bss;
/* initialize the following to get rid of compiler warning */
nextscb = NULL;
ta_ok = false;
band = 0;
/* If the device is turned off, then it's not "removed" */
if (!wlc->pub->hw_off && DEVICEREMOVED(wlc)) {
wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit,
__func__);
brcms_down(wlc->wl);
return -EBADE;
}
/* default argument is generic integer */
pval = arg ? (int *)arg : NULL;
/* This will prevent the misaligned access */
if (pval && (u32) len >= sizeof(val))
memcpy(&val, pval, sizeof(val));
else
val = 0;
/* bool conversion to avoid duplication below */
bool_val = val != 0;
bcmerror = 0;
if ((arg == NULL) || (len <= 0)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Command %d needs arguments\n",
wlc->pub->unit, __func__, cmd);
bcmerror = -EINVAL;
goto done;
}
switch (cmd) {
case BRCM_SET_CHANNEL:{
chanspec_t chspec = CH20MHZ_CHSPEC(val);
if (val < 0 || val > MAXCHANNEL) {
bcmerror = -EINVAL;
break;
}
if (!brcms_c_valid_chanspec_db(wlc->cmi, chspec)) {
bcmerror = -EINVAL;
break;
}
if (!wlc->pub->up && IS_MBAND_UNLOCKED(wlc)) {
if (wlc->band->bandunit !=
CHSPEC_BANDUNIT(chspec))
wlc->bandinit_pending = true;
else
wlc->bandinit_pending = false;
}
wlc->default_bss->chanspec = chspec;
/* brcms_c_BSSinit() will sanitize the rateset before
* using it.. */
if (wlc->pub->up &&
(BRCMS_BAND_PI_RADIO_CHANSPEC != chspec)) {
brcms_c_set_home_chanspec(wlc, chspec);
brcms_c_suspend_mac_and_wait(wlc);
brcms_c_set_chanspec(wlc, chspec);
brcms_c_enable_mac(wlc);
}
break;
}
case BRCM_SET_SRL:
if (val >= 1 && val <= RETRY_SHORT_MAX) {
int ac;
wlc->SRL = (u16) val;
brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL);
for (ac = 0; ac < AC_COUNT; ac++) {
BRCMS_WME_RETRY_SHORT_SET(wlc, ac, wlc->SRL);
}
brcms_c_wme_retries_write(wlc);
} else
bcmerror = -EINVAL;
break;
case BRCM_SET_LRL:
if (val >= 1 && val <= 255) {
int ac;
wlc->LRL = (u16) val;
brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL);
for (ac = 0; ac < AC_COUNT; ac++) {
BRCMS_WME_RETRY_LONG_SET(wlc, ac, wlc->LRL);
}
brcms_c_wme_retries_write(wlc);
} else
bcmerror = -EINVAL;
break;
case BRCM_GET_CURR_RATESET:{
wl_rateset_t *ret_rs = (wl_rateset_t *) arg;
wlc_rateset_t *rs;
if (wlc->pub->associated)
rs = &current_bss->rateset;
else
rs = &wlc->default_bss->rateset;
if (len < (int)(rs->count + sizeof(rs->count))) {
bcmerror = -EOVERFLOW;
break;
}
/* Copy only legacy rateset section */
ret_rs->count = rs->count;
memcpy(&ret_rs->rates, &rs->rates, rs->count);
break;
}
case BRCM_SET_RATESET:{
wlc_rateset_t rs;
wl_rateset_t *in_rs = (wl_rateset_t *) arg;
if (len < (int)(in_rs->count + sizeof(in_rs->count))) {
bcmerror = -EOVERFLOW;
break;
}
if (in_rs->count > BRCMS_NUMRATES) {
bcmerror = -ENOBUFS;
break;
}
memset(&rs, 0, sizeof(wlc_rateset_t));
/* Copy only legacy rateset section */
rs.count = in_rs->count;
memcpy(&rs.rates, &in_rs->rates, rs.count);
/* merge rateset coming in with the current mcsset */
if (N_ENAB(wlc->pub)) {
if (bsscfg->associated)
memcpy(rs.mcs,
&current_bss->rateset.mcs[0],
MCSSET_LEN);
else
memcpy(rs.mcs,
&wlc->default_bss->rateset.mcs[0],
MCSSET_LEN);
}
bcmerror = brcms_c_set_rateset(wlc, &rs);
if (!bcmerror)
brcms_c_ofdm_rateset_war(wlc);
break;
}
case BRCM_SET_BCNPRD:
/* range [1, 0xffff] */
if (val >= DOT11_MIN_BEACON_PERIOD
&& val <= DOT11_MAX_BEACON_PERIOD)
wlc->default_bss->beacon_period = (u16) val;
else
bcmerror = -EINVAL;
break;
case BRCM_GET_PHYLIST:
{
unsigned char *cp = arg;
if (len < 3) {
bcmerror = -EOVERFLOW;
break;
}
if (BRCMS_ISNPHY(wlc->band))
*cp++ = 'n';
else if (BRCMS_ISLCNPHY(wlc->band))
*cp++ = 'c';
else if (BRCMS_ISSSLPNPHY(wlc->band))
*cp++ = 's';
*cp = '\0';
break;
}
case BRCMS_SET_SHORTSLOT_OVERRIDE:
if (val != BRCMS_SHORTSLOT_AUTO && val != BRCMS_SHORTSLOT_OFF &&
val != BRCMS_SHORTSLOT_ON) {
bcmerror = -EINVAL;
break;
}
wlc->shortslot_override = (s8) val;
/* shortslot is an 11g feature, so no more work if we are
* currently on the 5G band
*/
if (BAND_5G(wlc->band->bandtype))
break;
if (wlc->pub->up && wlc->pub->associated) {
/* let watchdog or beacon processing update shortslot */
} else if (wlc->pub->up) {
/* unassociated shortslot is off */
brcms_c_switch_shortslot(wlc, false);
} else {
/* driver is down, so just update the brcms_c_info
* value */
if (wlc->shortslot_override == BRCMS_SHORTSLOT_AUTO) {
wlc->shortslot = false;
} else {
wlc->shortslot =
(wlc->shortslot_override ==
BRCMS_SHORTSLOT_ON);
}
}
break;
}
done:
if (bcmerror)
wlc->pub->bcmerror = bcmerror;
return bcmerror;
}
/*
* register watchdog and down handlers.
*/
int brcms_c_module_register(struct brcms_pub *pub,
const char *name, void *hdl,
watchdog_fn_t w_fn, down_fn_t d_fn)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
int i;
/* find an empty entry and just add, no duplication check! */
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (wlc->modulecb[i].name[0] == '\0') {
strncpy(wlc->modulecb[i].name, name,
sizeof(wlc->modulecb[i].name) - 1);
wlc->modulecb[i].hdl = hdl;
wlc->modulecb[i].watchdog_fn = w_fn;
wlc->modulecb[i].down_fn = d_fn;
return 0;
}
}
return -ENOSR;
}
/* unregister module callbacks */
int
brcms_c_module_unregister(struct brcms_pub *pub, const char *name, void *hdl)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
int i;
if (wlc == NULL)
return -ENODATA;
for (i = 0; i < BRCMS_MAXMODULES; i++) {
if (!strcmp(wlc->modulecb[i].name, name) &&
(wlc->modulecb[i].hdl == hdl)) {
memset(&wlc->modulecb[i], 0, sizeof(struct modulecb));
return 0;
}
}
/* table not found! */
return -ENODATA;
}
/* Write WME tunable parameters for retransmit/max rate from wlc struct to ucode */
static void brcms_c_wme_retries_write(struct brcms_c_info *wlc)
{
int ac;
/* Need clock to do this */
if (!wlc->clk)
return;
for (ac = 0; ac < AC_COUNT; ac++) {
brcms_c_write_shm(wlc, M_AC_TXLMT_ADDR(ac),
wlc->wme_retries[ac]);
}
}
#ifdef BCMDBG
static const char * const supr_reason[] = {
"None", "PMQ Entry", "Flush request",
"Previous frag failure", "Channel mismatch",
"Lifetime Expiry", "Underflow"
};
static void brcms_c_print_txs_status(u16 s)
{
printk(KERN_DEBUG "[15:12] %d frame attempts\n",
(s & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT);
printk(KERN_DEBUG " [11:8] %d rts attempts\n",
(s & TX_STATUS_RTS_RTX_MASK) >> TX_STATUS_RTS_RTX_SHIFT);
printk(KERN_DEBUG " [7] %d PM mode indicated\n",
((s & TX_STATUS_PMINDCTD) ? 1 : 0));
printk(KERN_DEBUG " [6] %d intermediate status\n",
((s & TX_STATUS_INTERMEDIATE) ? 1 : 0));
printk(KERN_DEBUG " [5] %d AMPDU\n",
(s & TX_STATUS_AMPDU) ? 1 : 0);
printk(KERN_DEBUG " [4:2] %d Frame Suppressed Reason (%s)\n",
((s & TX_STATUS_SUPR_MASK) >> TX_STATUS_SUPR_SHIFT),
supr_reason[(s & TX_STATUS_SUPR_MASK) >> TX_STATUS_SUPR_SHIFT]);
printk(KERN_DEBUG " [1] %d acked\n",
((s & TX_STATUS_ACK_RCV) ? 1 : 0));
}
#endif /* BCMDBG */
void brcms_c_print_txstatus(struct tx_status *txs)
{
#if defined(BCMDBG)
u16 s = txs->status;
u16 ackphyrxsh = txs->ackphyrxsh;
printk(KERN_DEBUG "\ntxpkt (MPDU) Complete\n");
printk(KERN_DEBUG "FrameID: %04x ", txs->frameid);
printk(KERN_DEBUG "TxStatus: %04x", s);
printk(KERN_DEBUG "\n");
brcms_c_print_txs_status(s);
printk(KERN_DEBUG "LastTxTime: %04x ", txs->lasttxtime);
printk(KERN_DEBUG "Seq: %04x ", txs->sequence);
printk(KERN_DEBUG "PHYTxStatus: %04x ", txs->phyerr);
printk(KERN_DEBUG "RxAckRSSI: %04x ",
(ackphyrxsh & PRXS1_JSSI_MASK) >> PRXS1_JSSI_SHIFT);
printk(KERN_DEBUG "RxAckSQ: %04x",
(ackphyrxsh & PRXS1_SQ_MASK) >> PRXS1_SQ_SHIFT);
printk(KERN_DEBUG "\n");
#endif /* defined(BCMDBG) */
}
void brcms_c_statsupd(struct brcms_c_info *wlc)
{
int i;
struct macstat macstats;
#ifdef BCMDBG
u16 delta;
u16 rxf0ovfl;
u16 txfunfl[NFIFO];
#endif /* BCMDBG */
/* if driver down, make no sense to update stats */
if (!wlc->pub->up)
return;
#ifdef BCMDBG
/* save last rx fifo 0 overflow count */
rxf0ovfl = wlc->core->macstat_snapshot->rxf0ovfl;
/* save last tx fifo underflow count */
for (i = 0; i < NFIFO; i++)
txfunfl[i] = wlc->core->macstat_snapshot->txfunfl[i];
#endif /* BCMDBG */
/* Read mac stats from contiguous shared memory */
brcms_b_copyfrom_shm(wlc->hw, M_UCODE_MACSTAT,
&macstats, sizeof(struct macstat));
#ifdef BCMDBG
/* check for rx fifo 0 overflow */
delta = (u16) (wlc->core->macstat_snapshot->rxf0ovfl - rxf0ovfl);
if (delta)
wiphy_err(wlc->wiphy, "wl%d: %u rx fifo 0 overflows!\n",
wlc->pub->unit, delta);
/* check for tx fifo underflows */
for (i = 0; i < NFIFO; i++) {
delta =
(u16) (wlc->core->macstat_snapshot->txfunfl[i] -
txfunfl[i]);
if (delta)
wiphy_err(wlc->wiphy, "wl%d: %u tx fifo %d underflows!"
