Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/pci/hotplug/pciehp_hpc.c
Kenji Kaneshige f477836457 PCI: hotplug: pciehp: Fix possible race condition in writing slot
The slot control register is modified as follows:

    (1) Read the register value
    (2) Change the value
    (3) Write the value to the register

Those must be done atomically, otherwise writing to control register
would cause an unexpected result.

Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-07-11 16:02:08 -07:00

1401 lines
35 KiB
C

/*
* PCI Express PCI Hot Plug Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com>
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/signal.h>
#include <linux/jiffies.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include "../pci.h"
#include "pciehp.h"
#ifdef DEBUG
#define DBG_K_TRACE_ENTRY ((unsigned int)0x00000001) /* On function entry */
#define DBG_K_TRACE_EXIT ((unsigned int)0x00000002) /* On function exit */
#define DBG_K_INFO ((unsigned int)0x00000004) /* Info messages */
#define DBG_K_ERROR ((unsigned int)0x00000008) /* Error messages */
#define DBG_K_TRACE (DBG_K_TRACE_ENTRY|DBG_K_TRACE_EXIT)
#define DBG_K_STANDARD (DBG_K_INFO|DBG_K_ERROR|DBG_K_TRACE)
/* Redefine this flagword to set debug level */
#define DEBUG_LEVEL DBG_K_STANDARD
#define DEFINE_DBG_BUFFER char __dbg_str_buf[256];
#define DBG_PRINT( dbg_flags, args... ) \
do { \
if ( DEBUG_LEVEL & ( dbg_flags ) ) \
{ \
int len; \
len = sprintf( __dbg_str_buf, "%s:%d: %s: ", \
__FILE__, __LINE__, __FUNCTION__ ); \
sprintf( __dbg_str_buf + len, args ); \
printk( KERN_NOTICE "%s\n", __dbg_str_buf ); \
} \
} while (0)
#define DBG_ENTER_ROUTINE DBG_PRINT (DBG_K_TRACE_ENTRY, "%s", "[Entry]");
#define DBG_LEAVE_ROUTINE DBG_PRINT (DBG_K_TRACE_EXIT, "%s", "[Exit]");
#else
#define DEFINE_DBG_BUFFER
#define DBG_ENTER_ROUTINE
#define DBG_LEAVE_ROUTINE
#endif /* DEBUG */
static atomic_t pciehp_num_controllers = ATOMIC_INIT(0);
struct ctrl_reg {
u8 cap_id;
u8 nxt_ptr;
u16 cap_reg;
u32 dev_cap;
u16 dev_ctrl;
u16 dev_status;
u32 lnk_cap;
u16 lnk_ctrl;
u16 lnk_status;
u32 slot_cap;
u16 slot_ctrl;
u16 slot_status;
u16 root_ctrl;
u16 rsvp;
u32 root_status;
} __attribute__ ((packed));
/* offsets to the controller registers based on the above structure layout */
enum ctrl_offsets {
PCIECAPID = offsetof(struct ctrl_reg, cap_id),
NXTCAPPTR = offsetof(struct ctrl_reg, nxt_ptr),
CAPREG = offsetof(struct ctrl_reg, cap_reg),
DEVCAP = offsetof(struct ctrl_reg, dev_cap),
DEVCTRL = offsetof(struct ctrl_reg, dev_ctrl),
DEVSTATUS = offsetof(struct ctrl_reg, dev_status),
LNKCAP = offsetof(struct ctrl_reg, lnk_cap),
LNKCTRL = offsetof(struct ctrl_reg, lnk_ctrl),
LNKSTATUS = offsetof(struct ctrl_reg, lnk_status),
SLOTCAP = offsetof(struct ctrl_reg, slot_cap),
SLOTCTRL = offsetof(struct ctrl_reg, slot_ctrl),
SLOTSTATUS = offsetof(struct ctrl_reg, slot_status),
ROOTCTRL = offsetof(struct ctrl_reg, root_ctrl),
ROOTSTATUS = offsetof(struct ctrl_reg, root_status),
};
static inline int pciehp_readw(struct controller *ctrl, int reg, u16 *value)
{
struct pci_dev *dev = ctrl->pci_dev;
return pci_read_config_word(dev, ctrl->cap_base + reg, value);
}
static inline int pciehp_readl(struct controller *ctrl, int reg, u32 *value)
{
struct pci_dev *dev = ctrl->pci_dev;
