Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/arch/powerpc/platforms/cell/celleb_scc_pciex.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

542 lines
15 KiB
C

/*
* Support for Celleb PCI-Express.
*
* (C) Copyright 2007-2008 TOSHIBA CORPORATION
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#undef DEBUG
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/iommu.h>
#include <asm/byteorder.h>
#include "celleb_scc.h"
#include "celleb_pci.h"
#define PEX_IN(base, off) in_be32((void __iomem *)(base) + (off))
#define PEX_OUT(base, off, data) out_be32((void __iomem *)(base) + (off), (data))
static void scc_pciex_io_flush(struct iowa_bus *bus)
{
(void)PEX_IN(bus->phb->cfg_addr, PEXDMRDEN0);
}
/*
* Memory space access to device on PCIEX
*/
#define PCIEX_MMIO_READ(name, ret) \
static ret scc_pciex_##name(const PCI_IO_ADDR addr) \
{ \
ret val = __do_##name(addr); \
scc_pciex_io_flush(iowa_mem_find_bus(addr)); \
return val; \
}
#define PCIEX_MMIO_READ_STR(name) \
static void scc_pciex_##name(const PCI_IO_ADDR addr, void *buf, \
unsigned long count) \
{ \
__do_##name(addr, buf, count); \
scc_pciex_io_flush(iowa_mem_find_bus(addr)); \
}
PCIEX_MMIO_READ(readb, u8)
PCIEX_MMIO_READ(readw, u16)
PCIEX_MMIO_READ(readl, u32)
PCIEX_MMIO_READ(readq, u64)
PCIEX_MMIO_READ(readw_be, u16)
PCIEX_MMIO_READ(readl_be, u32)
PCIEX_MMIO_READ(readq_be, u64)
PCIEX_MMIO_READ_STR(readsb)
PCIEX_MMIO_READ_STR(readsw)
PCIEX_MMIO_READ_STR(readsl)
static void scc_pciex_memcpy_fromio(void *dest, const PCI_IO_ADDR src,
unsigned long n)
{
__do_memcpy_fromio(dest, src, n);
scc_pciex_io_flush(iowa_mem_find_bus(src));
}
/*
* I/O port access to devices on PCIEX.
*/
static inline unsigned long get_bus_address(struct pci_controller *phb,
unsigned long port)
{
return port - ((unsigned long)(phb->io_base_virt) - _IO_BASE);
}
static u32 scc_pciex_read_port(struct pci_controller *phb,
unsigned long port, int size)
{
unsigned int byte_enable;
unsigned int cmd, shift;
unsigned long addr;
u32 data, ret;
BUG_ON(((port & 0x3ul) + size) > 4);
addr = get_bus_address(phb, port);
shift = addr & 0x3ul;
byte_enable = ((1 << size) - 1) << shift;
cmd = PEXDCMND_IO_READ | (byte_enable << PEXDCMND_BYTE_EN_SHIFT);
PEX_OUT(phb->cfg_addr, PEXDADRS, (addr & ~0x3ul));
PEX_OUT(phb->cfg_addr, PEXDCMND, cmd);
data = PEX_IN(phb->cfg_addr, PEXDRDATA);
ret = (data >> (shift * 8)) & (0xFFFFFFFF >> ((4 - size) * 8));
pr_debug("PCIEX:PIO READ:port=0x%lx, addr=0x%lx, size=%d, be=%x,"
" cmd=%x, data=%x, ret=%x\n", port, addr, size, byte_enable,
cmd, data, ret);
return ret;
}
static void scc_pciex_write_port(struct pci_controller *phb,
unsigned long port, int size, u32 val)
{
unsigned int byte_enable;
unsigned int cmd, shift;
unsigned long addr;
