Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/net/netfilter/nf_conntrack_core.c
Patrick McHardy d696c7bdaa netfilter: nf_conntrack: fix hash resizing with namespaces
As noticed by Jon Masters <jonathan@jonmasters.org>, the conntrack hash
size is global and not per namespace, but modifiable at runtime through
/sys/module/nf_conntrack/hashsize. Changing the hash size will only
resize the hash in the current namespace however, so other namespaces
will use an invalid hash size. This can cause crashes when enlarging
the hashsize, or false negative lookups when shrinking it.

Move the hash size into the per-namespace data and only use the global
hash size to initialize the per-namespace value when instanciating a
new namespace. Additionally restrict hash resizing to init_net for
now as other namespaces are not handled currently.

Cc: stable@kernel.org
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-08 11:18:07 -08:00

1404 lines
38 KiB
C

/* Connection state tracking for netfilter. This is separated from,
but required by, the NAT layer; it can also be used by an iptables
extension. */
/* (C) 1999-2001 Paul `Rusty' Russell
* (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
* (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/netfilter.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/vmalloc.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/jhash.h>
#include <linux/err.h>
#include <linux/percpu.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/socket.h>
#include <linux/mm.h>
#include <linux/nsproxy.h>
#include <linux/rculist_nulls.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
#include <net/netfilter/nf_conntrack_expect.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_extend.h>
#include <net/netfilter/nf_conntrack_acct.h>
#include <net/netfilter/nf_conntrack_ecache.h>
#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_nat_core.h>
#define NF_CONNTRACK_VERSION "0.5.0"
int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
enum nf_nat_manip_type manip,
const struct nlattr *attr) __read_mostly;
EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
DEFINE_SPINLOCK(nf_conntrack_lock);
EXPORT_SYMBOL_GPL(nf_conntrack_lock);
unsigned int nf_conntrack_htable_size __read_mostly;
EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
unsigned int nf_conntrack_max __read_mostly;
EXPORT_SYMBOL_GPL(nf_conntrack_max);
struct nf_conn nf_conntrack_untracked __read_mostly;
EXPORT_SYMBOL_GPL(nf_conntrack_untracked);
static int nf_conntrack_hash_rnd_initted;
static unsigned int nf_conntrack_hash_rnd;
static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
unsigned int size, unsigned int rnd)
{
unsigned int n;
u_int32_t h;
/* The direction must be ignored, so we hash everything up to the
* destination ports (which is a multiple of 4) and treat the last
* three bytes manually.
*/
n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
h = jhash2((u32 *)tuple, n,
rnd ^ (((__force __u16)tuple->dst.u.all << 16) |
tuple->dst.protonum));
return ((u64)h * size) >> 32;
}
static inline u_int32_t hash_conntrack(const struct net *net,
const struct nf_conntrack_tuple *tuple)
{
return __hash_conntrack(tuple, net->ct.htable_size,
nf_conntrack_hash_rnd);
}
bool
nf_ct_get_tuple(const struct sk_buff *skb,
unsigned int nhoff,
unsigned int dataoff,
u_int16_t l3num,
u_int8_t protonum,
struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_l3proto *l3proto,
const struct nf_conntrack_l4proto *l4proto)
{
memset(tuple, 0, sizeof(*tuple));
tuple->src.l3num = l3num;
if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
return false;
tuple->dst.protonum = protonum;
tuple->dst.dir = IP_CT_DIR_ORIGINAL;
return l4proto->pkt_to_tuple(skb, dataoff, tuple);
}
EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
u_int16_t l3num, struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_l3proto *l3proto;
struct nf_conntrack_l4proto *l4proto;
unsigned int protoff;
u_int8_t protonum;
int ret;
rcu_read_lock();
l3proto = __nf_ct_l3proto_find(l3num);
ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
if (ret != NF_ACCEPT) {
rcu_read_unlock();
return false;
}
l4proto = __nf_ct_l4proto_find(l3num, protonum);
ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
l3proto, l4proto);
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
bool
nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
const struct nf_conntrack_tuple *orig,
const struct nf_conntrack_l3proto *l3proto,
const struct nf_conntrack_l4proto *l4proto)
{
memset(inverse, 0, sizeof(*inverse));