"\n", wlc->pub->unit, delta, i);
}
#endif /* BCMDBG */
/* merge counters from dma module */
for (i = 0; i < NFIFO; i++) {
if (wlc->hw->di[i]) {
dma_counterreset(wlc->hw->di[i]);
}
}
}
bool brcms_c_chipmatch(u16 vendor, u16 device)
{
if (vendor != PCI_VENDOR_ID_BROADCOM) {
pr_err("chipmatch: unknown vendor id %04x\n", vendor);
return false;
}
if (device == BCM43224_D11N_ID_VEN1)
return true;
if ((device == BCM43224_D11N_ID) || (device == BCM43225_D11N2G_ID))
return true;
if (device == BCM4313_D11N2G_ID)
return true;
if ((device == BCM43236_D11N_ID) || (device == BCM43236_D11N2G_ID))
return true;
pr_err("chipmatch: unknown device id %04x\n", device);
return false;
}
#if defined(BCMDBG)
void brcms_c_print_txdesc(struct d11txh *txh)
{
u16 mtcl = le16_to_cpu(txh->MacTxControlLow);
u16 mtch = le16_to_cpu(txh->MacTxControlHigh);
u16 mfc = le16_to_cpu(txh->MacFrameControl);
u16 tfest = le16_to_cpu(txh->TxFesTimeNormal);
u16 ptcw = le16_to_cpu(txh->PhyTxControlWord);
u16 ptcw_1 = le16_to_cpu(txh->PhyTxControlWord_1);
u16 ptcw_1_Fbr = le16_to_cpu(txh->PhyTxControlWord_1_Fbr);
u16 ptcw_1_Rts = le16_to_cpu(txh->PhyTxControlWord_1_Rts);
u16 ptcw_1_FbrRts = le16_to_cpu(txh->PhyTxControlWord_1_FbrRts);
u16 mainrates = le16_to_cpu(txh->MainRates);
u16 xtraft = le16_to_cpu(txh->XtraFrameTypes);
u8 *iv = txh->IV;
u8 *ra = txh->TxFrameRA;
u16 tfestfb = le16_to_cpu(txh->TxFesTimeFallback);
u8 *rtspfb = txh->RTSPLCPFallback;
u16 rtsdfb = le16_to_cpu(txh->RTSDurFallback);
u8 *fragpfb = txh->FragPLCPFallback;
u16 fragdfb = le16_to_cpu(txh->FragDurFallback);
u16 mmodelen = le16_to_cpu(txh->MModeLen);
u16 mmodefbrlen = le16_to_cpu(txh->MModeFbrLen);
u16 tfid = le16_to_cpu(txh->TxFrameID);
u16 txs = le16_to_cpu(txh->TxStatus);
u16 mnmpdu = le16_to_cpu(txh->MaxNMpdus);
u16 mabyte = le16_to_cpu(txh->MaxABytes_MRT);
u16 mabyte_f = le16_to_cpu(txh->MaxABytes_FBR);
u16 mmbyte = le16_to_cpu(txh->MinMBytes);
u8 *rtsph = txh->RTSPhyHeader;
struct ieee80211_rts rts = txh->rts_frame;
char hexbuf[256];
/* add plcp header along with txh descriptor */
printk(KERN_DEBUG "Raw TxDesc + plcp header:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
txh, sizeof(struct d11txh) + 48);
printk(KERN_DEBUG "TxCtlLow: %04x ", mtcl);
printk(KERN_DEBUG "TxCtlHigh: %04x ", mtch);
printk(KERN_DEBUG "FC: %04x ", mfc);
printk(KERN_DEBUG "FES Time: %04x\n", tfest);
printk(KERN_DEBUG "PhyCtl: %04x%s ", ptcw,
(ptcw & PHY_TXC_SHORT_HDR) ? " short" : "");
printk(KERN_DEBUG "PhyCtl_1: %04x ", ptcw_1);
printk(KERN_DEBUG "PhyCtl_1_Fbr: %04x\n", ptcw_1_Fbr);
printk(KERN_DEBUG "PhyCtl_1_Rts: %04x ", ptcw_1_Rts);
printk(KERN_DEBUG "PhyCtl_1_Fbr_Rts: %04x\n", ptcw_1_FbrRts);
printk(KERN_DEBUG "MainRates: %04x ", mainrates);
printk(KERN_DEBUG "XtraFrameTypes: %04x ", xtraft);
printk(KERN_DEBUG "\n");
brcmu_format_hex(hexbuf, iv, sizeof(txh->IV));
printk(KERN_DEBUG "SecIV: %s\n", hexbuf);
brcmu_format_hex(hexbuf, ra, sizeof(txh->TxFrameRA));
printk(KERN_DEBUG "RA: %s\n", hexbuf);
printk(KERN_DEBUG "Fb FES Time: %04x ", tfestfb);
brcmu_format_hex(hexbuf, rtspfb, sizeof(txh->RTSPLCPFallback));
printk(KERN_DEBUG "RTS PLCP: %s ", hexbuf);
printk(KERN_DEBUG "RTS DUR: %04x ", rtsdfb);
brcmu_format_hex(hexbuf, fragpfb, sizeof(txh->FragPLCPFallback));
printk(KERN_DEBUG "PLCP: %s ", hexbuf);
printk(KERN_DEBUG "DUR: %04x", fragdfb);
printk(KERN_DEBUG "\n");
printk(KERN_DEBUG "MModeLen: %04x ", mmodelen);
printk(KERN_DEBUG "MModeFbrLen: %04x\n", mmodefbrlen);
printk(KERN_DEBUG "FrameID: %04x\n", tfid);
printk(KERN_DEBUG "TxStatus: %04x\n", txs);
printk(KERN_DEBUG "MaxNumMpdu: %04x\n", mnmpdu);
printk(KERN_DEBUG "MaxAggbyte: %04x\n", mabyte);
printk(KERN_DEBUG "MaxAggbyte_fb: %04x\n", mabyte_f);
printk(KERN_DEBUG "MinByte: %04x\n", mmbyte);
brcmu_format_hex(hexbuf, rtsph, sizeof(txh->RTSPhyHeader));
printk(KERN_DEBUG "RTS PLCP: %s ", hexbuf);
brcmu_format_hex(hexbuf, (u8 *) &rts, sizeof(txh->rts_frame));
printk(KERN_DEBUG "RTS Frame: %s", hexbuf);
printk(KERN_DEBUG "\n");
}
#endif /* defined(BCMDBG) */
#if defined(BCMDBG)
void brcms_c_print_rxh(struct d11rxhdr *rxh)
{
u16 len = rxh->RxFrameSize;
u16 phystatus_0 = rxh->PhyRxStatus_0;
u16 phystatus_1 = rxh->PhyRxStatus_1;
u16 phystatus_2 = rxh->PhyRxStatus_2;
u16 phystatus_3 = rxh->PhyRxStatus_3;
u16 macstatus1 = rxh->RxStatus1;
u16 macstatus2 = rxh->RxStatus2;
char flagstr[64];
char lenbuf[20];
static const struct brcmu_bit_desc macstat_flags[] = {
{RXS_FCSERR, "FCSErr"},
{RXS_RESPFRAMETX, "Reply"},
{RXS_PBPRES, "PADDING"},
{RXS_DECATMPT, "DeCr"},
{RXS_DECERR, "DeCrErr"},
{RXS_BCNSENT, "Bcn"},
{0, NULL}
};
printk(KERN_DEBUG "Raw RxDesc:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, rxh,
sizeof(struct d11rxhdr));
brcmu_format_flags(macstat_flags, macstatus1, flagstr, 64);
snprintf(lenbuf, sizeof(lenbuf), "0x%x", len);
printk(KERN_DEBUG "RxFrameSize: %6s (%d)%s\n", lenbuf, len,
(rxh->PhyRxStatus_0 & PRXS0_SHORTH) ? " short preamble" : "");
printk(KERN_DEBUG "RxPHYStatus: %04x %04x %04x %04x\n",
phystatus_0, phystatus_1, phystatus_2, phystatus_3);
printk(KERN_DEBUG "RxMACStatus: %x %s\n", macstatus1, flagstr);
printk(KERN_DEBUG "RXMACaggtype: %x\n",
(macstatus2 & RXS_AGGTYPE_MASK));
printk(KERN_DEBUG "RxTSFTime: %04x\n", rxh->RxTSFTime);
}
#endif /* defined(BCMDBG) */
static u16 brcms_c_rate_shm_offset(struct brcms_c_info *wlc, u8 rate)
{
return brcms_b_rate_shm_offset(wlc->hw, rate);
}
/* Callback for device removed */
/*
* Attempts to queue a packet onto a multiple-precedence queue,
* if necessary evicting a lower precedence packet from the queue.
*
* 'prec' is the precedence number that has already been mapped
* from the packet priority.
*
* Returns true if packet consumed (queued), false if not.
*/
bool
brcms_c_prec_enq(struct brcms_c_info *wlc, struct pktq *q, void *pkt, int prec)
{
return brcms_c_prec_enq_head(wlc, q, pkt, prec, false);
}
bool
brcms_c_prec_enq_head(struct brcms_c_info *wlc, struct pktq *q,
struct sk_buff *pkt, int prec, bool head)
{
struct sk_buff *p;
int eprec = -1; /* precedence to evict from */
/* Determine precedence from which to evict packet, if any */
if (pktq_pfull(q, prec))
eprec = prec;
else if (pktq_full(q)) {
p = brcmu_pktq_peek_tail(q, &eprec);
if (eprec > prec) {
wiphy_err(wlc->wiphy, "%s: Failing: eprec %d > prec %d"
"\n", __func__, eprec, prec);
return false;
}
}
/* Evict if needed */
if (eprec >= 0) {
bool discard_oldest;
discard_oldest = AC_BITMAP_TST(wlc->wme_dp, eprec);
/* Refuse newer packet unless configured to discard oldest */
if (eprec == prec && !discard_oldest) {
wiphy_err(wlc->wiphy, "%s: No where to go, prec == %d"
"\n", __func__, prec);
return false;
}
/* Evict packet according to discard policy */
p = discard_oldest ? brcmu_pktq_pdeq(q, eprec) :
brcmu_pktq_pdeq_tail(q, eprec);
brcmu_pkt_buf_free_skb(p);
}
/* Enqueue */
if (head)
p = brcmu_pktq_penq_head(q, prec, pkt);
else
p = brcmu_pktq_penq(q, prec, pkt);
return true;
}
void brcms_c_txq_enq(void *ctx, struct scb *scb, struct sk_buff *sdu,
uint prec)
{
struct brcms_c_info *wlc = (struct brcms_c_info *) ctx;
struct brcms_txq_info *qi = wlc->pkt_queue; /* Check me */
struct pktq *q = &qi->q;
int prio;
prio = sdu->priority;
if (!brcms_c_prec_enq(wlc, q, sdu, prec)) {
if (!EDCF_ENAB(wlc->pub)
|| (wlc->pub->wlfeatureflag & WL_SWFL_FLOWCONTROL))
wiphy_err(wlc->wiphy, "wl%d: txq_enq: txq overflow"
"\n", wlc->pub->unit);
/*
* we might hit this condtion in case
* packet flooding from mac80211 stack
*/
brcmu_pkt_buf_free_skb(sdu);
}
/* Check if flow control needs to be turned on after enqueuing the packet
* Don't turn on flow control if EDCF is enabled. Driver would make the decision on what
* to drop instead of relying on stack to make the right decision
*/
if (!EDCF_ENAB(wlc->pub)
|| (wlc->pub->wlfeatureflag & WL_SWFL_FLOWCONTROL)) {
if (pktq_len(q) >= wlc->pub->tunables->datahiwat) {
brcms_c_txflowcontrol(wlc, qi, ON, ALLPRIO);
}
} else if (wlc->pub->_priofc) {
if (pktq_plen(q, wlc_prio2prec_map[prio]) >=
wlc->pub->tunables->datahiwat) {
brcms_c_txflowcontrol(wlc, qi, ON, prio);
}
}
}
bool
brcms_c_sendpkt_mac80211(struct brcms_c_info *wlc, struct sk_buff *sdu,
struct ieee80211_hw *hw)
{
u8 prio;
uint fifo;
void *pkt;
struct scb *scb = &global_scb;
struct ieee80211_hdr *d11_header = (struct ieee80211_hdr *)(sdu->data);
/* 802.11 standard requires management traffic to go at highest priority */
prio = ieee80211_is_data(d11_header->frame_control) ? sdu->priority :
MAXPRIO;
fifo = prio2fifo[prio];
pkt = sdu;
if (unlikely
(brcms_c_d11hdrs_mac80211(
wlc, hw, pkt, scb, 0, 1, fifo, 0, NULL, 0)))
return -EINVAL;
brcms_c_txq_enq(wlc, scb, pkt, BRCMS_PRIO_TO_PREC(prio));
brcms_c_send_q(wlc);
return 0;
}
void brcms_c_send_q(struct brcms_c_info *wlc)
{
struct sk_buff *pkt[DOT11_MAXNUMFRAGS];
int prec;
u16 prec_map;
int err = 0, i, count;
uint fifo;
struct brcms_txq_info *qi = wlc->pkt_queue;
struct pktq *q = &qi->q;
struct ieee80211_tx_info *tx_info;
if (in_send_q)
return;
else
in_send_q = true;
prec_map = wlc->tx_prec_map;
/* Send all the enq'd pkts that we can.
* Dequeue packets with precedence with empty HW fifo only
*/
while (prec_map && (pkt[0] = brcmu_pktq_mdeq(q, prec_map, &prec))) {
tx_info = IEEE80211_SKB_CB(pkt[0]);
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
err = brcms_c_sendampdu(wlc->ampdu, qi, pkt, prec);
} else {
count = 1;
err = brcms_c_prep_pdu(wlc, pkt[0], &fifo);
if (!err) {
for (i = 0; i < count; i++) {
brcms_c_txfifo(wlc, fifo, pkt[i], true,
1);
}
}
}
if (err == -EBUSY) {
brcmu_pktq_penq_head(q, prec, pkt[0]);
/* If send failed due to any other reason than a change in
* HW FIFO condition, quit. Otherwise, read the new prec_map!
*/
if (prec_map == wlc->tx_prec_map)
break;
prec_map = wlc->tx_prec_map;
}
}
/* Check if flow control needs to be turned off after sending the packet */
if (!EDCF_ENAB(wlc->pub)
|| (wlc->pub->wlfeatureflag & WL_SWFL_FLOWCONTROL)) {
if (brcms_c_txflowcontrol_prio_isset(wlc, qi, ALLPRIO)
&& (pktq_len(q) < wlc->pub->tunables->datahiwat / 2)) {
brcms_c_txflowcontrol(wlc, qi, OFF, ALLPRIO);
}
} else if (wlc->pub->_priofc) {
int prio;
for (prio = MAXPRIO; prio >= 0; prio--) {
if (brcms_c_txflowcontrol_prio_isset(wlc, qi, prio) &&
(pktq_plen(q, wlc_prio2prec_map[prio]) <
wlc->pub->tunables->datahiwat / 2)) {
brcms_c_txflowcontrol(wlc, qi, OFF, prio);
}
}
}
in_send_q = false;
}
/*
* bcmc_fid_generate:
* Generate frame ID for a BCMC packet. The frag field is not used
* for MC frames so is used as part of the sequence number.
*/
static inline u16
bcmc_fid_generate(struct brcms_c_info *wlc, struct brcms_bss_cfg *bsscfg,
struct d11txh *txh)
{
u16 frameid;
frameid = le16_to_cpu(txh->TxFrameID) & ~(TXFID_SEQ_MASK |
TXFID_QUEUE_MASK);
frameid |=
(((wlc->
mc_fid_counter++) << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
TX_BCMC_FIFO;
return frameid;
}
void
brcms_c_txfifo(struct brcms_c_info *wlc, uint fifo, struct sk_buff *p,
bool commit, s8 txpktpend)
{
u16 frameid = INVALIDFID;
struct d11txh *txh;
txh = (struct d11txh *) (p->data);
/* When a BC/MC frame is being committed to the BCMC fifo via DMA (NOT PIO), update
* ucode or BSS info as appropriate.
*/
if (fifo == TX_BCMC_FIFO) {
frameid = le16_to_cpu(txh->TxFrameID);
}
if (BRCMS_WAR16165(wlc))
brcms_c_war16165(wlc, true);
/* Bump up pending count for if not using rpc. If rpc is used, this will be handled
* in brcms_b_txfifo()
*/
if (commit) {
TXPKTPENDINC(wlc, fifo, txpktpend);
BCMMSG(wlc->wiphy, "pktpend inc %d to %d\n",
txpktpend, TXPKTPENDGET(wlc, fifo));
}
/* Commit BCMC sequence number in the SHM frame ID location */
if (frameid != INVALIDFID)
BCMCFID(wlc, frameid);
if (dma_txfast(wlc->hw->di[fifo], p, commit) < 0) {
wiphy_err(wlc->wiphy, "txfifo: fatal, toss frames !!!\n");
}
}
void
brcms_c_compute_plcp(struct brcms_c_info *wlc, ratespec_t rspec,
uint length, u8 *plcp)
{
if (IS_MCS(rspec)) {
brcms_c_compute_mimo_plcp(rspec, length, plcp);
} else if (IS_OFDM(rspec)) {
brcms_c_compute_ofdm_plcp(rspec, length, plcp);
} else {
brcms_c_compute_cck_plcp(wlc, rspec, length, plcp);
}
return;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void brcms_c_compute_mimo_plcp(ratespec_t rspec, uint length, u8 *plcp)
{
u8 mcs = (u8) (rspec & RSPEC_RATE_MASK);
plcp[0] = mcs;
if (RSPEC_IS40MHZ(rspec) || (mcs == 32))
plcp[0] |= MIMO_PLCP_40MHZ;
BRCMS_SET_MIMO_PLCP_LEN(plcp, length);
plcp[3] = RSPEC_MIMOPLCP3(rspec); /* rspec already holds this byte */
plcp[3] |= 0x7; /* set smoothing, not sounding ppdu & reserved */
plcp[4] = 0; /* number of extension spatial streams bit 0 & 1 */
plcp[5] = 0;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void
brcms_c_compute_ofdm_plcp(ratespec_t rspec, u32 length, u8 *plcp)
{
u8 rate_signal;
u32 tmp = 0;
int rate = RSPEC2RATE(rspec);
/* encode rate per 802.11a-1999 sec 17.3.4.1, with lsb transmitted first */
rate_signal = rate_info[rate] & BRCMS_RATE_MASK;
memset(plcp, 0, D11_PHY_HDR_LEN);
D11A_PHY_HDR_SRATE((struct ofdm_phy_hdr *) plcp, rate_signal);
tmp = (length & 0xfff) << 5;
plcp[2] |= (tmp >> 16) & 0xff;
plcp[1] |= (tmp >> 8) & 0xff;
plcp[0] |= tmp & 0xff;
return;
}
/*
* Compute PLCP, but only requires actual rate and length of pkt.
* Rate is given in the driver standard multiple of 500 kbps.
