Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/arch/arm/mach-integrator/core.c
Linus Torvalds 0cd61b68c3 Initial blind fixup for arm for irq changes
Untested, but this should fix up the bulk of the totally mechanical
issues, and should make the actual detail fixing easier.

Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-06 10:59:54 -07:00

323 lines
7.1 KiB
C

/*
* linux/arch/arm/mach-integrator/core.c
*
* Copyright (C) 2000-2003 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/termios.h>
#include <linux/amba/bus.h>
#include <linux/amba/serial.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/hardware/arm_timer.h>
#include <asm/arch/cm.h>
#include <asm/system.h>
#include <asm/leds.h>
#include <asm/mach/time.h>
#include "common.h"
static struct amba_pl010_data integrator_uart_data;
static struct amba_device rtc_device = {
.dev = {
.bus_id = "mb:15",
},
.res = {
.start = INTEGRATOR_RTC_BASE,
.end = INTEGRATOR_RTC_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_RTCINT, NO_IRQ },
.periphid = 0x00041030,
};
static struct amba_device uart0_device = {
.dev = {
.bus_id = "mb:16",
.platform_data = &integrator_uart_data,
},
.res = {
.start = INTEGRATOR_UART0_BASE,
.end = INTEGRATOR_UART0_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_UARTINT0, NO_IRQ },
.periphid = 0x0041010,
};
static struct amba_device uart1_device = {
.dev = {
.bus_id = "mb:17",
.platform_data = &integrator_uart_data,
},
.res = {
.start = INTEGRATOR_UART1_BASE,
.end = INTEGRATOR_UART1_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_UARTINT1, NO_IRQ },
.periphid = 0x0041010,
};
static struct amba_device kmi0_device = {
.dev = {
.bus_id = "mb:18",
},
.res = {
.start = KMI0_BASE,
.end = KMI0_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_KMIINT0, NO_IRQ },
.periphid = 0x00041050,
};
static struct amba_device kmi1_device = {
.dev = {
.bus_id = "mb:19",
},
.res = {
.start = KMI1_BASE,
.end = KMI1_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_KMIINT1, NO_IRQ },
.periphid = 0x00041050,
};
static struct amba_device *amba_devs[] __initdata = {
&rtc_device,
&uart0_device,
&uart1_device,
&kmi0_device,
&kmi1_device,
};
static int __init integrator_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
struct amba_device *d = amba_devs[i];
amba_device_register(d, &iomem_resource);
}
return 0;
}
arch_initcall(integrator_init);
/*
* On the Integrator platform, the port RTS and DTR are provided by
* bits in the following SC_CTRLS register bits:
* RTS DTR
* UART0 7 6
* UART1 5 4
*/
#define SC_CTRLC (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLC_OFFSET)
#define SC_CTRLS (IO_ADDRESS(INTEGRATOR_SC_BASE) + INTEGRATOR_SC_CTRLS_OFFSET)
static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl)
{
unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask;
if (dev == &uart0_device) {
rts_mask = 1 << 4;
dtr_mask = 1 << 5;
} else {
rts_mask = 1 << 6;
dtr_mask = 1 << 7;
}
if (mctrl & TIOCM_RTS)
ctrlc |= rts_mask;
else
ctrls |= rts_mask;
if (mctrl & TIOCM_DTR)
ctrlc |= dtr_mask;
else
ctrls |= dtr_mask;
__raw_writel(ctrls, SC_CTRLS);
__raw_writel(ctrlc, SC_CTRLC);
}
static struct amba_pl010_data integrator_uart_data = {
.set_mctrl = integrator_uart_set_mctrl,
};
#define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_BASE) + INTEGRATOR_HDR_CTRL_OFFSET
static DEFINE_SPINLOCK(cm_lock);
/**
* cm_control - update the CM_CTRL register.
* @mask: bits to change
* @set: bits to set
*/
void cm_control(u32 mask, u32 set)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&cm_lock, flags);
val = readl(CM_CTRL) & ~mask;
writel(val | set, CM_CTRL);
spin_unlock_irqrestore(&cm_lock, flags);
}
EXPORT_SYMBOL(cm_control);
/*
* Where is the timer (VA)?
*/
#define TIMER0_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000000)
#define TIMER1_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000100)
#define TIMER2_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000200)
#define VA_IC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE)
/*
* How long is the timer interval?
*/
#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
#if TIMER_INTERVAL >= 0x100000
#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
#elif TIMER_INTERVAL >= 0x10000
#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
#else
#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
#endif
static unsigned long timer_reload;
/*
* Returns number of ms since last clock interrupt. Note that interrupts
* will have been disabled by do_gettimeoffset()
*/
unsigned long integrator_gettimeoffset(void)
{
unsigned long ticks1, ticks2, status;
/*
* Get the current number of ticks. Note that there is a race
* condition between us reading the timer and checking for
* an interrupt. We get around this by ensuring that the
* counter has not reloaded between our two reads.
*/
ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
do {
ticks1 = ticks2;
status = __raw_readl(VA_IC_BASE + IRQ_RAW_STATUS);
ticks2 = readl(TIMER1_VA_BASE + TIMER_VALUE) & 0xffff;
} while (ticks2 > ticks1);
/*
* Number of ticks since last interrupt.
*/
ticks1 = timer_reload - ticks2;
/*
* Interrupt pending? If so, we've reloaded once already.
*/
if (status & (1 << IRQ_TIMERINT1))
ticks1 += timer_reload;
/*
* Convert the ticks to usecs
*/
return TICKS2USECS(ticks1);
}
/*
* IRQ handler for the timer
*/
static irqreturn_t
integrator_timer_interrupt(int irq, void *dev_id)
{
write_seqlock(&xtime_lock);
/*
* clear the interrupt
*/
writel(1, TIMER1_VA_BASE + TIMER_INTCLR);
/*
* the clock tick routines are only processed on the
* primary CPU
*/
if (hard_smp_processor_id() == 0) {
timer_tick();
#ifdef CONFIG_SMP
smp_send_timer();
#endif
}
#ifdef CONFIG_SMP
/*
* this is the ARM equivalent of the APIC timer interrupt
*/
update_process_times(user_mode(get_irq_regs()));
#endif /* CONFIG_SMP */
write_sequnlock(&xtime_lock);
return IRQ_HANDLED;
}
static struct irqaction integrator_timer_irq = {
.name = "Integrator Timer Tick",
.flags = IRQF_DISABLED | IRQF_TIMER,
.handler = integrator_timer_interrupt,
};
/*
* Set up timer interrupt, and return the current time in seconds.
*/
void __init integrator_time_init(unsigned long reload, unsigned int ctrl)
{
unsigned int timer_ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC;
timer_reload = reload;
timer_ctrl |= ctrl;
if (timer_reload > 0x100000) {
timer_reload >>= 8;
timer_ctrl |= TIMER_CTRL_DIV256;
} else if (timer_reload > 0x010000) {
timer_reload >>= 4;
timer_ctrl |= TIMER_CTRL_DIV16;
}
/*
* Initialise to a known state (all timers off)
*/
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
writel(timer_reload, TIMER1_VA_BASE + TIMER_LOAD);
writel(timer_reload, TIMER1_VA_BASE + TIMER_VALUE);
writel(timer_ctrl, TIMER1_VA_BASE + TIMER_CTRL);
/*
* Make irqs happen for the system timer
*/
setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
}