inverse->src.l3num = orig->src.l3num;
if (l3proto->invert_tuple(inverse, orig) == 0)
return false;
inverse->dst.dir = !orig->dst.dir;
inverse->dst.protonum = orig->dst.protonum;
return l4proto->invert_tuple(inverse, orig);
}
EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
static void
clean_from_lists(struct nf_conn *ct)
{
pr_debug("clean_from_lists(%p)\n", ct);
hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
/* Destroy all pending expectations */
nf_ct_remove_expectations(ct);
}
static void
destroy_conntrack(struct nf_conntrack *nfct)
{
struct nf_conn *ct = (struct nf_conn *)nfct;
struct net *net = nf_ct_net(ct);
struct nf_conntrack_l4proto *l4proto;
pr_debug("destroy_conntrack(%p)\n", ct);
NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
NF_CT_ASSERT(!timer_pending(&ct->timeout));
/* To make sure we don't get any weird locking issues here:
* destroy_conntrack() MUST NOT be called with a write lock
* to nf_conntrack_lock!!! -HW */
rcu_read_lock();
l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
if (l4proto && l4proto->destroy)
l4proto->destroy(ct);
rcu_read_unlock();
spin_lock_bh(&nf_conntrack_lock);
/* Expectations will have been removed in clean_from_lists,
* except TFTP can create an expectation on the first packet,
* before connection is in the list, so we need to clean here,
* too. */
nf_ct_remove_expectations(ct);
/* We overload first tuple to link into unconfirmed list. */
if (!nf_ct_is_confirmed(ct)) {
BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
}
NF_CT_STAT_INC(net, delete);
spin_unlock_bh(&nf_conntrack_lock);
if (ct->master)
nf_ct_put(ct->master);
pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
nf_conntrack_free(ct);
}
void nf_ct_delete_from_lists(struct nf_conn *ct)
{
struct net *net = nf_ct_net(ct);
nf_ct_helper_destroy(ct);
spin_lock_bh(&nf_conntrack_lock);
/* Inside lock so preempt is disabled on module removal path.
* Otherwise we can get spurious warnings. */
NF_CT_STAT_INC(net, delete_list);
clean_from_lists(ct);
spin_unlock_bh(&nf_conntrack_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
static void death_by_event(unsigned long ul_conntrack)
{
struct nf_conn *ct = (void *)ul_conntrack;
struct net *net = nf_ct_net(ct);
if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
/* bad luck, let's retry again */
ct->timeout.expires = jiffies +
(random32() % net->ct.sysctl_events_retry_timeout);
add_timer(&ct->timeout);
return;
}
/* we've got the event delivered, now it's dying */
set_bit(IPS_DYING_BIT, &ct->status);
spin_lock(&nf_conntrack_lock);
hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
spin_unlock(&nf_conntrack_lock);
nf_ct_put(ct);
}
void nf_ct_insert_dying_list(struct nf_conn *ct)
{
struct net *net = nf_ct_net(ct);
/* add this conntrack to the dying list */
spin_lock_bh(&nf_conntrack_lock);
hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
&net->ct.dying);
spin_unlock_bh(&nf_conntrack_lock);
/* set a new timer to retry event delivery */
setup_timer(&ct->timeout, death_by_event, (unsigned long)ct);
ct->timeout.expires = jiffies +
(random32() % net->ct.sysctl_events_retry_timeout);
add_timer(&ct->timeout);
}
EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
static void death_by_timeout(unsigned long ul_conntrack)
{
struct nf_conn *ct = (void *)ul_conntrack;
if (!test_bit(IPS_DYING_BIT, &ct->status) &&
unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
/* destroy event was not delivered */
nf_ct_delete_from_lists(ct);
nf_ct_insert_dying_list(ct);
return;
}
set_bit(IPS_DYING_BIT, &ct->status);
nf_ct_delete_from_lists(ct);
nf_ct_put(ct);
}
/*
* Warning :
* - Caller must take a reference on returned object
* and recheck nf_ct_tuple_equal(tuple, &h->tuple)
* OR
* - Caller must lock nf_conntrack_lock before calling this function
*/
struct nf_conntrack_tuple_hash *
__nf_conntrack_find(struct net *net, const struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_tuple_hash *h;
struct hlist_nulls_node *n;
unsigned int hash = hash_conntrack(net, tuple);
/* Disable BHs the entire time since we normally need to disable them
* at least once for the stats anyway.
*/
local_bh_disable();
begin:
hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
if (nf_ct_tuple_equal(tuple, &h->tuple)) {
NF_CT_STAT_INC(net, found);
local_bh_enable();
return h;
}
NF_CT_STAT_INC(net, searched);
}
/*
* if the nulls value we got at the end of this lookup is
* not the expected one, we must restart lookup.
* We probably met an item that was moved to another chain.