* le is set for 11 Mbps rate if necessary.
* Broken out for PRQ.
*/
static void brcms_c_cck_plcp_set(struct brcms_c_info *wlc, int rate_500,
uint length, u8 *plcp)
{
u16 usec = 0;
u8 le = 0;
switch (rate_500) {
case BRCM_RATE_1M:
usec = length << 3;
break;
case BRCM_RATE_2M:
usec = length << 2;
break;
case BRCM_RATE_5M5:
usec = (length << 4) / 11;
if ((length << 4) - (usec * 11) > 0)
usec++;
break;
case BRCM_RATE_11M:
usec = (length << 3) / 11;
if ((length << 3) - (usec * 11) > 0) {
usec++;
if ((usec * 11) - (length << 3) >= 8)
le = D11B_PLCP_SIGNAL_LE;
}
break;
default:
wiphy_err(wlc->wiphy, "brcms_c_cck_plcp_set: unsupported rate %d"
"\n", rate_500);
rate_500 = BRCM_RATE_1M;
usec = length << 3;
break;
}
/* PLCP signal byte */
plcp[0] = rate_500 * 5; /* r (500kbps) * 5 == r (100kbps) */
/* PLCP service byte */
plcp[1] = (u8) (le | D11B_PLCP_SIGNAL_LOCKED);
/* PLCP length u16, little endian */
plcp[2] = usec & 0xff;
plcp[3] = (usec >> 8) & 0xff;
/* PLCP CRC16 */
plcp[4] = 0;
plcp[5] = 0;
}
/* Rate: 802.11 rate code, length: PSDU length in octets */
static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, ratespec_t rspec,
uint length, u8 *plcp)
{
int rate = RSPEC2RATE(rspec);
brcms_c_cck_plcp_set(wlc, rate, length, plcp);
}
/* brcms_c_compute_frame_dur()
*
* Calculate the 802.11 MAC header DUR field for MPDU
* DUR for a single frame = 1 SIFS + 1 ACK
* DUR for a frame with following frags = 3 SIFS + 2 ACK + next frag time
*
* rate MPDU rate in unit of 500kbps
* next_frag_len next MPDU length in bytes
* preamble_type use short/GF or long/MM PLCP header
*/
static u16
brcms_c_compute_frame_dur(struct brcms_c_info *wlc, ratespec_t rate,
u8 preamble_type, uint next_frag_len)
{
u16 dur, sifs;
sifs = SIFS(wlc->band);
dur = sifs;
dur += (u16) brcms_c_calc_ack_time(wlc, rate, preamble_type);
if (next_frag_len) {
/* Double the current DUR to get 2 SIFS + 2 ACKs */
dur *= 2;
/* add another SIFS and the frag time */
dur += sifs;
dur +=
(u16) brcms_c_calc_frame_time(wlc, rate, preamble_type,
next_frag_len);
}
return dur;
}
/* brcms_c_compute_rtscts_dur()
*
* Calculate the 802.11 MAC header DUR field for an RTS or CTS frame
* DUR for normal RTS/CTS w/ frame = 3 SIFS + 1 CTS + next frame time + 1 ACK
* DUR for CTS-TO-SELF w/ frame = 2 SIFS + next frame time + 1 ACK
*
* cts cts-to-self or rts/cts
* rts_rate rts or cts rate in unit of 500kbps
* rate next MPDU rate in unit of 500kbps
* frame_len next MPDU frame length in bytes
*/
u16
brcms_c_compute_rtscts_dur(struct brcms_c_info *wlc, bool cts_only,
ratespec_t rts_rate,
ratespec_t frame_rate, u8 rts_preamble_type,
u8 frame_preamble_type, uint frame_len, bool ba)
{
u16 dur, sifs;
sifs = SIFS(wlc->band);
if (!cts_only) { /* RTS/CTS */
dur = 3 * sifs;
dur +=
(u16) brcms_c_calc_cts_time(wlc, rts_rate,
rts_preamble_type);
} else { /* CTS-TO-SELF */
dur = 2 * sifs;
}
dur +=
(u16) brcms_c_calc_frame_time(wlc, frame_rate, frame_preamble_type,
frame_len);
if (ba)
dur +=
(u16) brcms_c_calc_ba_time(wlc, frame_rate,
BRCMS_SHORT_PREAMBLE);
else
dur +=
(u16) brcms_c_calc_ack_time(wlc, frame_rate,
frame_preamble_type);
return dur;
}
u16 brcms_c_phytxctl1_calc(struct brcms_c_info *wlc, ratespec_t rspec)
{
u16 phyctl1 = 0;
u16 bw;
if (BRCMS_ISLCNPHY(wlc->band)) {
bw = PHY_TXC1_BW_20MHZ;
} else {
bw = RSPEC_GET_BW(rspec);
/* 10Mhz is not supported yet */
if (bw < PHY_TXC1_BW_20MHZ) {
wiphy_err(wlc->wiphy, "phytxctl1_calc: bw %d is "
"not supported yet, set to 20L\n", bw);
bw = PHY_TXC1_BW_20MHZ;
}
}
if (IS_MCS(rspec)) {
uint mcs = rspec & RSPEC_RATE_MASK;
/* bw, stf, coding-type is part of RSPEC_PHYTXBYTE2 returns */
phyctl1 = RSPEC_PHYTXBYTE2(rspec);
/* set the upper byte of phyctl1 */
phyctl1 |= (mcs_table[mcs].tx_phy_ctl3 << 8);
} else if (IS_CCK(rspec) && !BRCMS_ISLCNPHY(wlc->band)
&& !BRCMS_ISSSLPNPHY(wlc->band)) {
/* In CCK mode LPPHY overloads OFDM Modulation bits with CCK Data Rate */
/* Eventually MIMOPHY would also be converted to this format */
/* 0 = 1Mbps; 1 = 2Mbps; 2 = 5.5Mbps; 3 = 11Mbps */
phyctl1 = (bw | (RSPEC_STF(rspec) << PHY_TXC1_MODE_SHIFT));
} else { /* legacy OFDM/CCK */
s16 phycfg;
/* get the phyctl byte from rate phycfg table */
phycfg = brcms_c_rate_legacy_phyctl(RSPEC2RATE(rspec));
if (phycfg == -1) {
wiphy_err(wlc->wiphy, "phytxctl1_calc: wrong "
"legacy OFDM/CCK rate\n");
phycfg = 0;
}
/* set the upper byte of phyctl1 */
phyctl1 =
(bw | (phycfg << 8) |
(RSPEC_STF(rspec) << PHY_TXC1_MODE_SHIFT));
}
return phyctl1;
}
ratespec_t
brcms_c_rspec_to_rts_rspec(struct brcms_c_info *wlc, ratespec_t rspec,
bool use_rspec, u16 mimo_ctlchbw)
{
ratespec_t rts_rspec = 0;
if (use_rspec) {
/* use frame rate as rts rate */
rts_rspec = rspec;
} else if (wlc->band->gmode && wlc->protection->_g && !IS_CCK(rspec)) {
/* Use 11Mbps as the g protection RTS target rate and fallback.
* Use the BRCMS_BASIC_RATE() lookup to find the best basic rate
* under the target in case 11 Mbps is not Basic.
* 6 and 9 Mbps are not usually selected by rate selection, but even
* if the OFDM rate we are protecting is 6 or 9 Mbps, 11 is more robust.
*/
rts_rspec = BRCMS_BASIC_RATE(wlc, BRCM_RATE_11M);
} else {
/* calculate RTS rate and fallback rate based on the frame rate
* RTS must be sent at a basic rate since it is a
* control frame, sec 9.6 of 802.11 spec
*/
rts_rspec = BRCMS_BASIC_RATE(wlc, rspec);
}
if (BRCMS_PHY_11N_CAP(wlc->band)) {
/* set rts txbw to correct side band */
rts_rspec &= ~RSPEC_BW_MASK;
/* if rspec/rspec_fallback is 40MHz, then send RTS on both 20MHz channel
* (DUP), otherwise send RTS on control channel
*/
if (RSPEC_IS40MHZ(rspec) && !IS_CCK(rts_rspec))
rts_rspec |= (PHY_TXC1_BW_40MHZ_DUP << RSPEC_BW_SHIFT);
else
rts_rspec |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
/* pick siso/cdd as default for ofdm */
if (IS_OFDM(rts_rspec)) {
rts_rspec &= ~RSPEC_STF_MASK;
rts_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT);
}
}
return rts_rspec;
}
/*
* Add struct d11txh, struct cck_phy_hdr.
*
* 'p' data must start with 802.11 MAC header
* 'p' must allow enough bytes of local headers to be "pushed" onto the packet
*
* headroom == D11_PHY_HDR_LEN + D11_TXH_LEN (D11_TXH_LEN is now 104 bytes)
*
*/
static u16
brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc, struct ieee80211_hw *hw,
struct sk_buff *p, struct scb *scb, uint frag,
uint nfrags, uint queue, uint next_frag_len,
struct wsec_key *key, ratespec_t rspec_override)
{
struct ieee80211_hdr *h;
struct d11txh *txh;
u8 *plcp, plcp_fallback[D11_PHY_HDR_LEN];
int len, phylen, rts_phylen;
u16 mch, phyctl, xfts, mainrates;
u16 seq = 0, mcl = 0, status = 0, frameid = 0;
ratespec_t rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M }, rts_rspec[2] = {
BRCM_RATE_1M, BRCM_RATE_1M};
bool use_rts = false;
bool use_cts = false;
bool use_rifs = false;
bool short_preamble[2] = { false, false };
u8 preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
u8 rts_preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
u8 *rts_plcp, rts_plcp_fallback[D11_PHY_HDR_LEN];
struct ieee80211_rts *rts = NULL;
bool qos;
uint ac;
u32 rate_val[2];
bool hwtkmic = false;
u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
#define ANTCFG_NONE 0xFF
u8 antcfg = ANTCFG_NONE;
u8 fbantcfg = ANTCFG_NONE;
uint phyctl1_stf = 0;
u16 durid = 0;
struct ieee80211_tx_rate *txrate[2];
int k;
struct ieee80211_tx_info *tx_info;
bool is_mcs[2];
u16 mimo_txbw;
u8 mimo_preamble_type;
/* locate 802.11 MAC header */
h = (struct ieee80211_hdr *)(p->data);
qos = ieee80211_is_data_qos(h->frame_control);
/* compute length of frame in bytes for use in PLCP computations */
len = brcmu_pkttotlen(p);
phylen = len + FCS_LEN;
/* If WEP enabled, add room in phylen for the additional bytes of
* ICV which MAC generates. We do NOT add the additional bytes to
* the packet itself, thus phylen = packet length + ICV_LEN + FCS_LEN
* in this case
*/
if (key) {
phylen += key->icv_len;
}
/* Get tx_info */
tx_info = IEEE80211_SKB_CB(p);
/* add PLCP */
plcp = skb_push(p, D11_PHY_HDR_LEN);
/* add Broadcom tx descriptor header */
txh = (struct d11txh *) skb_push(p, D11_TXH_LEN);
memset(txh, 0, D11_TXH_LEN);
/* setup frameid */
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
/* non-AP STA should never use BCMC queue */
if (queue == TX_BCMC_FIFO) {
wiphy_err(wlc->wiphy, "wl%d: %s: ASSERT queue == "
"TX_BCMC!\n", BRCMS_UNIT(wlc), __func__);
frameid = bcmc_fid_generate(wlc, NULL, txh);
} else {
/* Increment the counter for first fragment */
if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
SCB_SEQNUM(scb, p->priority)++;
}
/* extract fragment number from frame first */
seq = le16_to_cpu(seq) & FRAGNUM_MASK;
seq |= (SCB_SEQNUM(scb, p->priority) << SEQNUM_SHIFT);
h->seq_ctrl = cpu_to_le16(seq);
frameid = ((seq << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
(queue & TXFID_QUEUE_MASK);
}
}
frameid |= queue & TXFID_QUEUE_MASK;
/* set the ignpmq bit for all pkts tx'd in PS mode and for beacons */
if (SCB_PS(scb) || ieee80211_is_beacon(h->frame_control))
mcl |= TXC_IGNOREPMQ;
txrate[0] = tx_info->control.rates;
txrate[1] = txrate[0] + 1;
/* if rate control algorithm didn't give us a fallback rate, use the primary rate */
if (txrate[1]->idx < 0) {
txrate[1] = txrate[0];
}
for (k = 0; k < hw->max_rates; k++) {
is_mcs[k] =
txrate[k]->flags & IEEE80211_TX_RC_MCS ? true : false;
if (!is_mcs[k]) {
if ((txrate[k]->idx >= 0)
&& (txrate[k]->idx <
hw->wiphy->bands[tx_info->band]->n_bitrates)) {
rate_val[k] =
hw->wiphy->bands[tx_info->band]->
bitrates[txrate[k]->idx].hw_value;
short_preamble[k] =
txrate[k]->
flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE ?
true : false;
} else {
rate_val[k] = BRCM_RATE_1M;
}
} else {
rate_val[k] = txrate[k]->idx;
}
/* Currently only support same setting for primay and fallback rates.
* Unify flags for each rate into a single value for the frame
*/
use_rts |=
txrate[k]->
flags & IEEE80211_TX_RC_USE_RTS_CTS ? true : false;
use_cts |=
txrate[k]->
flags & IEEE80211_TX_RC_USE_CTS_PROTECT ? true : false;
if (is_mcs[k])
rate_val[k] |= NRATE_MCS_INUSE;
rspec[k] = mac80211_wlc_set_nrate(wlc, wlc->band, rate_val[k]);
/* (1) RATE: determine and validate primary rate and fallback rates */
if (!RSPEC_ACTIVE(rspec[k])) {
rspec[k] = BRCM_RATE_1M;
} else {
if (!is_multicast_ether_addr(h->addr1)) {
/* set tx antenna config */
brcms_c_antsel_antcfg_get(wlc->asi, false,
false, 0, 0, &antcfg, &fbantcfg);
}
}
}
phyctl1_stf = wlc->stf->ss_opmode;
if (N_ENAB(wlc->pub)) {
for (k = 0; k < hw->max_rates; k++) {
/* apply siso/cdd to single stream mcs's or ofdm if rspec is auto selected */
if (((IS_MCS(rspec[k]) &&
IS_SINGLE_STREAM(rspec[k] & RSPEC_RATE_MASK)) ||
IS_OFDM(rspec[k]))
&& ((rspec[k] & RSPEC_OVERRIDE_MCS_ONLY)
|| !(rspec[k] & RSPEC_OVERRIDE))) {
rspec[k] &= ~(RSPEC_STF_MASK | RSPEC_STC_MASK);
/* For SISO MCS use STBC if possible */
if (IS_MCS(rspec[k])
&& BRCMS_STF_SS_STBC_TX(wlc, scb)) {
u8 stc;
stc = 1; /* Nss for single stream is always 1 */
rspec[k] |=
(PHY_TXC1_MODE_STBC <<
RSPEC_STF_SHIFT) | (stc <<
RSPEC_STC_SHIFT);
} else
rspec[k] |=
(phyctl1_stf << RSPEC_STF_SHIFT);
}
/* Is the phy configured to use 40MHZ frames? If so then pick the desired txbw */
if (CHSPEC_WLC_BW(wlc->chanspec) == BRCMS_40_MHZ) {
/* default txbw is 20in40 SB */
mimo_ctlchbw = mimo_txbw =
CHSPEC_SB_UPPER(BRCMS_BAND_PI_RADIO_CHANSPEC)
? PHY_TXC1_BW_20MHZ_UP : PHY_TXC1_BW_20MHZ;
if (IS_MCS(rspec[k])) {
/* mcs 32 must be 40b/w DUP */
if ((rspec[k] & RSPEC_RATE_MASK) == 32) {
mimo_txbw =
PHY_TXC1_BW_40MHZ_DUP;
/* use override */
} else if (wlc->mimo_40txbw != AUTO)
mimo_txbw = wlc->mimo_40txbw;
/* else check if dst is using 40 Mhz */
else if (scb->flags & SCB_IS40)
mimo_txbw = PHY_TXC1_BW_40MHZ;
} else if (IS_OFDM(rspec[k])) {
if (wlc->ofdm_40txbw != AUTO)
mimo_txbw = wlc->ofdm_40txbw;
} else {
if (wlc->cck_40txbw != AUTO)
mimo_txbw = wlc->cck_40txbw;
}
} else {
/* mcs32 is 40 b/w only.