u32 data;
BUG_ON(((port & 0x3ul) + size) > 4);
addr = get_bus_address(phb, port);
shift = addr & 0x3ul;
byte_enable = ((1 << size) - 1) << shift;
cmd = PEXDCMND_IO_WRITE | (byte_enable << PEXDCMND_BYTE_EN_SHIFT);
data = (val & (0xFFFFFFFF >> (4 - size) * 8)) << (shift * 8);
PEX_OUT(phb->cfg_addr, PEXDADRS, (addr & ~0x3ul));
PEX_OUT(phb->cfg_addr, PEXDCMND, cmd);
PEX_OUT(phb->cfg_addr, PEXDWDATA, data);
pr_debug("PCIEX:PIO WRITE:port=0x%lx, addr=%lx, size=%d, val=%x,"
" be=%x, cmd=%x, data=%x\n", port, addr, size, val,
byte_enable, cmd, data);
}
static u8 __scc_pciex_inb(struct pci_controller *phb, unsigned long port)
{
return (u8)scc_pciex_read_port(phb, port, 1);
}
static u16 __scc_pciex_inw(struct pci_controller *phb, unsigned long port)
{
u32 data;
if ((port & 0x3ul) < 3)
data = scc_pciex_read_port(phb, port, 2);
else {
u32 d1 = scc_pciex_read_port(phb, port, 1);
u32 d2 = scc_pciex_read_port(phb, port + 1, 1);
data = d1 | (d2 << 8);
}
return (u16)data;
}
static u32 __scc_pciex_inl(struct pci_controller *phb, unsigned long port)
{
unsigned int mod = port & 0x3ul;
u32 data;
if (mod == 0)
data = scc_pciex_read_port(phb, port, 4);
else {
u32 d1 = scc_pciex_read_port(phb, port, 4 - mod);
u32 d2 = scc_pciex_read_port(phb, port + 1, mod);
data = d1 | (d2 << (mod * 8));
}
return data;
}
static void __scc_pciex_outb(struct pci_controller *phb,
u8 val, unsigned long port)
{
scc_pciex_write_port(phb, port, 1, (u32)val);
}
static void __scc_pciex_outw(struct pci_controller *phb,
u16 val, unsigned long port)
{
if ((port & 0x3ul) < 3)
scc_pciex_write_port(phb, port, 2, (u32)val);
else {
u32 d1 = val & 0x000000FF;
u32 d2 = (val & 0x0000FF00) >> 8;
scc_pciex_write_port(phb, port, 1, d1);
scc_pciex_write_port(phb, port + 1, 1, d2);
}
}
static void __scc_pciex_outl(struct pci_controller *phb,
u32 val, unsigned long port)
{
unsigned int mod = port & 0x3ul;
if (mod == 0)
scc_pciex_write_port(phb, port, 4, val);
else {
u32 d1 = val & (0xFFFFFFFFul >> (mod * 8));
u32 d2 = val >> ((4 - mod) * 8);
scc_pciex_write_port(phb, port, 4 - mod, d1);
scc_pciex_write_port(phb, port + 1, mod, d2);
}
}
#define PCIEX_PIO_FUNC(size, name) \
static u##size scc_pciex_in##name(unsigned long port) \
{ \
struct iowa_bus *bus = iowa_pio_find_bus(port); \
u##size data = __scc_pciex_in##name(bus->phb, port); \
scc_pciex_io_flush(bus); \
return data; \
} \
static void scc_pciex_ins##name(unsigned long p, void *b, unsigned long c) \
{ \
struct iowa_bus *bus = iowa_pio_find_bus(p); \
__le##size *dst = b; \
for (; c != 0; c--, dst++) \
*dst = cpu_to_le##size(__scc_pciex_in##name(bus->phb, p)); \
scc_pciex_io_flush(bus); \
} \
static void scc_pciex_out##name(u##size val, unsigned long port) \
{ \