*/
if (get_nulls_value(n) != hash)
goto begin;
local_bh_enable();
return NULL;
}
EXPORT_SYMBOL_GPL(__nf_conntrack_find);
/* Find a connection corresponding to a tuple. */
struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net *net, const struct nf_conntrack_tuple *tuple)
{
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
rcu_read_lock();
begin:
h = __nf_conntrack_find(net, tuple);
if (h) {
ct = nf_ct_tuplehash_to_ctrack(h);
if (unlikely(nf_ct_is_dying(ct) ||
!atomic_inc_not_zero(&ct->ct_general.use)))
h = NULL;
else {
if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple))) {
nf_ct_put(ct);
goto begin;
}
}
}
rcu_read_unlock();
return h;
}
EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
static void __nf_conntrack_hash_insert(struct nf_conn *ct,
unsigned int hash,
unsigned int repl_hash)
{
struct net *net = nf_ct_net(ct);
hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
&net->ct.hash[hash]);
hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
&net->ct.hash[repl_hash]);
}
void nf_conntrack_hash_insert(struct nf_conn *ct)
{
struct net *net = nf_ct_net(ct);
unsigned int hash, repl_hash;
hash = hash_conntrack(net, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
repl_hash = hash_conntrack(net, &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
__nf_conntrack_hash_insert(ct, hash, repl_hash);
}
EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
/* Confirm a connection given skb; places it in hash table */
int
__nf_conntrack_confirm(struct sk_buff *skb)
{
unsigned int hash, repl_hash;
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
struct nf_conn_help *help;
struct hlist_nulls_node *n;
enum ip_conntrack_info ctinfo;
struct net *net;
ct = nf_ct_get(skb, &ctinfo);
net = nf_ct_net(ct);
/* ipt_REJECT uses nf_conntrack_attach to attach related
ICMP/TCP RST packets in other direction. Actual packet
which created connection will be IP_CT_NEW or for an
expected connection, IP_CT_RELATED. */
if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
return NF_ACCEPT;
hash = hash_conntrack(net, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
repl_hash = hash_conntrack(net, &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
/* We're not in hash table, and we refuse to set up related
connections for unconfirmed conns. But packet copies and
REJECT will give spurious warnings here. */
/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
/* No external references means noone else could have
confirmed us. */
NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
pr_debug("Confirming conntrack %p\n", ct);
spin_lock_bh(&nf_conntrack_lock);
/* See if there's one in the list already, including reverse:
NAT could have grabbed it without realizing, since we're
not in the hash. If there is, we lost race. */
hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
&h->tuple))
goto out;
hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
&h->tuple))
goto out;
/* Remove from unconfirmed list */
hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
/* Timer relative to confirmation time, not original
setting time, otherwise we'd get timer wrap in
weird delay cases. */
ct->timeout.expires += jiffies;
add_timer(&ct->timeout);
atomic_inc(&ct->ct_general.use);
set_bit(IPS_CONFIRMED_BIT, &ct->status);
/* Since the lookup is lockless, hash insertion must be done after
* starting the timer and setting the CONFIRMED bit. The RCU barriers
* guarantee that no other CPU can find the conntrack before the above
* stores are visible.
*/
__nf_conntrack_hash_insert(ct, hash, repl_hash);
NF_CT_STAT_INC(net, insert);
spin_unlock_bh(&nf_conntrack_lock);
help = nfct_help(ct);
if (help && help->helper)
nf_conntrack_event_cache(IPCT_HELPER, ct);
nf_conntrack_event_cache(master_ct(ct) ?
IPCT_RELATED : IPCT_NEW, ct);
return NF_ACCEPT;
out:
NF_CT_STAT_INC(net, insert_failed);
spin_unlock_bh(&nf_conntrack_lock);
return NF_DROP;
}
EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
/* Returns true if a connection correspondings to the tuple (required
for NAT). */
int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
const struct nf_conn *ignored_conntrack)
{
struct net *net = nf_ct_net(ignored_conntrack);
struct nf_conntrack_tuple_hash *h;
struct hlist_nulls_node *n;
unsigned int hash = hash_conntrack(net, tuple);
/* Disable BHs the entire time since we need to disable them at
* least once for the stats anyway.