* This is possible for probe packets on a STA during SCAN
*/
if ((rspec[k] & RSPEC_RATE_MASK) == 32) {
/* mcs 0 */
rspec[k] = RSPEC_MIMORATE;
}
mimo_txbw = PHY_TXC1_BW_20MHZ;
}
/* Set channel width */
rspec[k] &= ~RSPEC_BW_MASK;
if ((k == 0) || ((k > 0) && IS_MCS(rspec[k])))
rspec[k] |= (mimo_txbw << RSPEC_BW_SHIFT);
else
rspec[k] |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
/* Set Short GI */
#ifdef NOSGIYET
if (IS_MCS(rspec[k])
&& (txrate[k]->flags & IEEE80211_TX_RC_SHORT_GI))
rspec[k] |= RSPEC_SHORT_GI;
else if (!(txrate[k]->flags & IEEE80211_TX_RC_SHORT_GI))
rspec[k] &= ~RSPEC_SHORT_GI;
#else
rspec[k] &= ~RSPEC_SHORT_GI;
#endif
mimo_preamble_type = BRCMS_MM_PREAMBLE;
if (txrate[k]->flags & IEEE80211_TX_RC_GREEN_FIELD)
mimo_preamble_type = BRCMS_GF_PREAMBLE;
if ((txrate[k]->flags & IEEE80211_TX_RC_MCS)
&& (!IS_MCS(rspec[k]))) {
wiphy_err(wlc->wiphy, "wl%d: %s: IEEE80211_TX_"
"RC_MCS != IS_MCS(rspec)\n",
BRCMS_UNIT(wlc), __func__);
}
if (IS_MCS(rspec[k])) {
preamble_type[k] = mimo_preamble_type;
/* if SGI is selected, then forced mm for single stream */
if ((rspec[k] & RSPEC_SHORT_GI)
&& IS_SINGLE_STREAM(rspec[k] &
RSPEC_RATE_MASK)) {
preamble_type[k] = BRCMS_MM_PREAMBLE;
}
}
/* should be better conditionalized */
if (!IS_MCS(rspec[0])
&& (tx_info->control.rates[0].
flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
preamble_type[k] = BRCMS_SHORT_PREAMBLE;
}
} else {
for (k = 0; k < hw->max_rates; k++) {
/* Set ctrlchbw as 20Mhz */
rspec[k] &= ~RSPEC_BW_MASK;
rspec[k] |= (PHY_TXC1_BW_20MHZ << RSPEC_BW_SHIFT);
/* for nphy, stf of ofdm frames must follow policies */
if (BRCMS_ISNPHY(wlc->band) && IS_OFDM(rspec[k])) {
rspec[k] &= ~RSPEC_STF_MASK;
rspec[k] |= phyctl1_stf << RSPEC_STF_SHIFT;
}
}
}
/* Reset these for use with AMPDU's */
txrate[0]->count = 0;
txrate[1]->count = 0;
/* (2) PROTECTION, may change rspec */
if ((ieee80211_is_data(h->frame_control) ||
ieee80211_is_mgmt(h->frame_control)) &&
(phylen > wlc->RTSThresh) && !is_multicast_ether_addr(h->addr1))
use_rts = true;
/* (3) PLCP: determine PLCP header and MAC duration,
* fill struct d11txh */
brcms_c_compute_plcp(wlc, rspec[0], phylen, plcp);
brcms_c_compute_plcp(wlc, rspec[1], phylen, plcp_fallback);
memcpy(&txh->FragPLCPFallback,
plcp_fallback, sizeof(txh->FragPLCPFallback));
/* Length field now put in CCK FBR CRC field */
if (IS_CCK(rspec[1])) {
txh->FragPLCPFallback[4] = phylen & 0xff;
txh->FragPLCPFallback[5] = (phylen & 0xff00) >> 8;
}
/* MIMO-RATE: need validation ?? */
mainrates = IS_OFDM(rspec[0]) ?
D11A_PHY_HDR_GRATE((struct ofdm_phy_hdr *) plcp) :
plcp[0];
/* DUR field for main rate */
if (!ieee80211_is_pspoll(h->frame_control) &&
!is_multicast_ether_addr(h->addr1) && !use_rifs) {
durid =
brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0],
next_frag_len);
h->duration_id = cpu_to_le16(durid);
} else if (use_rifs) {
/* NAV protect to end of next max packet size */
durid =
(u16) brcms_c_calc_frame_time(wlc, rspec[0],
preamble_type[0],
DOT11_MAX_FRAG_LEN);
durid += RIFS_11N_TIME;
h->duration_id = cpu_to_le16(durid);
}
/* DUR field for fallback rate */
if (ieee80211_is_pspoll(h->frame_control))
txh->FragDurFallback = h->duration_id;
else if (is_multicast_ether_addr(h->addr1) || use_rifs)
txh->FragDurFallback = 0;
else {
durid = brcms_c_compute_frame_dur(wlc, rspec[1],
preamble_type[1], next_frag_len);
txh->FragDurFallback = cpu_to_le16(durid);
}
/* (4) MAC-HDR: MacTxControlLow */
if (frag == 0)
mcl |= TXC_STARTMSDU;
if (!is_multicast_ether_addr(h->addr1))
mcl |= TXC_IMMEDACK;
if (BAND_5G(wlc->band->bandtype))
mcl |= TXC_FREQBAND_5G;
if (CHSPEC_IS40(BRCMS_BAND_PI_RADIO_CHANSPEC))
mcl |= TXC_BW_40;
/* set AMIC bit if using hardware TKIP MIC */
if (hwtkmic)
mcl |= TXC_AMIC;
txh->MacTxControlLow = cpu_to_le16(mcl);
/* MacTxControlHigh */
mch = 0;
/* Set fallback rate preamble type */
if ((preamble_type[1] == BRCMS_SHORT_PREAMBLE) ||
(preamble_type[1] == BRCMS_GF_PREAMBLE)) {
if (RSPEC2RATE(rspec[1]) != BRCM_RATE_1M)
mch |= TXC_PREAMBLE_DATA_FB_SHORT;
}
/* MacFrameControl */
memcpy(&txh->MacFrameControl, &h->frame_control, sizeof(u16));
txh->TxFesTimeNormal = cpu_to_le16(0);
txh->TxFesTimeFallback = cpu_to_le16(0);
/* TxFrameRA */
memcpy(&txh->TxFrameRA, &h->addr1, ETH_ALEN);
/* TxFrameID */
txh->TxFrameID = cpu_to_le16(frameid);
/* TxStatus, Note the case of recreating the first frag of a suppressed frame
* then we may need to reset the retry cnt's via the status reg
*/
txh->TxStatus = cpu_to_le16(status);
/* extra fields for ucode AMPDU aggregation, the new fields are added to
* the END of previous structure so that it's compatible in driver.
*/
txh->MaxNMpdus = cpu_to_le16(0);
txh->MaxABytes_MRT = cpu_to_le16(0);
txh->MaxABytes_FBR = cpu_to_le16(0);
txh->MinMBytes = cpu_to_le16(0);
/* (5) RTS/CTS: determine RTS/CTS PLCP header and MAC duration,
* furnish struct d11txh */
/* RTS PLCP header and RTS frame */
if (use_rts || use_cts) {
if (use_rts && use_cts)
use_cts = false;
for (k = 0; k < 2; k++) {
rts_rspec[k] = brcms_c_rspec_to_rts_rspec(wlc, rspec[k],
false,
mimo_ctlchbw);
}
if (!IS_OFDM(rts_rspec[0]) &&
!((RSPEC2RATE(rts_rspec[0]) == BRCM_RATE_1M) ||
(wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
rts_preamble_type[0] = BRCMS_SHORT_PREAMBLE;
mch |= TXC_PREAMBLE_RTS_MAIN_SHORT;
}
if (!IS_OFDM(rts_rspec[1]) &&
!((RSPEC2RATE(rts_rspec[1]) == BRCM_RATE_1M) ||
(wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
rts_preamble_type[1] = BRCMS_SHORT_PREAMBLE;
mch |= TXC_PREAMBLE_RTS_FB_SHORT;
}
/* RTS/CTS additions to MacTxControlLow */
if (use_cts) {
txh->MacTxControlLow |= cpu_to_le16(TXC_SENDCTS);
} else {
txh->MacTxControlLow |= cpu_to_le16(TXC_SENDRTS);
txh->MacTxControlLow |= cpu_to_le16(TXC_LONGFRAME);
}
/* RTS PLCP header */
rts_plcp = txh->RTSPhyHeader;
if (use_cts)
rts_phylen = DOT11_CTS_LEN + FCS_LEN;
else
rts_phylen = DOT11_RTS_LEN + FCS_LEN;
brcms_c_compute_plcp(wlc, rts_rspec[0], rts_phylen, rts_plcp);
/* fallback rate version of RTS PLCP header */
brcms_c_compute_plcp(wlc, rts_rspec[1], rts_phylen,
rts_plcp_fallback);
memcpy(&txh->RTSPLCPFallback, rts_plcp_fallback,
sizeof(txh->RTSPLCPFallback));
/* RTS frame fields... */
rts = (struct ieee80211_rts *)&txh->rts_frame;
durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[0],
rspec[0], rts_preamble_type[0],
preamble_type[0], phylen, false);
rts->duration = cpu_to_le16(durid);
/* fallback rate version of RTS DUR field */
durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
rts_rspec[1], rspec[1],
rts_preamble_type[1],
preamble_type[1], phylen, false);
txh->RTSDurFallback = cpu_to_le16(durid);
if (use_cts) {
rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_CTS);
memcpy(&rts->ra, &h->addr2, ETH_ALEN);
} else {
rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
IEEE80211_STYPE_RTS);
memcpy(&rts->ra, &h->addr1, 2 * ETH_ALEN);
}
/* mainrate
* low 8 bits: main frag rate/mcs,
* high 8 bits: rts/cts rate/mcs
*/
mainrates |= (IS_OFDM(rts_rspec[0]) ?
D11A_PHY_HDR_GRATE(
(struct ofdm_phy_hdr *) rts_plcp) :
rts_plcp[0]) << 8;
} else {
memset((char *)txh->RTSPhyHeader, 0, D11_PHY_HDR_LEN);
memset((char *)&txh->rts_frame, 0,
sizeof(struct ieee80211_rts));
memset((char *)txh->RTSPLCPFallback, 0,
sizeof(txh->RTSPLCPFallback));
txh->RTSDurFallback = 0;
}
#ifdef SUPPORT_40MHZ
/* add null delimiter count */
if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && IS_MCS(rspec)) {
txh->RTSPLCPFallback[AMPDU_FBR_NULL_DELIM] =
brcm_c_ampdu_null_delim_cnt(wlc->ampdu, scb, rspec, phylen);
}
#endif
/* Now that RTS/RTS FB preamble types are updated, write the final value */
txh->MacTxControlHigh = cpu_to_le16(mch);
/* MainRates (both the rts and frag plcp rates have been calculated now) */
txh->MainRates = cpu_to_le16(mainrates);
/* XtraFrameTypes */
xfts = FRAMETYPE(rspec[1], wlc->mimoft);
xfts |= (FRAMETYPE(rts_rspec[0], wlc->mimoft) << XFTS_RTS_FT_SHIFT);
xfts |= (FRAMETYPE(rts_rspec[1], wlc->mimoft) << XFTS_FBRRTS_FT_SHIFT);
xfts |=
CHSPEC_CHANNEL(BRCMS_BAND_PI_RADIO_CHANSPEC) << XFTS_CHANNEL_SHIFT;
txh->XtraFrameTypes = cpu_to_le16(xfts);
/* PhyTxControlWord */
phyctl = FRAMETYPE(rspec[0], wlc->mimoft);
if ((preamble_type[0] == BRCMS_SHORT_PREAMBLE) ||
(preamble_type[0] == BRCMS_GF_PREAMBLE)) {
if (RSPEC2RATE(rspec[0]) != BRCM_RATE_1M)
phyctl |= PHY_TXC_SHORT_HDR;
}
/* phytxant is properly bit shifted */
phyctl |= brcms_c_stf_d11hdrs_phyctl_txant(wlc, rspec[0]);
txh->PhyTxControlWord = cpu_to_le16(phyctl);
/* PhyTxControlWord_1 */
if (BRCMS_PHY_11N_CAP(wlc->band)) {
u16 phyctl1 = 0;
phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[0]);
txh->PhyTxControlWord_1 = cpu_to_le16(phyctl1);
phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[1]);
txh->PhyTxControlWord_1_Fbr = cpu_to_le16(phyctl1);
if (use_rts || use_cts) {
phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[0]);
txh->PhyTxControlWord_1_Rts = cpu_to_le16(phyctl1);
phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[1]);
txh->PhyTxControlWord_1_FbrRts = cpu_to_le16(phyctl1);
}
/*
* For mcs frames, if mixedmode(overloaded with long preamble) is going to be set,
* fill in non-zero MModeLen and/or MModeFbrLen
* it will be unnecessary if they are separated
*/
if (IS_MCS(rspec[0]) &&
(preamble_type[0] == BRCMS_MM_PREAMBLE)) {
u16 mmodelen =
brcms_c_calc_lsig_len(wlc, rspec[0], phylen);
txh->MModeLen = cpu_to_le16(mmodelen);
}
if (IS_MCS(rspec[1]) &&
(preamble_type[1] == BRCMS_MM_PREAMBLE)) {
u16 mmodefbrlen =
brcms_c_calc_lsig_len(wlc, rspec[1], phylen);
txh->MModeFbrLen = cpu_to_le16(mmodefbrlen);
}
}
ac = skb_get_queue_mapping(p);
if (SCB_WME(scb) && qos && wlc->edcf_txop[ac]) {
uint frag_dur, dur, dur_fallback;
/* WME: Update TXOP threshold */
if ((!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) && (frag == 0)) {
frag_dur =
brcms_c_calc_frame_time(wlc, rspec[0],
preamble_type[0], phylen);
if (rts) {
/* 1 RTS or CTS-to-self frame */
dur =
brcms_c_calc_cts_time(wlc, rts_rspec[0],
rts_preamble_type[0]);
dur_fallback =
brcms_c_calc_cts_time(wlc, rts_rspec[1],
rts_preamble_type[1]);
/* (SIFS + CTS) + SIFS + frame + SIFS + ACK */
dur += le16_to_cpu(rts->duration);
dur_fallback +=
le16_to_cpu(txh->RTSDurFallback);
} else if (use_rifs) {
dur = frag_dur;
dur_fallback = 0;
} else {
/* frame + SIFS + ACK */
dur = frag_dur;
dur +=
brcms_c_compute_frame_dur(wlc, rspec[0],
preamble_type[0], 0);
dur_fallback =
brcms_c_calc_frame_time(wlc, rspec[1],
preamble_type[1],
phylen);
dur_fallback +=
brcms_c_compute_frame_dur(wlc, rspec[1],
preamble_type[1], 0);
}
/* NEED to set TxFesTimeNormal (hard) */
txh->TxFesTimeNormal = cpu_to_le16((u16) dur);
/* NEED to set fallback rate version of TxFesTimeNormal (hard) */
txh->TxFesTimeFallback =