return pci_read_config_dword(dev, ctrl->cap_base + reg, value);
}
static inline int pciehp_writew(struct controller *ctrl, int reg, u16 value)
{
struct pci_dev *dev = ctrl->pci_dev;
return pci_write_config_word(dev, ctrl->cap_base + reg, value);
}
static inline int pciehp_writel(struct controller *ctrl, int reg, u32 value)
{
struct pci_dev *dev = ctrl->pci_dev;
return pci_write_config_dword(dev, ctrl->cap_base + reg, value);
}
/* Field definitions in PCI Express Capabilities Register */
#define CAP_VER 0x000F
#define DEV_PORT_TYPE 0x00F0
#define SLOT_IMPL 0x0100
#define MSG_NUM 0x3E00
/* Device or Port Type */
#define NAT_ENDPT 0x00
#define LEG_ENDPT 0x01
#define ROOT_PORT 0x04
#define UP_STREAM 0x05
#define DN_STREAM 0x06
#define PCIE_PCI_BRDG 0x07
#define PCI_PCIE_BRDG 0x10
/* Field definitions in Device Capabilities Register */
#define DATTN_BUTTN_PRSN 0x1000
#define DATTN_LED_PRSN 0x2000
#define DPWR_LED_PRSN 0x4000
/* Field definitions in Link Capabilities Register */
#define MAX_LNK_SPEED 0x000F
#define MAX_LNK_WIDTH 0x03F0
/* Link Width Encoding */
#define LNK_X1 0x01
#define LNK_X2 0x02
#define LNK_X4 0x04
#define LNK_X8 0x08
#define LNK_X12 0x0C
#define LNK_X16 0x10
#define LNK_X32 0x20
/*Field definitions of Link Status Register */
#define LNK_SPEED 0x000F
#define NEG_LINK_WD 0x03F0
#define LNK_TRN_ERR 0x0400
#define LNK_TRN 0x0800
#define SLOT_CLK_CONF 0x1000
/* Field definitions in Slot Capabilities Register */
#define ATTN_BUTTN_PRSN 0x00000001
#define PWR_CTRL_PRSN 0x00000002
#define MRL_SENS_PRSN 0x00000004
#define ATTN_LED_PRSN 0x00000008
#define PWR_LED_PRSN 0x00000010
#define HP_SUPR_RM_SUP 0x00000020
#define HP_CAP 0x00000040
#define SLOT_PWR_VALUE 0x000003F8
#define SLOT_PWR_LIMIT 0x00000C00
#define PSN 0xFFF80000 /* PSN: Physical Slot Number */
/* Field definitions in Slot Control Register */
#define ATTN_BUTTN_ENABLE 0x0001
#define PWR_FAULT_DETECT_ENABLE 0x0002
#define MRL_DETECT_ENABLE 0x0004
#define PRSN_DETECT_ENABLE 0x0008
#define CMD_CMPL_INTR_ENABLE 0x0010
#define HP_INTR_ENABLE 0x0020
#define ATTN_LED_CTRL 0x00C0
#define PWR_LED_CTRL 0x0300
#define PWR_CTRL 0x0400
#define EMI_CTRL 0x0800
/* Attention indicator and Power indicator states */
#define LED_ON 0x01
#define LED_BLINK 0x10
#define LED_OFF 0x11
/* Power Control Command */
#define POWER_ON 0
#define POWER_OFF 0x0400
/* EMI Status defines */
#define EMI_DISENGAGED 0
#define EMI_ENGAGED 1
/* Field definitions in Slot Status Register */
#define ATTN_BUTTN_PRESSED 0x0001
#define PWR_FAULT_DETECTED 0x0002
#define MRL_SENS_CHANGED 0x0004
#define PRSN_DETECT_CHANGED 0x0008
#define CMD_COMPLETED 0x0010
#define MRL_STATE 0x0020
#define PRSN_STATE 0x0040
#define EMI_STATE 0x0080
#define EMI_STATUS_BIT 7
DEFINE_DBG_BUFFER /* Debug string buffer for entire HPC defined here */
static irqreturn_t pcie_isr(int irq, void *dev_id);
static void start_int_poll_timer(struct controller *ctrl, int sec);
/* This is the interrupt polling timeout function. */
static void int_poll_timeout(unsigned long data)
{
struct controller *ctrl = (struct controller *)data;
DBG_ENTER_ROUTINE
/* Poll for interrupt events. regs == NULL => polling */
pcie_isr(0, ctrl);
init_timer(&ctrl->poll_timer);
if (!pciehp_poll_time)