*/
rcu_read_lock_bh();
hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
nf_ct_tuple_equal(tuple, &h->tuple)) {
NF_CT_STAT_INC(net, found);
rcu_read_unlock_bh();
return 1;
}
NF_CT_STAT_INC(net, searched);
}
rcu_read_unlock_bh();
return 0;
}
EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
#define NF_CT_EVICTION_RANGE 8
/* There's a small race here where we may free a just-assured
connection. Too bad: we're in trouble anyway. */
static noinline int early_drop(struct net *net, unsigned int hash)
{
/* Use oldest entry, which is roughly LRU */
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct = NULL, *tmp;
struct hlist_nulls_node *n;
unsigned int i, cnt = 0;
int dropped = 0;
rcu_read_lock();
for (i = 0; i < net->ct.htable_size; i++) {
hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
hnnode) {
tmp = nf_ct_tuplehash_to_ctrack(h);
if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
ct = tmp;
cnt++;
}
if (ct != NULL) {
if (likely(!nf_ct_is_dying(ct) &&
atomic_inc_not_zero(&ct->ct_general.use)))
break;
else
ct = NULL;
}
if (cnt >= NF_CT_EVICTION_RANGE)
break;
hash = (hash + 1) % net->ct.htable_size;
}
rcu_read_unlock();
if (!ct)
return dropped;
if (del_timer(&ct->timeout)) {
death_by_timeout((unsigned long)ct);
dropped = 1;
NF_CT_STAT_INC_ATOMIC(net, early_drop);
}
nf_ct_put(ct);
return dropped;
}
struct nf_conn *nf_conntrack_alloc(struct net *net,
const struct nf_conntrack_tuple *orig,
const struct nf_conntrack_tuple *repl,
gfp_t gfp)
{
struct nf_conn *ct;
if (unlikely(!nf_conntrack_hash_rnd_initted)) {
get_random_bytes(&nf_conntrack_hash_rnd,
sizeof(nf_conntrack_hash_rnd));
nf_conntrack_hash_rnd_initted = 1;
}
/* We don't want any race condition at early drop stage */
atomic_inc(&net->ct.count);
if (nf_conntrack_max &&
unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
unsigned int hash = hash_conntrack(net, orig);
if (!early_drop(net, hash)) {
atomic_dec(&net->ct.count);
if (net_ratelimit())
printk(KERN_WARNING
"nf_conntrack: table full, dropping"
" packet.\n");
return ERR_PTR(-ENOMEM);
}
}
/*
* Do not use kmem_cache_zalloc(), as this cache uses
* SLAB_DESTROY_BY_RCU.
*/
ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
if (ct == NULL) {
pr_debug("nf_conntrack_alloc: Can't alloc conntrack.\n");
atomic_dec(&net->ct.count);
return ERR_PTR(-ENOMEM);
}
/*
* Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
* and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
*/
memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
sizeof(*ct) - offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
spin_lock_init(&ct->lock);
ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev = NULL;
/* Don't set timer yet: wait for confirmation */
setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
#ifdef CONFIG_NET_NS
ct->ct_net = net;
#endif
/*
* changes to lookup keys must be done before setting refcnt to 1
*/
smp_wmb();
atomic_set(&ct->ct_general.use, 1);
return ct;
}
EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
void nf_conntrack_free(struct nf_conn *ct)
{
struct net *net = nf_ct_net(ct);
nf_ct_ext_destroy(ct);
atomic_dec(&net->ct.count);
nf_ct_ext_free(ct);
kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
}
EXPORT_SYMBOL_GPL(nf_conntrack_free);
/* Allocate a new conntrack: we return -ENOMEM if classification
failed due to stress. Otherwise it really is unclassifiable. */
static struct nf_conntrack_tuple_hash *
init_conntrack(struct net *net,
const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_l3proto *l3proto,
struct nf_conntrack_l4proto *l4proto,
struct sk_buff *skb,
unsigned int dataoff)
{
struct nf_conn *ct;
struct nf_conn_help *help;
struct nf_conntrack_tuple repl_tuple;
struct nf_conntrack_expect *exp;
if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
pr_debug("Can't invert tuple.\n");
return NULL;
}
ct = nf_conntrack_alloc(net, tuple, &repl_tuple, GFP_ATOMIC);
if (IS_ERR(ct)) {
pr_debug("Can't allocate conntrack.\n");
return (struct nf_conntrack_tuple_hash *)ct;
}
if (!l4proto->new(ct, skb, dataoff)) {
nf_conntrack_free(ct);
pr_debug("init conntrack: can't track with proto module\n");
return NULL;
}
nf_ct_acct_ext_add(ct, GFP_ATOMIC);
nf_ct_ecache_ext_add(ct, GFP_ATOMIC);
spin_lock_bh(&nf_conntrack_lock);
exp = nf_ct_find_expectation(net, tuple);
if (exp) {
pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
ct, exp);
/* Welcome, Mr. Bond. We've been expecting you... */