struct iowa_bus *bus = iowa_pio_find_bus(port); \
__scc_pciex_out##name(bus->phb, val, port); \
} \
static void scc_pciex_outs##name(unsigned long p, const void *b, \
unsigned long c) \
{ \
struct iowa_bus *bus = iowa_pio_find_bus(p); \
const __le##size *src = b; \
for (; c != 0; c--, src++) \
__scc_pciex_out##name(bus->phb, le##size##_to_cpu(*src), p); \
}
#define __le8 u8
#define cpu_to_le8(x) (x)
#define le8_to_cpu(x) (x)
PCIEX_PIO_FUNC(8, b)
PCIEX_PIO_FUNC(16, w)
PCIEX_PIO_FUNC(32, l)
static struct ppc_pci_io scc_pciex_ops = {
.readb = scc_pciex_readb,
.readw = scc_pciex_readw,
.readl = scc_pciex_readl,
.readq = scc_pciex_readq,
.readw_be = scc_pciex_readw_be,
.readl_be = scc_pciex_readl_be,
.readq_be = scc_pciex_readq_be,
.readsb = scc_pciex_readsb,
.readsw = scc_pciex_readsw,
.readsl = scc_pciex_readsl,
.memcpy_fromio = scc_pciex_memcpy_fromio,
.inb = scc_pciex_inb,
.inw = scc_pciex_inw,
.inl = scc_pciex_inl,
.outb = scc_pciex_outb,
.outw = scc_pciex_outw,
.outl = scc_pciex_outl,
.insb = scc_pciex_insb,
.insw = scc_pciex_insw,
.insl = scc_pciex_insl,
.outsb = scc_pciex_outsb,
.outsw = scc_pciex_outsw,
.outsl = scc_pciex_outsl,
};
static int __init scc_pciex_iowa_init(struct iowa_bus *bus, void *data)
{
dma_addr_t dummy_page_da;
void *dummy_page_va;
dummy_page_va = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!dummy_page_va) {
pr_err("PCIEX:Alloc dummy_page_va failed\n");
return -1;
}
dummy_page_da = dma_map_single(bus->phb->parent, dummy_page_va,
PAGE_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(bus->phb->parent, dummy_page_da)) {
pr_err("PCIEX:Map dummy page failed.\n");
kfree(dummy_page_va);
return -1;
}
PEX_OUT(bus->phb->cfg_addr, PEXDMRDADR0, dummy_page_da);
return 0;
}
/*
* config space access
*/
#define MK_PEXDADRS(bus_no, dev_no, func_no, addr) \
((uint32_t)(((addr) & ~0x3UL) | \
((bus_no) << PEXDADRS_BUSNO_SHIFT) | \
((dev_no) << PEXDADRS_DEVNO_SHIFT) | \
((func_no) << PEXDADRS_FUNCNO_SHIFT)))
#define MK_PEXDCMND_BYTE_EN(addr, size) \
((((0x1 << (size))-1) << ((addr) & 0x3)) << PEXDCMND_BYTE_EN_SHIFT)
#define MK_PEXDCMND(cmd, addr, size) ((cmd) | MK_PEXDCMND_BYTE_EN(addr, size))
static uint32_t config_read_pciex_dev(unsigned int __iomem *base,
uint64_t bus_no, uint64_t dev_no, uint64_t func_no,
uint64_t off, uint64_t size)
{
uint32_t ret;
uint32_t addr, cmd;
addr = MK_PEXDADRS(bus_no, dev_no, func_no, off);
cmd = MK_PEXDCMND(PEXDCMND_CONFIG_READ, off, size);
PEX_OUT(base, PEXDADRS, addr);
PEX_OUT(base, PEXDCMND, cmd);
ret = (PEX_IN(base, PEXDRDATA)
>> ((off & (4-size)) * 8)) & ((0x1 << (size * 8)) - 1);
return ret;
}
static void config_write_pciex_dev(unsigned int __iomem *base, uint64_t bus_no,
uint64_t dev_no, uint64_t func_no, uint64_t off, uint64_t size,