cpu_to_le16((u16) dur_fallback);
/* update txop byte threshold (txop minus intraframe overhead) */
if (wlc->edcf_txop[ac] >= (dur - frag_dur)) {
{
uint newfragthresh;
newfragthresh =
brcms_c_calc_frame_len(wlc,
rspec[0], preamble_type[0],
(wlc->edcf_txop[ac] -
(dur - frag_dur)));
/* range bound the fragthreshold */
if (newfragthresh < DOT11_MIN_FRAG_LEN)
newfragthresh =
DOT11_MIN_FRAG_LEN;
else if (newfragthresh >
wlc->usr_fragthresh)
newfragthresh =
wlc->usr_fragthresh;
/* update the fragthresh and do txc update */
if (wlc->fragthresh[queue] !=
(u16) newfragthresh) {
wlc->fragthresh[queue] =
(u16) newfragthresh;
}
}
} else
wiphy_err(wlc->wiphy, "wl%d: %s txop invalid "
"for rate %d\n",
wlc->pub->unit, fifo_names[queue],
RSPEC2RATE(rspec[0]));
if (dur > wlc->edcf_txop[ac])
wiphy_err(wlc->wiphy, "wl%d: %s: %s txop "
"exceeded phylen %d/%d dur %d/%d\n",
wlc->pub->unit, __func__,
fifo_names[queue],
phylen, wlc->fragthresh[queue],
dur, wlc->edcf_txop[ac]);
}
}
return 0;
}
void brcms_c_tbtt(struct brcms_c_info *wlc)
{
struct brcms_bss_cfg *cfg = wlc->cfg;
if (!cfg->BSS) {
/* DirFrmQ is now valid...defer setting until end of ATIM window */
wlc->qvalid |= MCMD_DIRFRMQVAL;
}
}
static void brcms_c_war16165(struct brcms_c_info *wlc, bool tx)
{
if (tx) {
/* the post-increment is used in STAY_AWAKE macro */
if (wlc->txpend16165war++ == 0)
brcms_c_set_ps_ctrl(wlc);
} else {
wlc->txpend16165war--;
if (wlc->txpend16165war == 0)
brcms_c_set_ps_ctrl(wlc);
}
}
/* process an individual struct tx_status */
bool
brcms_c_dotxstatus(struct brcms_c_info *wlc, struct tx_status *txs, u32 frm_tx2)
{
struct sk_buff *p;
uint queue;
struct d11txh *txh;
struct scb *scb = NULL;
bool free_pdu;
int tx_rts, tx_frame_count, tx_rts_count;
uint totlen, supr_status;
bool lastframe;
struct ieee80211_hdr *h;
u16 mcl;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *txrate;
int i;
(void)(frm_tx2); /* Compiler reference to avoid unused variable warning */
/* discard intermediate indications for ucode with one legitimate case:
* e.g. if "useRTS" is set. ucode did a successful rts/cts exchange, but the subsequent
* tx of DATA failed. so it will start rts/cts from the beginning (resetting the rts
* transmission count)
*/
if (!(txs->status & TX_STATUS_AMPDU)
&& (txs->status & TX_STATUS_INTERMEDIATE)) {
wiphy_err(wlc->wiphy, "%s: INTERMEDIATE but not AMPDU\n",
__func__);
return false;
}
queue = txs->frameid & TXFID_QUEUE_MASK;
if (queue >= NFIFO) {
p = NULL;
goto fatal;
}
p = GETNEXTTXP(wlc, queue);
if (BRCMS_WAR16165(wlc))
brcms_c_war16165(wlc, false);
if (p == NULL)
goto fatal;
txh = (struct d11txh *) (p->data);
mcl = le16_to_cpu(txh->MacTxControlLow);
if (txs->phyerr) {
if (WL_ERROR_ON()) {
wiphy_err(wlc->wiphy, "phyerr 0x%x, rate 0x%x\n",
txs->phyerr, txh->MainRates);
brcms_c_print_txdesc(txh);
}
brcms_c_print_txstatus(txs);
}
if (txs->frameid != cpu_to_le16(txh->TxFrameID))
goto fatal;
tx_info = IEEE80211_SKB_CB(p);
h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN);
if (tx_info->control.sta)
scb = (struct scb *)tx_info->control.sta->drv_priv;
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
brcms_c_ampdu_dotxstatus(wlc->ampdu, scb, p, txs);
return false;
}
supr_status = txs->status & TX_STATUS_SUPR_MASK;
if (supr_status == TX_STATUS_SUPR_BADCH)
BCMMSG(wlc->wiphy,
"%s: Pkt tx suppressed, possibly channel %d\n",
__func__, CHSPEC_CHANNEL(wlc->default_bss->chanspec));
tx_rts = cpu_to_le16(txh->MacTxControlLow) & TXC_SENDRTS;
tx_frame_count =
(txs->status & TX_STATUS_FRM_RTX_MASK) >> TX_STATUS_FRM_RTX_SHIFT;
tx_rts_count =
(txs->status & TX_STATUS_RTS_RTX_MASK) >> TX_STATUS_RTS_RTX_SHIFT;
lastframe = !ieee80211_has_morefrags(h->frame_control);
if (!lastframe) {
wiphy_err(wlc->wiphy, "Not last frame!\n");
} else {
/*
* Set information to be consumed by Minstrel ht.
*
* The "fallback limit" is the number of tx attempts a given
* MPDU is sent at the "primary" rate. Tx attempts beyond that
* limit are sent at the "secondary" rate.
* A 'short frame' does not exceed RTS treshold.
*/
u16 sfbl, /* Short Frame Rate Fallback Limit */
lfbl, /* Long Frame Rate Fallback Limit */
fbl;
if (queue < AC_COUNT) {
sfbl = BRCMS_WME_RETRY_SFB_GET(wlc, wme_fifo2ac[queue]);
lfbl = BRCMS_WME_RETRY_LFB_GET(wlc, wme_fifo2ac[queue]);
} else {
sfbl = wlc->SFBL;
lfbl = wlc->LFBL;
}
txrate = tx_info->status.rates;
if (txrate[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
fbl = lfbl;
else
fbl = sfbl;
ieee80211_tx_info_clear_status(tx_info);
if ((tx_frame_count > fbl) && (txrate[1].idx >= 0)) {
/* rate selection requested a fallback rate and we used it */
txrate[0].count = fbl;
txrate[1].count = tx_frame_count - fbl;
} else {
/* rate selection did not request fallback rate, or we didn't need it */
txrate[0].count = tx_frame_count;
/* rc80211_minstrel.c:minstrel_tx_status() expects unused rates to be marked with idx = -1 */
txrate[1].idx = -1;
txrate[1].count = 0;
}
/* clear the rest of the rates */
for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
txrate[i].idx = -1;
txrate[i].count = 0;
}
if (txs->status & TX_STATUS_ACK_RCV)
tx_info->flags |= IEEE80211_TX_STAT_ACK;
}
totlen = brcmu_pkttotlen(p);
free_pdu = true;
brcms_c_txfifo_complete(wlc, queue, 1);
if (lastframe) {
p->next = NULL;
p->prev = NULL;
/* remove PLCP & Broadcom tx descriptor header */
skb_pull(p, D11_PHY_HDR_LEN);
skb_pull(p, D11_TXH_LEN);
ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, p);
} else {
wiphy_err(wlc->wiphy, "%s: Not last frame => not calling "
"tx_status\n", __func__);
}
return false;
fatal:
if (p)
brcmu_pkt_buf_free_skb(p);
return true;
}
void
brcms_c_txfifo_complete(struct brcms_c_info *wlc, uint fifo, s8 txpktpend)
{
TXPKTPENDDEC(wlc, fifo, txpktpend);
BCMMSG(wlc->wiphy, "pktpend dec %d to %d\n", txpktpend,
TXPKTPENDGET(wlc, fifo));
/* There is more room; mark precedences related to this FIFO sendable */
BRCMS_TX_FIFO_ENAB(wlc, fifo);
/* Clear MHF2_TXBCMC_NOW flag if BCMC fifo has drained */
if (AP_ENAB(wlc->pub) &&
!TXPKTPENDGET(wlc, TX_BCMC_FIFO)) {
brcms_c_mhf(wlc, MHF2, MHF2_TXBCMC_NOW, 0, BRCM_BAND_AUTO);
}
/* figure out which bsscfg is being worked on... */
}
/* Update beacon listen interval in shared memory */
void brcms_c_bcn_li_upd(struct brcms_c_info *wlc)
{
if (AP_ENAB(wlc->pub))
return;
/* wake up every DTIM is the default */
if (wlc->bcn_li_dtim == 1)
brcms_c_write_shm(wlc, M_BCN_LI, 0);
else
brcms_c_write_shm(wlc, M_BCN_LI,
(wlc->bcn_li_dtim << 8) | wlc->bcn_li_bcn);
}
/*
* recover 64bit TSF value from the 16bit TSF value in the rx header
* given the assumption that the TSF passed in header is within 65ms
* of the current tsf.
*
* 6 5 4 4 3 2 1
* 3.......6.......8.......0.......2.......4.......6.......8......0
* |<---------- tsf_h ----------->||<--- tsf_l -->||<-RxTSFTime ->|
*
* The RxTSFTime are the lowest 16 bits and provided by the ucode. The
* tsf_l is filled in by brcms_b_recv, which is done earlier in the
* receive call sequence after rx interrupt. Only the higher 16 bits
* are used. Finally, the tsf_h is read from the tsf register.
*/
static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc,
struct brcms_d11rxhdr *rxh)
{
u32 tsf_h, tsf_l;
u16 rx_tsf_0_15, rx_tsf_16_31;
brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h);
rx_tsf_16_31 = (u16)(tsf_l >> 16);
rx_tsf_0_15 = rxh->rxhdr.RxTSFTime;
/*
* a greater tsf time indicates the low 16 bits of
* tsf_l wrapped, so decrement the high 16 bits.
*/
if ((u16)tsf_l < rx_tsf_0_15) {
rx_tsf_16_31 -= 1;
if (rx_tsf_16_31 == 0xffff)
tsf_h -= 1;
}
return ((u64)tsf_h << 32) | (((u32)rx_tsf_16_31 << 16) + rx_tsf_0_15);
}
static void
prep_mac80211_status(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
struct sk_buff *p,
struct ieee80211_rx_status *rx_status)
{
struct brcms_d11rxhdr *wlc_rxh = (struct brcms_d11rxhdr *) rxh;
int preamble;
int channel;
ratespec_t rspec;
unsigned char *plcp;
/* fill in TSF and flag its presence */
rx_status->mactime = brcms_c_recover_tsf64(wlc, wlc_rxh);
rx_status->flag |= RX_FLAG_MACTIME_MPDU;
channel = BRCMS_CHAN_CHANNEL(rxh->RxChan);
if (channel > 14) {
rx_status->band = IEEE80211_BAND_5GHZ;
rx_status->freq = ieee80211_ofdm_chan_to_freq(
WF_CHAN_FACTOR_5_G/2, channel);
} else {
rx_status->band = IEEE80211_BAND_2GHZ;
rx_status->freq = ieee80211_dsss_chan_to_freq(channel);
}
rx_status->signal = wlc_rxh->rssi; /* signal */
/* noise */
/* qual */
rx_status->antenna = (rxh->PhyRxStatus_0 & PRXS0_RXANT_UPSUBBAND) ? 1 : 0; /* ant */
plcp = p->data;
rspec = brcms_c_compute_rspec(rxh, plcp);
if (IS_MCS(rspec)) {
rx_status->rate_idx = rspec & RSPEC_RATE_MASK;
rx_status->flag |= RX_FLAG_HT;
if (RSPEC_IS40MHZ(rspec))
rx_status->flag |= RX_FLAG_40MHZ;
} else {
switch (RSPEC2RATE(rspec)) {
case BRCM_RATE_1M:
rx_status->rate_idx = 0;
break;
case BRCM_RATE_2M:
rx_status->rate_idx = 1;
break;
case BRCM_RATE_5M5:
rx_status->rate_idx = 2;
break;
case BRCM_RATE_11M:
rx_status->rate_idx = 3;
break;
case BRCM_RATE_6M:
rx_status->rate_idx = 4;
break;
case BRCM_RATE_9M:
rx_status->rate_idx = 5;
break;
case BRCM_RATE_12M:
rx_status->rate_idx = 6;
break;
case BRCM_RATE_18M:
rx_status->rate_idx = 7;
break;
case BRCM_RATE_24M:
rx_status->rate_idx = 8;
break;
case BRCM_RATE_36M:
rx_status->rate_idx = 9;
break;
case BRCM_RATE_48M:
rx_status->rate_idx = 10;
break;
case BRCM_RATE_54M:
rx_status->rate_idx = 11;
break;
default:
wiphy_err(wlc->wiphy, "%s: Unknown rate\n", __func__);
}
/* Determine short preamble and rate_idx */
preamble = 0;
if (IS_CCK(rspec)) {
if (rxh->PhyRxStatus_0 & PRXS0_SHORTH)
rx_status->flag |= RX_FLAG_SHORTPRE;
} else if (IS_OFDM(rspec)) {
rx_status->flag |= RX_FLAG_SHORTPRE;
} else {
wiphy_err(wlc->wiphy, "%s: Unknown modulation\n",
__func__);
}
}
if (PLCP3_ISSGI(plcp[3]))
rx_status->flag |= RX_FLAG_SHORT_GI;
if (rxh->RxStatus1 & RXS_DECERR) {
rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_PLCP_CRC\n",
__func__);
}
if (rxh->RxStatus1 & RXS_FCSERR) {
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_FCS_CRC\n",
__func__);
}
}
static void
brcms_c_recvctl(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
struct sk_buff *p)
{
int len_mpdu;
struct ieee80211_rx_status rx_status;
memset(&rx_status, 0, sizeof(rx_status));
prep_mac80211_status(wlc, rxh, p, &rx_status);
/* mac header+body length, exclude CRC and plcp header */
len_mpdu = p->len - D11_PHY_HDR_LEN - FCS_LEN;
skb_pull(p, D11_PHY_HDR_LEN);
__skb_trim(p, len_mpdu);
memcpy(IEEE80211_SKB_RXCB(p), &rx_status, sizeof(rx_status));
ieee80211_rx_irqsafe(wlc->pub->ieee_hw, p);
return;
}
/* Process received frames */
/*
* Return true if more frames need to be processed. false otherwise.
* Param 'bound' indicates max. # frames to process before break out.