__set_bit(IPS_EXPECTED_BIT, &ct->status);
ct->master = exp->master;
if (exp->helper) {
help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
if (help)
rcu_assign_pointer(help->helper, exp->helper);
}
#ifdef CONFIG_NF_CONNTRACK_MARK
ct->mark = exp->master->mark;
#endif
#ifdef CONFIG_NF_CONNTRACK_SECMARK
ct->secmark = exp->master->secmark;
#endif
nf_conntrack_get(&ct->master->ct_general);
NF_CT_STAT_INC(net, expect_new);
} else {
__nf_ct_try_assign_helper(ct, GFP_ATOMIC);
NF_CT_STAT_INC(net, new);
}
/* Overload tuple linked list to put us in unconfirmed list. */
hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
&net->ct.unconfirmed);
spin_unlock_bh(&nf_conntrack_lock);
if (exp) {
if (exp->expectfn)
exp->expectfn(ct, exp);
nf_ct_expect_put(exp);
}
return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
}
/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
static inline struct nf_conn *
resolve_normal_ct(struct net *net,
struct sk_buff *skb,
unsigned int dataoff,
u_int16_t l3num,
u_int8_t protonum,
struct nf_conntrack_l3proto *l3proto,
struct nf_conntrack_l4proto *l4proto,
int *set_reply,
enum ip_conntrack_info *ctinfo)
{
struct nf_conntrack_tuple tuple;
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
dataoff, l3num, protonum, &tuple, l3proto,
l4proto)) {
pr_debug("resolve_normal_ct: Can't get tuple\n");
return NULL;
}
/* look for tuple match */
h = nf_conntrack_find_get(net, &tuple);
if (!h) {
h = init_conntrack(net, &tuple, l3proto, l4proto, skb, dataoff);
if (!h)
return NULL;
if (IS_ERR(h))
return (void *)h;
}
ct = nf_ct_tuplehash_to_ctrack(h);
/* It exists; we have (non-exclusive) reference. */
if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
/* Please set reply bit if this packet OK */
*set_reply = 1;
} else {
/* Once we've had two way comms, always ESTABLISHED. */
if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
*ctinfo = IP_CT_ESTABLISHED;
} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
pr_debug("nf_conntrack_in: related packet for %p\n",
ct);
*ctinfo = IP_CT_RELATED;
} else {
pr_debug("nf_conntrack_in: new packet for %p\n", ct);
*ctinfo = IP_CT_NEW;
}
*set_reply = 0;
}
skb->nfct = &ct->ct_general;
skb->nfctinfo = *ctinfo;
return ct;
}
unsigned int
nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
struct sk_buff *skb)
{
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
struct nf_conntrack_l3proto *l3proto;
struct nf_conntrack_l4proto *l4proto;
unsigned int dataoff;
u_int8_t protonum;
int set_reply = 0;
int ret;
/* Previously seen (loopback or untracked)? Ignore. */
if (skb->nfct) {
NF_CT_STAT_INC_ATOMIC(net, ignore);
return NF_ACCEPT;
}
/* rcu_read_lock()ed by nf_hook_slow */
l3proto = __nf_ct_l3proto_find(pf);
ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
&dataoff, &protonum);
if (ret <= 0) {
pr_debug("not prepared to track yet or error occured\n");
NF_CT_STAT_INC_ATOMIC(net, error);
NF_CT_STAT_INC_ATOMIC(net, invalid);
return -ret;
}
l4proto = __nf_ct_l4proto_find(pf, protonum);
/* It may be an special packet, error, unclean...
* inverse of the return code tells to the netfilter
* core what to do with the packet. */
if (l4proto->error != NULL) {
ret = l4proto->error(net, skb, dataoff, &ctinfo, pf, hooknum);
if (ret <= 0) {
NF_CT_STAT_INC_ATOMIC(net, error);
NF_CT_STAT_INC_ATOMIC(net, invalid);
return -ret;
}
}
ct = resolve_normal_ct(net, skb, dataoff, pf, protonum,
l3proto, l4proto, &set_reply, &ctinfo);
if (!ct) {
/* Not valid part of a connection */
NF_CT_STAT_INC_ATOMIC(net, invalid);
return NF_ACCEPT;
}
if (IS_ERR(ct)) {
/* Too stressed to deal. */
NF_CT_STAT_INC_ATOMIC(net, drop);
return NF_DROP;
}
NF_CT_ASSERT(skb->nfct);
ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum);
if (ret <= 0) {
/* Invalid: inverse of the return code tells
* the netfilter core what to do */
pr_debug("nf_conntrack_in: Can't track with proto module\n");
nf_conntrack_put(skb->nfct);
skb->nfct = NULL;
NF_CT_STAT_INC_ATOMIC(net, invalid);
if (ret == -NF_DROP)
NF_CT_STAT_INC_ATOMIC(net, drop);
return -ret;
}
if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
nf_conntrack_event_cache(IPCT_STATUS, ct);
return ret;
}
EXPORT_SYMBOL_GPL(nf_conntrack_in);
bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
const struct nf_conntrack_tuple *orig)
{
bool ret;
rcu_read_lock();
ret = nf_ct_invert_tuple(inverse, orig,
__nf_ct_l3proto_find(orig->src.l3num),
__nf_ct_l4proto_find(orig->src.l3num,
orig->dst.protonum));