uint32_t data)
{
uint32_t addr, cmd;
addr = MK_PEXDADRS(bus_no, dev_no, func_no, off);
cmd = MK_PEXDCMND(PEXDCMND_CONFIG_WRITE, off, size);
PEX_OUT(base, PEXDADRS, addr);
PEX_OUT(base, PEXDCMND, cmd);
PEX_OUT(base, PEXDWDATA,
(data & ((0x1 << (size * 8)) - 1)) << ((off & (4-size)) * 8));
}
#define MK_PEXCADRS_BYTE_EN(off, len) \
((((0x1 << (len)) - 1) << ((off) & 0x3)) << PEXCADRS_BYTE_EN_SHIFT)
#define MK_PEXCADRS(cmd, addr, size) \
((cmd) | MK_PEXCADRS_BYTE_EN(addr, size) | ((addr) & ~0x3))
static uint32_t config_read_pciex_rc(unsigned int __iomem *base,
uint32_t where, uint32_t size)
{
PEX_OUT(base, PEXCADRS, MK_PEXCADRS(PEXCADRS_CMD_READ, where, size));
return (PEX_IN(base, PEXCRDATA)
>> ((where & (4 - size)) * 8)) & ((0x1 << (size * 8)) - 1);
}
static void config_write_pciex_rc(unsigned int __iomem *base, uint32_t where,
uint32_t size, uint32_t val)
{
uint32_t data;
data = (val & ((0x1 << (size * 8)) - 1)) << ((where & (4 - size)) * 8);
PEX_OUT(base, PEXCADRS, MK_PEXCADRS(PEXCADRS_CMD_WRITE, where, size));
PEX_OUT(base, PEXCWDATA, data);
}
/* Interfaces */
/* Note: Work-around
* On SCC PCIEXC, one device is seen on all 32 dev_no.
* As SCC PCIEXC can have only one device on the bus, we look only one dev_no.
* (dev_no = 1)
*/
static int scc_pciex_read_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, unsigned int *val)
{
struct pci_controller *phb = pci_bus_to_host(bus);
if (bus->number == phb->first_busno && PCI_SLOT(devfn) != 1) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND;
}
if (bus->number == 0 && PCI_SLOT(devfn) == 0)
*val = config_read_pciex_rc(phb->cfg_addr, where, size);
else
*val = config_read_pciex_dev(phb->cfg_addr, bus->number,
PCI_SLOT(devfn), PCI_FUNC(devfn), where, size);
return PCIBIOS_SUCCESSFUL;
}
static int scc_pciex_write_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, unsigned int val)
{
struct pci_controller *phb = pci_bus_to_host(bus);
if (bus->number == phb->first_busno && PCI_SLOT(devfn) != 1)
return PCIBIOS_DEVICE_NOT_FOUND;
if (bus->number == 0 && PCI_SLOT(devfn) == 0)
config_write_pciex_rc(phb->cfg_addr, where, size, val);
else
config_write_pciex_dev(phb->cfg_addr, bus->number,
PCI_SLOT(devfn), PCI_FUNC(devfn), where, size, val);
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops scc_pciex_pci_ops = {
scc_pciex_read_config,
scc_pciex_write_config,
};
static void pciex_clear_intr_all(unsigned int __iomem *base)
{
PEX_OUT(base, PEXAERRSTS, 0xffffffff);
PEX_OUT(base, PEXPRERRSTS, 0xffffffff);
PEX_OUT(base, PEXINTSTS, 0xffffffff);
}
#if 0
static void pciex_disable_intr_all(unsigned int *base)
{
PEX_OUT(base, PEXINTMASK, 0x0);
PEX_OUT(base, PEXAERRMASK, 0x0);
PEX_OUT(base, PEXPRERRMASK, 0x0);
PEX_OUT(base, PEXVDMASK, 0x0);