*/
void brcms_c_recv(struct brcms_c_info *wlc, struct sk_buff *p)
{
struct d11rxhdr *rxh;
struct ieee80211_hdr *h;
uint len;
bool is_amsdu;
BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
/* frame starts with rxhdr */
rxh = (struct d11rxhdr *) (p->data);
/* strip off rxhdr */
skb_pull(p, BRCMS_HWRXOFF);
/* fixup rx header endianness */
rxh->RxFrameSize = le16_to_cpu(rxh->RxFrameSize);
rxh->PhyRxStatus_0 = le16_to_cpu(rxh->PhyRxStatus_0);
rxh->PhyRxStatus_1 = le16_to_cpu(rxh->PhyRxStatus_1);
rxh->PhyRxStatus_2 = le16_to_cpu(rxh->PhyRxStatus_2);
rxh->PhyRxStatus_3 = le16_to_cpu(rxh->PhyRxStatus_3);
rxh->PhyRxStatus_4 = le16_to_cpu(rxh->PhyRxStatus_4);
rxh->PhyRxStatus_5 = le16_to_cpu(rxh->PhyRxStatus_5);
rxh->RxStatus1 = le16_to_cpu(rxh->RxStatus1);
rxh->RxStatus2 = le16_to_cpu(rxh->RxStatus2);
rxh->RxTSFTime = le16_to_cpu(rxh->RxTSFTime);
rxh->RxChan = le16_to_cpu(rxh->RxChan);
/* MAC inserts 2 pad bytes for a4 headers or QoS or A-MSDU subframes */
if (rxh->RxStatus1 & RXS_PBPRES) {
if (p->len < 2) {
wiphy_err(wlc->wiphy, "wl%d: recv: rcvd runt of "
"len %d\n", wlc->pub->unit, p->len);
goto toss;
}
skb_pull(p, 2);
}
h = (struct ieee80211_hdr *)(p->data + D11_PHY_HDR_LEN);
len = p->len;
if (rxh->RxStatus1 & RXS_FCSERR) {
if (wlc->pub->mac80211_state & MAC80211_PROMISC_BCNS) {
wiphy_err(wlc->wiphy, "FCSERR while scanning******* -"
" tossing\n");
goto toss;
} else {
wiphy_err(wlc->wiphy, "RCSERR!!!\n");
goto toss;
}
}
/* check received pkt has at least frame control field */
if (len < D11_PHY_HDR_LEN + sizeof(h->frame_control)) {
goto toss;
}
is_amsdu = rxh->RxStatus2 & RXS_AMSDU_MASK;
/* explicitly test bad src address to avoid sending bad deauth */
if (!is_amsdu) {
/* CTS and ACK CTL frames are w/o a2 */
if (ieee80211_is_data(h->frame_control) ||
ieee80211_is_mgmt(h->frame_control)) {
if ((is_zero_ether_addr(h->addr2) ||
is_multicast_ether_addr(h->addr2))) {
wiphy_err(wlc->wiphy, "wl%d: %s: dropping a "
"frame with invalid src mac address,"
" a2: %pM\n",
wlc->pub->unit, __func__, h->addr2);
goto toss;
}
}
}
/* due to sheer numbers, toss out probe reqs for now */
if (ieee80211_is_probe_req(h->frame_control))
goto toss;
if (is_amsdu)
goto toss;
brcms_c_recvctl(wlc, rxh, p);
return;
toss:
brcmu_pkt_buf_free_skb(p);
}
/* calculate frame duration for Mixed-mode L-SIG spoofing, return
* number of bytes goes in the length field
*
* Formula given by HT PHY Spec v 1.13
* len = 3(nsyms + nstream + 3) - 3
*/
u16
brcms_c_calc_lsig_len(struct brcms_c_info *wlc, ratespec_t ratespec,
uint mac_len)
{
uint nsyms, len = 0, kNdps;
BCMMSG(wlc->wiphy, "wl%d: rate %d, len%d\n",
wlc->pub->unit, RSPEC2RATE(ratespec), mac_len);
if (IS_MCS(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
/* MCS_TXS(mcs) returns num tx streams - 1 */
int tot_streams = (MCS_TXS(mcs) + 1) + RSPEC_STC(ratespec);
/* the payload duration calculation matches that of regular ofdm */
/* 1000Ndbps = kbps * 4 */
kNdps =
MCS_RATE(mcs, RSPEC_IS40MHZ(ratespec),
RSPEC_ISSGI(ratespec)) * 4;
if (RSPEC_STC(ratespec) == 0)
/* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, kNdps);
else
/* STBC needs to have even number of symbols */
nsyms =
2 *
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, 2 * kNdps);
nsyms += (tot_streams + 3); /* (+3) account for HT-SIG(2) and HT-STF(1) */
/* 3 bytes/symbol @ legacy 6Mbps rate */
len = (3 * nsyms) - 3; /* (-3) excluding service bits and tail bits */
}
return (u16) len;
}
/* calculate frame duration of a given rate and length, return time in usec unit */
uint
brcms_c_calc_frame_time(struct brcms_c_info *wlc, ratespec_t ratespec,
u8 preamble_type, uint mac_len)
{
uint nsyms, dur = 0, Ndps, kNdps;
uint rate = RSPEC2RATE(ratespec);
if (rate == 0) {
wiphy_err(wlc->wiphy, "wl%d: WAR: using rate of 1 mbps\n",
wlc->pub->unit);
rate = BRCM_RATE_1M;
}
BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, len%d\n",
wlc->pub->unit, ratespec, preamble_type, mac_len);
if (IS_MCS(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
int tot_streams = MCS_TXS(mcs) + RSPEC_STC(ratespec);
dur = PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
if (preamble_type == BRCMS_MM_PREAMBLE)
dur += PREN_MM_EXT;
/* 1000Ndbps = kbps * 4 */
kNdps =
MCS_RATE(mcs, RSPEC_IS40MHZ(ratespec),
RSPEC_ISSGI(ratespec)) * 4;
if (RSPEC_STC(ratespec) == 0)
/* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, kNdps);
else
/* STBC needs to have even number of symbols */
nsyms =
2 *
CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
APHY_TAIL_NBITS) * 1000, 2 * kNdps);
dur += APHY_SYMBOL_TIME * nsyms;
if (BAND_2G(wlc->band->bandtype))
dur += DOT11_OFDM_SIGNAL_EXTENSION;
} else if (IS_OFDM(rate)) {
dur = APHY_PREAMBLE_TIME;
dur += APHY_SIGNAL_TIME;
/* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
Ndps = rate * 2;
/* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */
nsyms =
CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS),
Ndps);
dur += APHY_SYMBOL_TIME * nsyms;
if (BAND_2G(wlc->band->bandtype))
dur += DOT11_OFDM_SIGNAL_EXTENSION;
} else {
/* calc # bits * 2 so factor of 2 in rate (1/2 mbps) will divide out */
mac_len = mac_len * 8 * 2;
/* calc ceiling of bits/rate = microseconds of air time */
dur = (mac_len + rate - 1) / rate;
if (preamble_type & BRCMS_SHORT_PREAMBLE)
dur += BPHY_PLCP_SHORT_TIME;
else
dur += BPHY_PLCP_TIME;
}
return dur;
}
/* The opposite of brcms_c_calc_frame_time */
static uint
brcms_c_calc_frame_len(struct brcms_c_info *wlc, ratespec_t ratespec,
u8 preamble_type, uint dur)
{
uint nsyms, mac_len, Ndps, kNdps;
uint rate = RSPEC2RATE(ratespec);
BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, dur %d\n",
wlc->pub->unit, ratespec, preamble_type, dur);
if (IS_MCS(ratespec)) {
uint mcs = ratespec & RSPEC_RATE_MASK;
int tot_streams = MCS_TXS(mcs) + RSPEC_STC(ratespec);
dur -= PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
/* payload calculation matches that of regular ofdm */
if (BAND_2G(wlc->band->bandtype))
dur -= DOT11_OFDM_SIGNAL_EXTENSION;
/* kNdbps = kbps * 4 */
kNdps =
MCS_RATE(mcs, RSPEC_IS40MHZ(ratespec),
RSPEC_ISSGI(ratespec)) * 4;
nsyms = dur / APHY_SYMBOL_TIME;
mac_len =
((nsyms * kNdps) -
((APHY_SERVICE_NBITS + APHY_TAIL_NBITS) * 1000)) / 8000;
} else if (IS_OFDM(ratespec)) {
dur -= APHY_PREAMBLE_TIME;
dur -= APHY_SIGNAL_TIME;
/* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
Ndps = rate * 2;
nsyms = dur / APHY_SYMBOL_TIME;
mac_len =
((nsyms * Ndps) -
(APHY_SERVICE_NBITS + APHY_TAIL_NBITS)) / 8;
} else {
if (preamble_type & BRCMS_SHORT_PREAMBLE)
dur -= BPHY_PLCP_SHORT_TIME;
else
dur -= BPHY_PLCP_TIME;
mac_len = dur * rate;
/* divide out factor of 2 in rate (1/2 mbps) */
mac_len = mac_len / 8 / 2;
}
return mac_len;
}
static uint
brcms_c_calc_ba_time(struct brcms_c_info *wlc, ratespec_t rspec,
u8 preamble_type)
{
BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, "
"preamble_type %d\n", wlc->pub->unit, rspec, preamble_type);
/* Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that is less than
* or equal to the rate of the immediately previous frame in the FES
*/
rspec = BRCMS_BASIC_RATE(wlc, rspec);
/* BA len == 32 == 16(ctl hdr) + 4(ba len) + 8(bitmap) + 4(fcs) */
return brcms_c_calc_frame_time(wlc, rspec, preamble_type,
(DOT11_BA_LEN + DOT11_BA_BITMAP_LEN +
FCS_LEN));
}
static uint
brcms_c_calc_ack_time(struct brcms_c_info *wlc, ratespec_t rspec,
u8 preamble_type)
{
uint dur = 0;
BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d\n",
wlc->pub->unit, rspec, preamble_type);
/* Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that is less than
* or equal to the rate of the immediately previous frame in the FES
*/
rspec = BRCMS_BASIC_RATE(wlc, rspec);
/* ACK frame len == 14 == 2(fc) + 2(dur) + 6(ra) + 4(fcs) */
dur =
brcms_c_calc_frame_time(wlc, rspec, preamble_type,
(DOT11_ACK_LEN + FCS_LEN));
return dur;
}
static uint
brcms_c_calc_cts_time(struct brcms_c_info *wlc, ratespec_t rspec,
u8 preamble_type)
{
BCMMSG(wlc->wiphy, "wl%d: ratespec 0x%x, preamble_type %d\n",
wlc->pub->unit, rspec, preamble_type);
return brcms_c_calc_ack_time(wlc, rspec, preamble_type);
}
/* derive wlc->band->basic_rate[] table from 'rateset' */
void brcms_c_rate_lookup_init(struct brcms_c_info *wlc, wlc_rateset_t *rateset)
{
u8 rate;
u8 mandatory;
u8 cck_basic = 0;
u8 ofdm_basic = 0;
u8 *br = wlc->band->basic_rate;
uint i;
/* incoming rates are in 500kbps units as in 802.11 Supported Rates */
memset(br, 0, BRCM_MAXRATE + 1);
/* For each basic rate in the rates list, make an entry in the
* best basic lookup.
*/
for (i = 0; i < rateset->count; i++) {
/* only make an entry for a basic rate */
if (!(rateset->rates[i] & BRCMS_RATE_FLAG))
continue;
/* mask off basic bit */
rate = (rateset->rates[i] & BRCMS_RATE_MASK);
if (rate > BRCM_MAXRATE) {
wiphy_err(wlc->wiphy, "brcms_c_rate_lookup_init: "
"invalid rate 0x%X in rate set\n",
rateset->rates[i]);
continue;
}
br[rate] = rate;
}
/* The rate lookup table now has non-zero entries for each
* basic rate, equal to the basic rate: br[basicN] = basicN
*
* To look up the best basic rate corresponding to any
* particular rate, code can use the basic_rate table
* like this
*
* basic_rate = wlc->band->basic_rate[tx_rate]
*
* Make sure there is a best basic rate entry for
* every rate by walking up the table from low rates
* to high, filling in holes in the lookup table
*/
for (i = 0; i < wlc->band->hw_rateset.count; i++) {
rate = wlc->band->hw_rateset.rates[i];
if (br[rate] != 0) {
/* This rate is a basic rate.
* Keep track of the best basic rate so far by
* modulation type.
*/
if (IS_OFDM(rate))
ofdm_basic = rate;
else
cck_basic = rate;
continue;
}
/* This rate is not a basic rate so figure out the
* best basic rate less than this rate and fill in
* the hole in the table
*/
br[rate] = IS_OFDM(rate) ? ofdm_basic : cck_basic;
if (br[rate] != 0)
continue;
if (IS_OFDM(rate)) {
/* In 11g and 11a, the OFDM mandatory rates are 6, 12, and 24 Mbps */
if (rate >= BRCM_RATE_24M)
mandatory = BRCM_RATE_24M;
else if (rate >= BRCM_RATE_12M)
mandatory = BRCM_RATE_12M;
else
mandatory = BRCM_RATE_6M;
} else {
/* In 11b, all the CCK rates are mandatory 1 - 11 Mbps */
mandatory = rate;
}
br[rate] = mandatory;
}
}
static void brcms_c_write_rate_shm(struct brcms_c_info *wlc, u8 rate,
u8 basic_rate)
{
u8 phy_rate, index;
u8 basic_phy_rate, basic_index;
u16 dir_table, basic_table;
u16 basic_ptr;
/* Shared memory address for the table we are reading */
dir_table = IS_OFDM(basic_rate) ? M_RT_DIRMAP_A : M_RT_DIRMAP_B;
/* Shared memory address for the table we are writing */
basic_table = IS_OFDM(rate) ? M_RT_BBRSMAP_A : M_RT_BBRSMAP_B;
/*
* for a given rate, the LS-nibble of the PLCP SIGNAL field is
* the index into the rate table.
*/
phy_rate = rate_info[rate] & BRCMS_RATE_MASK;
basic_phy_rate = rate_info[basic_rate] & BRCMS_RATE_MASK;
index = phy_rate & 0xf;
basic_index = basic_phy_rate & 0xf;
/* Find the SHM pointer to the ACK rate entry by looking in the
* Direct-map Table
*/
basic_ptr = brcms_c_read_shm(wlc, (dir_table + basic_index * 2));
/* Update the SHM BSS-basic-rate-set mapping table with the pointer
* to the correct basic rate for the given incoming rate
*/
brcms_c_write_shm(wlc, (basic_table + index * 2), basic_ptr);
}
static const wlc_rateset_t *brcms_c_rateset_get_hwrs(struct brcms_c_info *wlc)
{
const wlc_rateset_t *rs_dflt;
if (BRCMS_PHY_11N_CAP(wlc->band)) {
if (BAND_5G(wlc->band->bandtype))
rs_dflt = &ofdm_mimo_rates;
else
rs_dflt = &cck_ofdm_mimo_rates;
} else if (wlc->band->gmode)
rs_dflt = &cck_ofdm_rates;
else
rs_dflt = &cck_rates;
return rs_dflt;
}
void brcms_c_set_ratetable(struct brcms_c_info *wlc)
{
const wlc_rateset_t *rs_dflt;
wlc_rateset_t rs;
u8 rate, basic_rate;
uint i;
rs_dflt = brcms_c_rateset_get_hwrs(wlc);
brcms_c_rateset_copy(rs_dflt, &rs);
brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
/* walk the phy rate table and update SHM basic rate lookup table */
for (i = 0; i < rs.count; i++) {
rate = rs.rates[i] & BRCMS_RATE_MASK;
/* for a given rate BRCMS_BASIC_RATE returns the rate at
* which a response ACK/CTS should be sent.
*/
basic_rate = BRCMS_BASIC_RATE(wlc, rate);
if (basic_rate == 0) {
/* This should only happen if we are using a
* restricted rateset.