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
/* Alter reply tuple (maybe alter helper). This is for NAT, and is
implicitly racy: see __nf_conntrack_confirm */
void nf_conntrack_alter_reply(struct nf_conn *ct,
const struct nf_conntrack_tuple *newreply)
{
struct nf_conn_help *help = nfct_help(ct);
/* Should be unconfirmed, so not in hash table yet */
NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
pr_debug("Altering reply tuple of %p to ", ct);
nf_ct_dump_tuple(newreply);
ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
if (ct->master || (help && !hlist_empty(&help->expectations)))
return;
rcu_read_lock();
__nf_ct_try_assign_helper(ct, GFP_ATOMIC);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
void __nf_ct_refresh_acct(struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
const struct sk_buff *skb,
unsigned long extra_jiffies,
int do_acct)
{
NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
NF_CT_ASSERT(skb);
/* Only update if this is not a fixed timeout */
if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
goto acct;
/* If not in hash table, timer will not be active yet */
if (!nf_ct_is_confirmed(ct)) {
ct->timeout.expires = extra_jiffies;
} else {
unsigned long newtime = jiffies + extra_jiffies;
/* Only update the timeout if the new timeout is at least
HZ jiffies from the old timeout. Need del_timer for race
avoidance (may already be dying). */
if (newtime - ct->timeout.expires >= HZ)
mod_timer_pending(&ct->timeout, newtime);
}
acct:
if (do_acct) {
struct nf_conn_counter *acct;
acct = nf_conn_acct_find(ct);
if (acct) {
spin_lock_bh(&ct->lock);
acct[CTINFO2DIR(ctinfo)].packets++;
acct[CTINFO2DIR(ctinfo)].bytes +=
skb->len - skb_network_offset(skb);
spin_unlock_bh(&ct->lock);
}
}
}
EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
bool __nf_ct_kill_acct(struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
const struct sk_buff *skb,
int do_acct)
{
if (do_acct) {
struct nf_conn_counter *acct;
acct = nf_conn_acct_find(ct);
if (acct) {
spin_lock_bh(&ct->lock);
acct[CTINFO2DIR(ctinfo)].packets++;
acct[CTINFO2DIR(ctinfo)].bytes +=
skb->len - skb_network_offset(skb);
spin_unlock_bh(&ct->lock);
}
}
if (del_timer(&ct->timeout)) {
ct->timeout.function((unsigned long)ct);
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
#if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
#include <linux/mutex.h>
/* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
* in ip_conntrack_core, since we don't want the protocols to autoload
* or depend on ctnetlink */
int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
const struct nf_conntrack_tuple *tuple)
{
NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
return 0;
nla_put_failure:
return -1;
}
EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
[CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
[CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
};
EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
struct nf_conntrack_tuple *t)
{
if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
return -EINVAL;
t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
return 0;
}
EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
int nf_ct_port_nlattr_tuple_size(void)
{
return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
}
EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
#endif
/* Used by ipt_REJECT and ip6t_REJECT. */
static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
{
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
/* This ICMP is in reverse direction to the packet which caused it */
ct = nf_ct_get(skb, &ctinfo);
if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
else
ctinfo = IP_CT_RELATED;
/* Attach to new skbuff, and increment count */
nskb->nfct = &ct->ct_general;
nskb->nfctinfo = ctinfo;
nf_conntrack_get(nskb->nfct);
}
/* Bring out ya dead! */
static struct nf_conn *
get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
void *data, unsigned int *bucket)
{
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
struct hlist_nulls_node *n;
spin_lock_bh(&nf_conntrack_lock);
for (; *bucket < net->ct.htable_size; (*bucket)++) {
hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
ct = nf_ct_tuplehash_to_ctrack(h);
if (iter(ct, data))
goto found;
}
}
hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
ct = nf_ct_tuplehash_to_ctrack(h);
if (iter(ct, data))
set_bit(IPS_DYING_BIT, &ct->status);
}
spin_unlock_bh(&nf_conntrack_lock);
return NULL;