}
#endif
static void pciex_enable_intr_all(unsigned int __iomem *base)
{
PEX_OUT(base, PEXINTMASK, 0x0000e7f1);
PEX_OUT(base, PEXAERRMASK, 0x03ff01ff);
PEX_OUT(base, PEXPRERRMASK, 0x0001010f);
PEX_OUT(base, PEXVDMASK, 0x00000001);
}
static void pciex_check_status(unsigned int __iomem *base)
{
uint32_t err = 0;
uint32_t intsts, aerr, prerr, rcvcp, lenerr;
uint32_t maea, maec;
intsts = PEX_IN(base, PEXINTSTS);
aerr = PEX_IN(base, PEXAERRSTS);
prerr = PEX_IN(base, PEXPRERRSTS);
rcvcp = PEX_IN(base, PEXRCVCPLIDA);
lenerr = PEX_IN(base, PEXLENERRIDA);
if (intsts || aerr || prerr || rcvcp || lenerr)
err = 1;
pr_info("PCEXC interrupt!!\n");
pr_info("PEXINTSTS :0x%08x\n", intsts);
pr_info("PEXAERRSTS :0x%08x\n", aerr);
pr_info("PEXPRERRSTS :0x%08x\n", prerr);
pr_info("PEXRCVCPLIDA :0x%08x\n", rcvcp);
pr_info("PEXLENERRIDA :0x%08x\n", lenerr);
/* print detail of Protection Error */
if (intsts & 0x00004000) {
uint32_t i, n;
for (i = 0; i < 4; i++) {
n = 1 << i;
if (prerr & n) {
maea = PEX_IN(base, PEXMAEA(i));
maec = PEX_IN(base, PEXMAEC(i));
pr_info("PEXMAEC%d :0x%08x\n", i, maec);
pr_info("PEXMAEA%d :0x%08x\n", i, maea);
}
}
}
if (err)
pciex_clear_intr_all(base);
}
static irqreturn_t pciex_handle_internal_irq(int irq, void *dev_id)
{
struct pci_controller *phb = dev_id;
pr_debug("PCIEX:pciex_handle_internal_irq(irq=%d)\n", irq);
BUG_ON(phb->cfg_addr == NULL);
pciex_check_status(phb->cfg_addr);
return IRQ_HANDLED;
}
static __init int celleb_setup_pciex(struct device_node *node,
struct pci_controller *phb)
{
struct resource r;
struct of_irq oirq;
int virq;
/* SMMIO registers; used inside this file */
if (of_address_to_resource(node, 0, &r)) {
pr_err("PCIEXC:Failed to get config resource.\n");
return 1;
}
phb->cfg_addr = ioremap(r.start, r.end - r.start + 1);
if (!phb->cfg_addr) {
pr_err("PCIEXC:Failed to remap SMMIO region.\n");
return 1;
}
/* Not use cfg_data, cmd and data regs are near address reg */
phb->cfg_data = NULL;
/* set pci_ops */
phb->ops = &scc_pciex_pci_ops;
/* internal interrupt handler */
if (of_irq_map_one(node, 1, &oirq)) {
pr_err("PCIEXC:Failed to map irq\n");
goto error;
}
virq = irq_create_of_mapping(oirq.controller, oirq.specifier,
oirq.size);
if (request_irq(virq, pciex_handle_internal_irq,
IRQF_DISABLED, "pciex", (void *)phb)) {
pr_err("PCIEXC:Failed to request irq\n");
goto error;
}
/* enable all interrupts */
pciex_clear_intr_all(phb->cfg_addr);
pciex_enable_intr_all(phb->cfg_addr);
/* MSI: TBD */
return 0;
error:
phb->cfg_data = NULL;
if (phb->cfg_addr)
iounmap(phb->cfg_addr);
phb->cfg_addr = NULL;
return 1;
}
struct celleb_phb_spec celleb_pciex_spec __initdata = {
.setup = celleb_setup_pciex,
.ops = &scc_pciex_ops,
.iowa_init = &scc_pciex_iowa_init,
};