*/
basic_rate = rs.rates[0] & BRCMS_RATE_MASK;
}
brcms_c_write_rate_shm(wlc, rate, basic_rate);
}
}
/*
* Return true if the specified rate is supported by the specified band.
* BRCM_BAND_AUTO indicates the current band.
*/
bool brcms_c_valid_rate(struct brcms_c_info *wlc, ratespec_t rspec, int band,
bool verbose)
{
wlc_rateset_t *hw_rateset;
uint i;
if ((band == BRCM_BAND_AUTO) || (band == wlc->band->bandtype)) {
hw_rateset = &wlc->band->hw_rateset;
} else if (NBANDS(wlc) > 1) {
hw_rateset = &wlc->bandstate[OTHERBANDUNIT(wlc)]->hw_rateset;
} else {
/* other band specified and we are a single band device */
return false;
}
/* check if this is a mimo rate */
if (IS_MCS(rspec)) {
if (!VALID_MCS((rspec & RSPEC_RATE_MASK)))
goto error;
return isset(hw_rateset->mcs, (rspec & RSPEC_RATE_MASK));
}
for (i = 0; i < hw_rateset->count; i++)
if (hw_rateset->rates[i] == RSPEC2RATE(rspec))
return true;
error:
if (verbose) {
wiphy_err(wlc->wiphy, "wl%d: valid_rate: rate spec 0x%x "
"not in hw_rateset\n", wlc->pub->unit, rspec);
}
return false;
}
static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap)
{
uint i;
struct brcms_band *band;
for (i = 0; i < NBANDS(wlc); i++) {
if (IS_SINGLEBAND_5G(wlc->deviceid))
i = BAND_5G_INDEX;
band = wlc->bandstate[i];
if (band->bandtype == BRCM_BAND_5G) {
if ((bwcap == BRCMS_N_BW_40ALL)
|| (bwcap == BRCMS_N_BW_20IN2G_40IN5G))
band->mimo_cap_40 = true;
else
band->mimo_cap_40 = false;
} else {
if (bwcap == BRCMS_N_BW_40ALL)
band->mimo_cap_40 = true;
else
band->mimo_cap_40 = false;
}
}
}
void brcms_c_mod_prb_rsp_rate_table(struct brcms_c_info *wlc, uint frame_len)
{
const wlc_rateset_t *rs_dflt;
wlc_rateset_t rs;
u8 rate;
u16 entry_ptr;
u8 plcp[D11_PHY_HDR_LEN];
u16 dur, sifs;
uint i;
sifs = SIFS(wlc->band);
rs_dflt = brcms_c_rateset_get_hwrs(wlc);
brcms_c_rateset_copy(rs_dflt, &rs);
brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
/* walk the phy rate table and update MAC core SHM basic rate table entries */
for (i = 0; i < rs.count; i++) {
rate = rs.rates[i] & BRCMS_RATE_MASK;
entry_ptr = brcms_c_rate_shm_offset(wlc, rate);
/* Calculate the Probe Response PLCP for the given rate */
brcms_c_compute_plcp(wlc, rate, frame_len, plcp);
/* Calculate the duration of the Probe Response frame plus SIFS for the MAC */
dur = (u16) brcms_c_calc_frame_time(wlc, rate,
BRCMS_LONG_PREAMBLE, frame_len);
dur += sifs;
/* Update the SHM Rate Table entry Probe Response values */
brcms_c_write_shm(wlc, entry_ptr + M_RT_PRS_PLCP_POS,
(u16) (plcp[0] + (plcp[1] << 8)));
brcms_c_write_shm(wlc, entry_ptr + M_RT_PRS_PLCP_POS + 2,
(u16) (plcp[2] + (plcp[3] << 8)));
brcms_c_write_shm(wlc, entry_ptr + M_RT_PRS_DUR_POS, dur);
}
}
/* Max buffering needed for beacon template/prb resp template is 142 bytes.
*
* PLCP header is 6 bytes.
* 802.11 A3 header is 24 bytes.
* Max beacon frame body template length is 112 bytes.
* Max probe resp frame body template length is 110 bytes.
*
* *len on input contains the max length of the packet available.
*
* The *len value is set to the number of bytes in buf used, and starts with the PLCP
* and included up to, but not including, the 4 byte FCS.
*/
static void
brcms_c_bcn_prb_template(struct brcms_c_info *wlc, u16 type,
ratespec_t bcn_rspec,
struct brcms_bss_cfg *cfg, u16 *buf, int *len)
{
static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255};
struct cck_phy_hdr *plcp;
struct ieee80211_mgmt *h;
int hdr_len, body_len;
if (MBSS_BCN_ENAB(cfg) && type == IEEE80211_STYPE_BEACON)
hdr_len = DOT11_MAC_HDR_LEN;
else
hdr_len = D11_PHY_HDR_LEN + DOT11_MAC_HDR_LEN;
body_len = *len - hdr_len; /* calc buffer size provided for frame body */
*len = hdr_len + body_len; /* return actual size */
/* format PHY and MAC headers */
memset((char *)buf, 0, hdr_len);
plcp = (struct cck_phy_hdr *) buf;
/* PLCP for Probe Response frames are filled in from core's rate table */
if (type == IEEE80211_STYPE_BEACON && !MBSS_BCN_ENAB(cfg)) {
/* fill in PLCP */
brcms_c_compute_plcp(wlc, bcn_rspec,
(DOT11_MAC_HDR_LEN + body_len + FCS_LEN),
(u8 *) plcp);
}
/* "Regular" and 16 MBSS but not for 4 MBSS */
/* Update the phytxctl for the beacon based on the rspec */
if (!SOFTBCN_ENAB(cfg))
brcms_c_beacon_phytxctl_txant_upd(wlc, bcn_rspec);
if (MBSS_BCN_ENAB(cfg) && type == IEEE80211_STYPE_BEACON)
h = (struct ieee80211_mgmt *)&plcp[0];
else
h = (struct ieee80211_mgmt *)&plcp[1];
/* fill in 802.11 header */
h->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | type);
/* DUR is 0 for multicast bcn, or filled in by MAC for prb resp */
/* A1 filled in by MAC for prb resp, broadcast for bcn */
if (type == IEEE80211_STYPE_BEACON)
memcpy(&h->da, &ether_bcast, ETH_ALEN);
memcpy(&h->sa, &cfg->cur_etheraddr, ETH_ALEN);
memcpy(&h->bssid, &cfg->BSSID, ETH_ALEN);
/* SEQ filled in by MAC */
return;
}
int brcms_c_get_header_len()
{
return TXOFF;
}
/* Update a beacon for a particular BSS
* For MBSS, this updates the software template and sets "latest" to the index of the
* template updated.
* Otherwise, it updates the hardware template.
*/
void brcms_c_bss_update_beacon(struct brcms_c_info *wlc,
struct brcms_bss_cfg *cfg)
{
int len = BCN_TMPL_LEN;
/* Clear the soft intmask */
wlc->defmacintmask &= ~MI_BCNTPL;
if (!cfg->up) { /* Only allow updates on an UP bss */
return;
}
/* Optimize: Some of if/else could be combined */
if (!MBSS_BCN_ENAB(cfg) && HWBCN_ENAB(cfg)) {
/* Hardware beaconing for this config */
u16 bcn[BCN_TMPL_LEN / 2];
u32 both_valid = MCMD_BCN0VLD | MCMD_BCN1VLD;
d11regs_t *regs = wlc->regs;
/* Check if both templates are in use, if so sched. an interrupt
* that will call back into this routine
*/
if ((R_REG(&regs->maccommand) & both_valid) == both_valid) {
/* clear any previous status */
W_REG(&regs->macintstatus, MI_BCNTPL);
}
/* Check that after scheduling the interrupt both of the
* templates are still busy. if not clear the int. & remask
*/
if ((R_REG(&regs->maccommand) & both_valid) == both_valid) {
wlc->defmacintmask |= MI_BCNTPL;
return;
}
wlc->bcn_rspec =
brcms_c_lowest_basic_rspec(wlc, &cfg->current_bss->rateset);
/* update the template and ucode shm */
brcms_c_bcn_prb_template(wlc, IEEE80211_STYPE_BEACON,
wlc->bcn_rspec, cfg, bcn, &len);
brcms_c_write_hw_bcntemplates(wlc, bcn, len, false);
}
}
/*
* Update all beacons for the system.
*/
void brcms_c_update_beacon(struct brcms_c_info *wlc)
{
int idx;
struct brcms_bss_cfg *bsscfg;
/* update AP or IBSS beacons */
FOREACH_BSS(wlc, idx, bsscfg) {
if (bsscfg->up && (BSSCFG_AP(bsscfg) || !bsscfg->BSS))
brcms_c_bss_update_beacon(wlc, bsscfg);
}
}
/* Write ssid into shared memory */
void brcms_c_shm_ssid_upd(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg)
{
u8 *ssidptr = cfg->SSID;
u16 base = M_SSID;
u8 ssidbuf[IEEE80211_MAX_SSID_LEN];
/* padding the ssid with zero and copy it into shm */
memset(ssidbuf, 0, IEEE80211_MAX_SSID_LEN);
memcpy(ssidbuf, ssidptr, cfg->SSID_len);
brcms_c_copyto_shm(wlc, base, ssidbuf, IEEE80211_MAX_SSID_LEN);
if (!MBSS_BCN_ENAB(cfg))
brcms_c_write_shm(wlc, M_SSIDLEN, (u16) cfg->SSID_len);
}
void brcms_c_update_probe_resp(struct brcms_c_info *wlc, bool suspend)
{
int idx;
struct brcms_bss_cfg *bsscfg;
/* update AP or IBSS probe responses */
FOREACH_BSS(wlc, idx, bsscfg) {
if (bsscfg->up && (BSSCFG_AP(bsscfg) || !bsscfg->BSS))
brcms_c_bss_update_probe_resp(wlc, bsscfg, suspend);
}
}
void
brcms_c_bss_update_probe_resp(struct brcms_c_info *wlc,
struct brcms_bss_cfg *cfg,
bool suspend)
{
u16 prb_resp[BCN_TMPL_LEN / 2];
int len = BCN_TMPL_LEN;
/* write the probe response to hardware, or save in the config structure */
if (!MBSS_PRB_ENAB(cfg)) {
/* create the probe response template */
brcms_c_bcn_prb_template(wlc, IEEE80211_STYPE_PROBE_RESP, 0,
cfg, prb_resp, &len);
if (suspend)
brcms_c_suspend_mac_and_wait(wlc);
/* write the probe response into the template region */
brcms_b_write_template_ram(wlc->hw, T_PRS_TPL_BASE,
(len + 3) & ~3, prb_resp);
/* write the length of the probe response frame (+PLCP/-FCS) */
brcms_c_write_shm(wlc, M_PRB_RESP_FRM_LEN, (u16) len);
/* write the SSID and SSID length */
brcms_c_shm_ssid_upd(wlc, cfg);
/*
* Write PLCP headers and durations for probe response frames at all rates.
* Use the actual frame length covered by the PLCP header for the call to
* brcms_c_mod_prb_rsp_rate_table() by subtracting the PLCP len
* and adding the FCS.
*/
len += (-D11_PHY_HDR_LEN + FCS_LEN);
brcms_c_mod_prb_rsp_rate_table(wlc, (u16) len);
if (suspend)
brcms_c_enable_mac(wlc);
} else { /* Generating probe resp in sw; update local template */
/* error: No software probe response support without MBSS */
}
}
/* prepares pdu for transmission. returns BCM error codes */
int brcms_c_prep_pdu(struct brcms_c_info *wlc, struct sk_buff *pdu, uint *fifop)
{
uint fifo;
struct d11txh *txh;
struct ieee80211_hdr *h;
struct scb *scb;
txh = (struct d11txh *) (pdu->data);
h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN);
/* get the pkt queue info. This was put at brcms_c_sendctl or
* brcms_c_send for PDU */
fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
scb = NULL;
*fifop = fifo;
/* return if insufficient dma resources */
if (TXAVAIL(wlc, fifo) < MAX_DMA_SEGS) {
/* Mark precedences related to this FIFO, unsendable */
BRCMS_TX_FIFO_CLEAR(wlc, fifo);
return -EBUSY;
}
return 0;
}
/* init tx reported rate mechanism */
void brcms_c_reprate_init(struct brcms_c_info *wlc)
{
int i;
struct brcms_bss_cfg *bsscfg;
FOREACH_BSS(wlc, i, bsscfg) {
brcms_c_bsscfg_reprate_init(bsscfg);
}
}
/* per bsscfg init tx reported rate mechanism */
void brcms_c_bsscfg_reprate_init(struct brcms_bss_cfg *bsscfg)
{
bsscfg->txrspecidx = 0;
memset((char *)bsscfg->txrspec, 0, sizeof(bsscfg->txrspec));
}
void brcms_default_rateset(struct brcms_c_info *wlc, wlc_rateset_t *rs)
{
brcms_c_rateset_default(rs, NULL, wlc->band->phytype,
wlc->band->bandtype, false, BRCMS_RATE_MASK_FULL,
(bool) N_ENAB(wlc->pub),
CHSPEC_WLC_BW(wlc->default_bss->chanspec),
wlc->stf->txstreams);
}
static void brcms_c_bss_default_init(struct brcms_c_info *wlc)
{
chanspec_t chanspec;
struct brcms_band *band;
struct brcms_bss_info *bi = wlc->default_bss;
/* init default and target BSS with some sane initial values */
memset((char *)(bi), 0, sizeof(struct brcms_bss_info));
bi->beacon_period = BEACON_INTERVAL_DEFAULT;
bi->dtim_period = DTIM_INTERVAL_DEFAULT;
/* fill the default channel as the first valid channel
* starting from the 2G channels
*/
chanspec = CH20MHZ_CHSPEC(1);
wlc->home_chanspec = bi->chanspec = chanspec;
/* find the band of our default channel */
band = wlc->band;
if (NBANDS(wlc) > 1 && band->bandunit != CHSPEC_BANDUNIT(chanspec))
band = wlc->bandstate[OTHERBANDUNIT(wlc)];
/* init bss rates to the band specific default rate set */
brcms_c_rateset_default(&bi->rateset, NULL, band->phytype,
band->bandtype, false, BRCMS_RATE_MASK_FULL,
(bool) N_ENAB(wlc->pub), CHSPEC_WLC_BW(chanspec),
wlc->stf->txstreams);
if (N_ENAB(wlc->pub))
bi->flags |= BRCMS_BSS_HT;
}
static ratespec_t
mac80211_wlc_set_nrate(struct brcms_c_info *wlc, struct brcms_band *cur_band,
u32 int_val)
{
u8 stf = (int_val & NRATE_STF_MASK) >> NRATE_STF_SHIFT;
u8 rate = int_val & NRATE_RATE_MASK;
ratespec_t rspec;
bool ismcs = ((int_val & NRATE_MCS_INUSE) == NRATE_MCS_INUSE);
bool issgi = ((int_val & NRATE_SGI_MASK) >> NRATE_SGI_SHIFT);
bool override_mcs_only = ((int_val & NRATE_OVERRIDE_MCS_ONLY)
== NRATE_OVERRIDE_MCS_ONLY);
int bcmerror = 0;
if (!ismcs) {
return (ratespec_t) rate;
}
/* validate the combination of rate/mcs/stf is allowed */
if (N_ENAB(wlc->pub) && ismcs) {
/* mcs only allowed when nmode */
if (stf > PHY_TXC1_MODE_SDM) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid stf\n",
BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
/* mcs 32 is a special case, DUP mode 40 only */
if (rate == 32) {
if (!CHSPEC_IS40(wlc->home_chanspec) ||
((stf != PHY_TXC1_MODE_SISO)
&& (stf != PHY_TXC1_MODE_CDD))) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid mcs "
"32\n", BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
/* mcs > 7 must use stf SDM */
} else if (rate > HIGHEST_SINGLE_STREAM_MCS) {
/* mcs > 7 must use stf SDM */
if (stf != PHY_TXC1_MODE_SDM) {
BCMMSG(wlc->wiphy, "wl%d: enabling "
"SDM mode for mcs %d\n",
BRCMS_UNIT(wlc), rate);
stf = PHY_TXC1_MODE_SDM;
}
} else {
/* MCS 0-7 may use SISO, CDD, and for phy_rev >= 3 STBC */
if ((stf > PHY_TXC1_MODE_STBC) ||
(!BRCMS_STBC_CAP_PHY(wlc)
&& (stf == PHY_TXC1_MODE_STBC))) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid STBC"
"\n", BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
}
} else if (IS_OFDM(rate)) {
if ((stf != PHY_TXC1_MODE_CDD) && (stf != PHY_TXC1_MODE_SISO)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid OFDM\n",
BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
} else if (IS_CCK(rate)) {
if ((cur_band->bandtype != BRCM_BAND_2G)
|| (stf != PHY_TXC1_MODE_SISO)) {
wiphy_err(wlc->wiphy, "wl%d: %s: Invalid CCK\n",
BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
} else {
wiphy_err(wlc->wiphy, "wl%d: %s: Unknown rate type\n",
BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
/* make sure multiple antennae are available for non-siso rates */
if ((stf != PHY_TXC1_MODE_SISO) && (wlc->stf->txstreams == 1)) {
wiphy_err(wlc->wiphy, "wl%d: %s: SISO antenna but !SISO "
"request\n", BRCMS_UNIT(wlc), __func__);
bcmerror = -EINVAL;
goto done;
}
rspec = rate;
if (ismcs) {
rspec |= RSPEC_MIMORATE;
/* For STBC populate the STC field of the ratespec */
if (stf == PHY_TXC1_MODE_STBC) {
u8 stc;
stc = 1; /* Nss for single stream is always 1 */
rspec |= (stc << RSPEC_STC_SHIFT);
}
}
rspec |= (stf << RSPEC_STF_SHIFT);
if (override_mcs_only)
rspec |= RSPEC_OVERRIDE_MCS_ONLY;
if (issgi)
rspec |= RSPEC_SHORT_GI;
if ((rate != 0)
&& !brcms_c_valid_rate(wlc, rspec, cur_band->bandtype, true)) {
return rate;
}
return rspec;
done:
return rate;
}
/* formula: IDLE_BUSY_RATIO_X_16 = (100-duty_cycle)/duty_cycle*16 */
static int
brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle, bool isOFDM,
bool writeToShm)
{
int idle_busy_ratio_x_16 = 0;
uint offset =
isOFDM ? M_TX_IDLE_BUSY_RATIO_X_16_OFDM :
M_TX_IDLE_BUSY_RATIO_X_16_CCK;
if (duty_cycle > 100 || duty_cycle < 0) {
wiphy_err(wlc->wiphy, "wl%d: duty cycle value off limit\n",
wlc->pub->unit);
return -EINVAL;
}
if (duty_cycle)
idle_busy_ratio_x_16 = (100 - duty_cycle) * 16 / duty_cycle;
/* Only write to shared memory when wl is up */
if (writeToShm)
brcms_c_write_shm(wlc, offset, (u16) idle_busy_ratio_x_16);
if (isOFDM)
wlc->tx_duty_cycle_ofdm = (u16) duty_cycle;
else
wlc->tx_duty_cycle_cck = (u16) duty_cycle;
return 0;
}
/* Read a single u16 from shared memory.