found:
atomic_inc(&ct->ct_general.use);
spin_unlock_bh(&nf_conntrack_lock);
return ct;
}
void nf_ct_iterate_cleanup(struct net *net,
int (*iter)(struct nf_conn *i, void *data),
void *data)
{
struct nf_conn *ct;
unsigned int bucket = 0;
while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
/* Time to push up daises... */
if (del_timer(&ct->timeout))
death_by_timeout((unsigned long)ct);
/* ... else the timer will get him soon. */
nf_ct_put(ct);
}
}
EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
struct __nf_ct_flush_report {
u32 pid;
int report;
};
static int kill_report(struct nf_conn *i, void *data)
{
struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
/* If we fail to deliver the event, death_by_timeout() will retry */
if (nf_conntrack_event_report(IPCT_DESTROY, i,
fr->pid, fr->report) < 0)
return 1;
/* Avoid the delivery of the destroy event in death_by_timeout(). */
set_bit(IPS_DYING_BIT, &i->status);
return 1;
}
static int kill_all(struct nf_conn *i, void *data)
{
return 1;
}
void nf_ct_free_hashtable(void *hash, int vmalloced, unsigned int size)
{
if (vmalloced)
vfree(hash);
else
free_pages((unsigned long)hash,
get_order(sizeof(struct hlist_head) * size));
}
EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
{
struct __nf_ct_flush_report fr = {
.pid = pid,
.report = report,
};
nf_ct_iterate_cleanup(net, kill_report, &fr);
}
EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
static void nf_ct_release_dying_list(struct net *net)
{
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
struct hlist_nulls_node *n;
spin_lock_bh(&nf_conntrack_lock);
hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
ct = nf_ct_tuplehash_to_ctrack(h);
/* never fails to remove them, no listeners at this point */
nf_ct_kill(ct);
}
spin_unlock_bh(&nf_conntrack_lock);
}
static void nf_conntrack_cleanup_init_net(void)
{
/* wait until all references to nf_conntrack_untracked are dropped */
while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
schedule();
nf_conntrack_helper_fini();
nf_conntrack_proto_fini();
}
static void nf_conntrack_cleanup_net(struct net *net)
{
i_see_dead_people:
nf_ct_iterate_cleanup(net, kill_all, NULL);
nf_ct_release_dying_list(net);
if (atomic_read(&net->ct.count) != 0) {
schedule();
goto i_see_dead_people;
}
nf_ct_free_hashtable(net->ct.hash, net->ct.hash_vmalloc,
net->ct.htable_size);
nf_conntrack_ecache_fini(net);
nf_conntrack_acct_fini(net);
nf_conntrack_expect_fini(net);
kmem_cache_destroy(net->ct.nf_conntrack_cachep);
kfree(net->ct.slabname);
free_percpu(net->ct.stat);
}
/* Mishearing the voices in his head, our hero wonders how he's
supposed to kill the mall. */
void nf_conntrack_cleanup(struct net *net)
{
if (net_eq(net, &init_net))
rcu_assign_pointer(ip_ct_attach, NULL);
/* This makes sure all current packets have passed through
netfilter framework. Roll on, two-stage module
delete... */
synchronize_net();
nf_conntrack_cleanup_net(net);
if (net_eq(net, &init_net)) {
rcu_assign_pointer(nf_ct_destroy, NULL);
nf_conntrack_cleanup_init_net();
}
}
void *nf_ct_alloc_hashtable(unsigned int *sizep, int *vmalloced, int nulls)
{
struct hlist_nulls_head *hash;
unsigned int nr_slots, i;
size_t sz;
*vmalloced = 0;
BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
sz = nr_slots * sizeof(struct hlist_nulls_head);
hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
get_order(sz));
if (!hash) {
*vmalloced = 1;
printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
hash = __vmalloc(sz, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
}
if (hash && nulls)
for (i = 0; i < nr_slots; i++)
INIT_HLIST_NULLS_HEAD(&hash[i], i);
return hash;
}
EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
{
int i, bucket, vmalloced, old_vmalloced;
unsigned int hashsize, old_size;
struct hlist_nulls_head *hash, *old_hash;
struct nf_conntrack_tuple_hash *h;
if (current->nsproxy->net_ns != &init_net)
return -EOPNOTSUPP;
/* On boot, we can set this without any fancy locking. */
if (!nf_conntrack_htable_size)
return param_set_uint(val, kp);
hashsize = simple_strtoul(val, NULL, 0);
if (!hashsize)
return -EINVAL;
hash = nf_ct_alloc_hashtable(&hashsize, &vmalloced, 1);
if (!hash)
return -ENOMEM;
/* Lookups in the old hash might happen in parallel, which means we
* might get false negatives during connection lookup. New connections
* created because of a false negative won't make it into the hash
* though since that required taking the lock.
