Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/arch/powerpc/platforms/cell/spider-pci.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

186 lines
4.9 KiB
C

/*
* IO workarounds for PCI on Celleb/Cell platform
*
* (C) Copyright 2006-2007 TOSHIBA CORPORATION
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <asm/ppc-pci.h>
#include <asm/pci-bridge.h>
#include "io-workarounds.h"
#define SPIDER_PCI_DISABLE_PREFETCH
struct spiderpci_iowa_private {
void __iomem *regs;
};
static void spiderpci_io_flush(struct iowa_bus *bus)
{
struct spiderpci_iowa_private *priv;
u32 val;
priv = bus->private;
val = in_be32(priv->regs + SPIDER_PCI_DUMMY_READ);
iosync();
}
#define SPIDER_PCI_MMIO_READ(name, ret) \
static ret spiderpci_##name(const PCI_IO_ADDR addr) \
{ \
ret val = __do_##name(addr); \
spiderpci_io_flush(iowa_mem_find_bus(addr)); \
return val; \
}
#define SPIDER_PCI_MMIO_READ_STR(name) \
static void spiderpci_##name(const PCI_IO_ADDR addr, void *buf, \
unsigned long count) \
{ \
__do_##name(addr, buf, count); \
spiderpci_io_flush(iowa_mem_find_bus(addr)); \
}
SPIDER_PCI_MMIO_READ(readb, u8)
SPIDER_PCI_MMIO_READ(readw, u16)
SPIDER_PCI_MMIO_READ(readl, u32)
SPIDER_PCI_MMIO_READ(readq, u64)
SPIDER_PCI_MMIO_READ(readw_be, u16)
SPIDER_PCI_MMIO_READ(readl_be, u32)
SPIDER_PCI_MMIO_READ(readq_be, u64)
SPIDER_PCI_MMIO_READ_STR(readsb)
SPIDER_PCI_MMIO_READ_STR(readsw)
SPIDER_PCI_MMIO_READ_STR(readsl)
static void spiderpci_memcpy_fromio(void *dest, const PCI_IO_ADDR src,
unsigned long n)
{
__do_memcpy_fromio(dest, src, n);
spiderpci_io_flush(iowa_mem_find_bus(src));
}
static int __init spiderpci_pci_setup_chip(struct pci_controller *phb,
void __iomem *regs)
{
void *dummy_page_va;
dma_addr_t dummy_page_da;
#ifdef SPIDER_PCI_DISABLE_PREFETCH
u32 val = in_be32(regs + SPIDER_PCI_VCI_CNTL_STAT);
pr_debug("SPIDER_IOWA:PVCI_Control_Status was 0x%08x\n", val);
out_be32(regs + SPIDER_PCI_VCI_CNTL_STAT, val | 0x8);
#endif /* SPIDER_PCI_DISABLE_PREFETCH */
/* setup dummy read */
/*
* On CellBlade, we can't know that which XDR memory is used by
* kmalloc() to allocate dummy_page_va.
* In order to imporve the performance, the XDR which is used to
* allocate dummy_page_va is the nearest the spider-pci.
* We have to select the CBE which is the nearest the spider-pci
* to allocate memory from the best XDR, but I don't know that
* how to do.
*
* Celleb does not have this problem, because it has only one XDR.
*/
dummy_page_va = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!dummy_page_va) {
pr_err("SPIDERPCI-IOWA:Alloc dummy_page_va failed.\n");
return -1;
}
dummy_page_da = dma_map_single(phb->parent, dummy_page_va,
PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(phb->parent, dummy_page_da)) {
pr_err("SPIDER-IOWA:Map dummy page filed.\n");
kfree(dummy_page_va);
return -1;
}
out_be32(regs + SPIDER_PCI_DUMMY_READ_BASE, dummy_page_da);
return 0;
}
int __init spiderpci_iowa_init(struct iowa_bus *bus, void *data)
{
void __iomem *regs = NULL;
struct spiderpci_iowa_private *priv;
struct device_node *np = bus->phb->dn;
struct resource r;
unsigned long offset = (unsigned long)data;
pr_debug("SPIDERPCI-IOWA:Bus initialize for spider(%s)\n",
np->full_name);
priv = kzalloc(sizeof(struct spiderpci_iowa_private), GFP_KERNEL);
if (!priv) {
pr_err("SPIDERPCI-IOWA:"
"Can't allocate struct spiderpci_iowa_private");
return -1;
}
if (of_address_to_resource(np, 0, &r)) {
pr_err("SPIDERPCI-IOWA:Can't get resource.\n");
goto error;
}
regs = ioremap(r.start + offset, SPIDER_PCI_REG_SIZE);
if (!regs) {
pr_err("SPIDERPCI-IOWA:ioremap failed.\n");
goto error;
}
priv->regs = regs;
bus->private = priv;
if (spiderpci_pci_setup_chip(bus->phb, regs))
goto error;
return 0;
error:
kfree(priv);
bus->private = NULL;
if (regs)
iounmap(regs);
return -1;
}
struct ppc_pci_io spiderpci_ops = {
.readb = spiderpci_readb,
.readw = spiderpci_readw,
.readl = spiderpci_readl,
.readq = spiderpci_readq,
.readw_be = spiderpci_readw_be,
.readl_be = spiderpci_readl_be,
.readq_be = spiderpci_readq_be,
.readsb = spiderpci_readsb,
.readsw = spiderpci_readsw,
.readsl = spiderpci_readsl,
.memcpy_fromio = spiderpci_memcpy_fromio,
};