* SHM 'offset' needs to be an even address
*/
u16 brcms_c_read_shm(struct brcms_c_info *wlc, uint offset)
{
return brcms_b_read_shm(wlc->hw, offset);
}
/* Write a single u16 to shared memory.
* SHM 'offset' needs to be an even address
*/
void brcms_c_write_shm(struct brcms_c_info *wlc, uint offset, u16 v)
{
brcms_b_write_shm(wlc->hw, offset, v);
}
/* Copy a buffer to shared memory.
* SHM 'offset' needs to be an even address and
* Buffer length 'len' must be an even number of bytes
*/
void brcms_c_copyto_shm(struct brcms_c_info *wlc, uint offset, const void *buf,
int len)
{
/* offset and len need to be even */
if (len <= 0 || (offset & 1) || (len & 1))
return;
brcms_b_copyto_objmem(wlc->hw, offset, buf, len, OBJADDR_SHM_SEL);
}
/* wrapper BMAC functions to for HIGH driver access */
void brcms_c_mctrl(struct brcms_c_info *wlc, u32 mask, u32 val)
{
brcms_b_mctrl(wlc->hw, mask, val);
}
void brcms_c_mhf(struct brcms_c_info *wlc, u8 idx, u16 mask, u16 val, int bands)
{
brcms_b_mhf(wlc->hw, idx, mask, val, bands);
}
int brcms_c_xmtfifo_sz_get(struct brcms_c_info *wlc, uint fifo, uint *blocks)
{
return brcms_b_xmtfifo_sz_get(wlc->hw, fifo, blocks);
}
void brcms_c_write_template_ram(struct brcms_c_info *wlc, int offset, int len,
void *buf)
{
brcms_b_write_template_ram(wlc->hw, offset, len, buf);
}
void brcms_c_write_hw_bcntemplates(struct brcms_c_info *wlc, void *bcn, int len,
bool both)
{
brcms_b_write_hw_bcntemplates(wlc->hw, bcn, len, both);
}
void
brcms_c_set_addrmatch(struct brcms_c_info *wlc, int match_reg_offset,
const u8 *addr)
{
brcms_b_set_addrmatch(wlc->hw, match_reg_offset, addr);
if (match_reg_offset == RCM_BSSID_OFFSET)
memcpy(wlc->cfg->BSSID, addr, ETH_ALEN);
}
void brcms_c_pllreq(struct brcms_c_info *wlc, bool set, mbool req_bit)
{
brcms_b_pllreq(wlc->hw, set, req_bit);
}
void brcms_c_reset_bmac_done(struct brcms_c_info *wlc)
{
}
/* check for the particular priority flow control bit being set */
bool
brcms_c_txflowcontrol_prio_isset(struct brcms_c_info *wlc,
struct brcms_txq_info *q,
int prio)
{
uint prio_mask;
if (prio == ALLPRIO) {
prio_mask = TXQ_STOP_FOR_PRIOFC_MASK;
} else {
prio_mask = NBITVAL(prio);
}
return (q->stopped & prio_mask) == prio_mask;
}
/* propagate the flow control to all interfaces using the given tx queue */
void brcms_c_txflowcontrol(struct brcms_c_info *wlc,
struct brcms_txq_info *qi,
bool on, int prio)
{
uint prio_bits;
uint cur_bits;
BCMMSG(wlc->wiphy, "flow control kicks in\n");
if (prio == ALLPRIO) {
prio_bits = TXQ_STOP_FOR_PRIOFC_MASK;
} else {
prio_bits = NBITVAL(prio);
}
cur_bits = qi->stopped & prio_bits;
/* Check for the case of no change and return early
* Otherwise update the bit and continue
*/
if (on) {
if (cur_bits == prio_bits) {
return;
}
mboolset(qi->stopped, prio_bits);
} else {
if (cur_bits == 0) {
return;
}
mboolclr(qi->stopped, prio_bits);
}
/* If there is a flow control override we will not change the external
* flow control state.
*/
if (qi->stopped & ~TXQ_STOP_FOR_PRIOFC_MASK) {
return;
}
brcms_c_txflowcontrol_signal(wlc, qi, on, prio);
}
void
brcms_c_txflowcontrol_override(struct brcms_c_info *wlc,
struct brcms_txq_info *qi,
bool on, uint override)
{
uint prev_override;
prev_override = (qi->stopped & ~TXQ_STOP_FOR_PRIOFC_MASK);
/* Update the flow control bits and do an early return if there is
* no change in the external flow control state.
*/
if (on) {
mboolset(qi->stopped, override);
/* if there was a previous override bit on, then setting this
* makes no difference.
*/
if (prev_override) {
return;
}
brcms_c_txflowcontrol_signal(wlc, qi, ON, ALLPRIO);
} else {
mboolclr(qi->stopped, override);
/* clearing an override bit will only make a difference for
* flow control if it was the only bit set. For any other
* override setting, just return
*/
if (prev_override != override) {
return;
}
if (qi->stopped == 0) {
brcms_c_txflowcontrol_signal(wlc, qi, OFF, ALLPRIO);
} else {
int prio;
for (prio = MAXPRIO; prio >= 0; prio--) {
if (!mboolisset(qi->stopped, NBITVAL(prio)))
brcms_c_txflowcontrol_signal(
wlc, qi, OFF, prio);
}
}
}
}
static void brcms_c_txflowcontrol_reset(struct brcms_c_info *wlc)
{
struct brcms_txq_info *qi;
for (qi = wlc->tx_queues; qi != NULL; qi = qi->next) {
if (qi->stopped) {
brcms_c_txflowcontrol_signal(wlc, qi, OFF, ALLPRIO);
qi->stopped = 0;
}
}
}
static void
brcms_c_txflowcontrol_signal(struct brcms_c_info *wlc,
struct brcms_txq_info *qi, bool on, int prio)
{
#ifdef NON_FUNCTIONAL
/* wlcif_list is never filled so this function is not functional */
struct brcms_c_if *wlcif;
for (wlcif = wlc->wlcif_list; wlcif != NULL; wlcif = wlcif->next) {
if (wlcif->qi == qi && wlcif->flags & BRCMS_IF_LINKED)
brcms_txflowcontrol(wlc->wl, wlcif->wlif, on, prio);
}
#endif
}
static struct brcms_txq_info *brcms_c_txq_alloc(struct brcms_c_info *wlc)
{
struct brcms_txq_info *qi, *p;
qi = kzalloc(sizeof(struct brcms_txq_info), GFP_ATOMIC);
if (qi != NULL) {
/*
* Have enough room for control packets along with HI watermark
* Also, add room to txq for total psq packets if all the SCBs
* leave PS mode. The watermark for flowcontrol to OS packets
* will remain the same
*/
brcmu_pktq_init(&qi->q, BRCMS_PREC_COUNT,
(2 * wlc->pub->tunables->datahiwat) + PKTQ_LEN_DEFAULT
+ wlc->pub->psq_pkts_total);
/* add this queue to the the global list */
p = wlc->tx_queues;
if (p == NULL) {
wlc->tx_queues = qi;
} else {
while (p->next != NULL)
p = p->next;
p->next = qi;
}
}
return qi;
}
static void brcms_c_txq_free(struct brcms_c_info *wlc,
struct brcms_txq_info *qi)
{
struct brcms_txq_info *p;
if (qi == NULL)
return;
/* remove the queue from the linked list */
p = wlc->tx_queues;
if (p == qi)
wlc->tx_queues = p->next;
else {
while (p != NULL && p->next != qi)
p = p->next;
if (p != NULL)
p->next = p->next->next;
}
kfree(qi);
}
/*
* Flag 'scan in progress' to withhold dynamic phy calibration
*/
void brcms_c_scan_start(struct brcms_c_info *wlc)
{
wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, true);
}
void brcms_c_scan_stop(struct brcms_c_info *wlc)
{
wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, false);
}
void brcms_c_associate_upd(struct brcms_c_info *wlc, bool state)
{
wlc->pub->associated = state;
wlc->cfg->associated = state;
}
/*
* When a remote STA/AP is removed by Mac80211, or when it can no longer accept
* AMPDU traffic, packets pending in hardware have to be invalidated so that
* when later on hardware releases them, they can be handled appropriately.
*/
void brcms_c_inval_dma_pkts(struct brcms_hardware *hw,
struct ieee80211_sta *sta,
void (*dma_callback_fn))
{
struct dma_pub *dmah;
int i;
for (i = 0; i < NFIFO; i++) {
dmah = hw->di[i];
if (dmah != NULL)
dma_walk_packets(dmah, dma_callback_fn, sta);
}
}
int brcms_c_get_curband(struct brcms_c_info *wlc)
{
return wlc->band->bandunit;
}
void brcms_c_wait_for_tx_completion(struct brcms_c_info *wlc, bool drop)
{
/* flush packet queue when requested */
if (drop)
brcmu_pktq_flush(&wlc->pkt_queue->q, false, NULL, NULL);
/* wait for queue and DMA fifos to run dry */
while (!pktq_empty(&wlc->pkt_queue->q) ||
TXPKTPENDTOT(wlc) > 0) {
brcms_msleep(wlc->wl, 1);
}
}
int brcms_c_set_par(struct brcms_c_info *wlc, enum wlc_par_id par_id,
int int_val)
{
int err = 0;
switch (par_id) {
case IOV_BCN_LI_BCN:
wlc->bcn_li_bcn = (u8) int_val;
if (wlc->pub->up)
brcms_c_bcn_li_upd(wlc);
break;
/* As long as override is false, this only sets the *user*
targets. User can twiddle this all he wants with no harm.
wlc_phy_txpower_set() explicitly sets override to false if
not internal or test.
*/
case IOV_QTXPOWER:{
u8 qdbm;
bool override;
/* Remove override bit and clip to max qdbm value */
qdbm = (u8)min_t(u32, (int_val & ~WL_TXPWR_OVERRIDE), 0xff);
/* Extract override setting */
override = (int_val & WL_TXPWR_OVERRIDE) ? true : false;
err =
wlc_phy_txpower_set(wlc->band->pi, qdbm, override);
break;
}
case IOV_MPC:
wlc->mpc = (bool)int_val;
brcms_c_radio_mpc_upd(wlc);
break;
default:
err = -ENOTSUPP;
}
return err;
}
int brcms_c_get_par(struct brcms_c_info *wlc, enum wlc_par_id par_id,
int *ret_int_ptr)
{
int err = 0;
switch (par_id) {
case IOV_BCN_LI_BCN:
*ret_int_ptr = wlc->bcn_li_bcn;
break;
case IOV_QTXPOWER: {
uint qdbm;
bool override;
err = wlc_phy_txpower_get(wlc->band->pi, &qdbm,
&override);
if (err != 0)
return err;
/* Return qdbm units */
*ret_int_ptr =
qdbm | (override ? WL_TXPWR_OVERRIDE : 0);
break;
}
case IOV_MPC:
*ret_int_ptr = (s32) wlc->mpc;
break;
default:
err = -ENOTSUPP;
}
return err;
}
/*
* Search the name=value vars for a specific one and return its value.
* Returns NULL if not found.
*/
char *getvar(char *vars, const char *name)
{
char *s;
int len;
if (!name)
return NULL;
len = strlen(name);
if (len == 0)
return NULL;
/* first look in vars[] */
for (s = vars; s && *s;) {
if ((memcmp(s, name, len) == 0) && (s[len] == '='))
return &s[len + 1];
while (*s++)
;
}
/* nothing found */
return NULL;
}
/*
* Search the vars for a specific one and return its value as
* an integer. Returns 0 if not found.
*/
int getintvar(char *vars, const char *name)
{
char *val;
val = getvar(vars, name);
if (val == NULL)
return 0;
return simple_strtoul(val, NULL, 0);
}