*/
spin_lock_bh(&nf_conntrack_lock);
for (i = 0; i < init_net.ct.htable_size; i++) {
while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
h = hlist_nulls_entry(init_net.ct.hash[i].first,
struct nf_conntrack_tuple_hash, hnnode);
hlist_nulls_del_rcu(&h->hnnode);
bucket = __hash_conntrack(&h->tuple, hashsize,
nf_conntrack_hash_rnd);
hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
}
}
old_size = init_net.ct.htable_size;
old_vmalloced = init_net.ct.hash_vmalloc;
old_hash = init_net.ct.hash;
init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
init_net.ct.hash_vmalloc = vmalloced;
init_net.ct.hash = hash;
spin_unlock_bh(&nf_conntrack_lock);
nf_ct_free_hashtable(old_hash, old_vmalloced, old_size);
return 0;
}
EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
&nf_conntrack_htable_size, 0600);
static int nf_conntrack_init_init_net(void)
{
int max_factor = 8;
int ret;
/* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
* machine has 512 buckets. >= 1GB machines have 16384 buckets. */
if (!nf_conntrack_htable_size) {
nf_conntrack_htable_size
= (((totalram_pages << PAGE_SHIFT) / 16384)
/ sizeof(struct hlist_head));
if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
nf_conntrack_htable_size = 16384;
if (nf_conntrack_htable_size < 32)
nf_conntrack_htable_size = 32;
/* Use a max. factor of four by default to get the same max as
* with the old struct list_heads. When a table size is given
* we use the old value of 8 to avoid reducing the max.
* entries. */
max_factor = 4;
}
nf_conntrack_max = max_factor * nf_conntrack_htable_size;
printk("nf_conntrack version %s (%u buckets, %d max)\n",
NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
nf_conntrack_max);
ret = nf_conntrack_proto_init();
if (ret < 0)
goto err_proto;
ret = nf_conntrack_helper_init();
if (ret < 0)
goto err_helper;
/* Set up fake conntrack: to never be deleted, not in any hashes */
#ifdef CONFIG_NET_NS
nf_conntrack_untracked.ct_net = &init_net;
#endif
atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
/* - and look it like as a confirmed connection */
set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
return 0;
err_helper:
nf_conntrack_proto_fini();
err_proto:
return ret;
}
/*
* We need to use special "null" values, not used in hash table
*/
#define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
#define DYING_NULLS_VAL ((1<<30)+1)
static int nf_conntrack_init_net(struct net *net)
{
int ret;
atomic_set(&net->ct.count, 0);
INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
if (!net->ct.stat) {
ret = -ENOMEM;
goto err_stat;
}
net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
if (!net->ct.slabname) {
ret = -ENOMEM;
goto err_slabname;
}
net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
sizeof(struct nf_conn), 0,
SLAB_DESTROY_BY_RCU, NULL);
if (!net->ct.nf_conntrack_cachep) {
printk(KERN_ERR "Unable to create nf_conn slab cache\n");
ret = -ENOMEM;
goto err_cache;
}
net->ct.htable_size = nf_conntrack_htable_size;
net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size,
&net->ct.hash_vmalloc, 1);
if (!net->ct.hash) {
ret = -ENOMEM;
printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
goto err_hash;
}
ret = nf_conntrack_expect_init(net);
if (ret < 0)
goto err_expect;
ret = nf_conntrack_acct_init(net);
if (ret < 0)
goto err_acct;
ret = nf_conntrack_ecache_init(net);
if (ret < 0)
goto err_ecache;
return 0;
err_ecache:
nf_conntrack_acct_fini(net);
err_acct:
nf_conntrack_expect_fini(net);
err_expect:
nf_ct_free_hashtable(net->ct.hash, net->ct.hash_vmalloc,
net->ct.htable_size);
err_hash:
kmem_cache_destroy(net->ct.nf_conntrack_cachep);
err_cache:
kfree(net->ct.slabname);
err_slabname:
free_percpu(net->ct.stat);
err_stat:
return ret;
}
s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
enum ip_conntrack_dir dir,
u32 seq);
EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
int nf_conntrack_init(struct net *net)
{
int ret;
if (net_eq(net, &init_net)) {
ret = nf_conntrack_init_init_net();
if (ret < 0)
goto out_init_net;
}
ret = nf_conntrack_init_net(net);
if (ret < 0)
goto out_net;
if (net_eq(net, &init_net)) {
/* For use by REJECT target */
rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
/* Howto get NAT offsets */
rcu_assign_pointer(nf_ct_nat_offset, NULL);
}
return 0;
out_net:
if (net_eq(net, &init_net))
nf_conntrack_cleanup_init_net();
out_init_net:
return ret;
}