pciehp_poll_time = 2; /* reset timer to poll in 2 secs if user doesn't specify at module installation*/
start_int_poll_timer(ctrl, pciehp_poll_time);
}
/* This function starts the interrupt polling timer. */
static void start_int_poll_timer(struct controller *ctrl, int sec)
{
/* Clamp to sane value */
if ((sec <= 0) || (sec > 60))
sec = 2;
ctrl->poll_timer.function = &int_poll_timeout;
ctrl->poll_timer.data = (unsigned long)ctrl;
ctrl->poll_timer.expires = jiffies + sec * HZ;
add_timer(&ctrl->poll_timer);
}
static inline int pcie_wait_cmd(struct controller *ctrl)
{
int retval = 0;
unsigned int msecs = pciehp_poll_mode ? 2500 : 1000;
unsigned long timeout = msecs_to_jiffies(msecs);
int rc;
rc = wait_event_interruptible_timeout(ctrl->queue,
!ctrl->cmd_busy, timeout);
if (!rc)
dbg("Command not completed in 1000 msec\n");
else if (rc < 0) {
retval = -EINTR;
info("Command was interrupted by a signal\n");
}
return retval;
}
/**
* pcie_write_cmd - Issue controller command
* @slot: slot to which the command is issued
* @cmd: command value written to slot control register
* @mask: bitmask of slot control register to be modified
*/
static int pcie_write_cmd(struct slot *slot, u16 cmd, u16 mask)
{
struct controller *ctrl = slot->ctrl;
int retval = 0;
u16 slot_status;
u16 slot_ctrl;
unsigned long flags;
DBG_ENTER_ROUTINE
mutex_lock(&ctrl->ctrl_lock);
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
goto out;
}
if ((slot_status & CMD_COMPLETED) == CMD_COMPLETED ) {
/* After 1 sec and CMD_COMPLETED still not set, just
proceed forward to issue the next command according
to spec. Just print out the error message */
dbg("%s: CMD_COMPLETED not clear after 1 sec.\n",
__FUNCTION__);
}
spin_lock_irqsave(&ctrl->lock, flags);
retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl);
if (retval) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
goto out_spin_unlock;
}
slot_ctrl &= ~mask;
slot_ctrl |= ((cmd & mask) | CMD_CMPL_INTR_ENABLE);
ctrl->cmd_busy = 1;
retval = pciehp_writew(ctrl, SLOTCTRL, slot_ctrl);
if (retval)
err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__);
out_spin_unlock:
spin_unlock_irqrestore(&ctrl->lock, flags);
/*
* Wait for command completion.
*/
if (!retval)
retval = pcie_wait_cmd(ctrl);
out:
mutex_unlock(&ctrl->ctrl_lock);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_check_lnk_status(struct controller *ctrl)
{
u16 lnk_status;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status);
if (retval) {
err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__);
return retval;
}
dbg("%s: lnk_status = %x\n", __FUNCTION__, lnk_status);
if ( (lnk_status & LNK_TRN) || (lnk_status & LNK_TRN_ERR) ||
!(lnk_status & NEG_LINK_WD)) {
err("%s : Link Training Error occurs \n", __FUNCTION__);
retval = -1;
return retval;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_attention_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u16 slot_ctrl;
u8 atten_led_state;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl);
if (retval) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
return retval;
}
dbg("%s: SLOTCTRL %x, value read %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl);
atten_led_state = (slot_ctrl & ATTN_LED_CTRL) >> 6;
switch (atten_led_state) {
case 0:
*status = 0xFF; /* Reserved */
break;
case 1:
*status = 1; /* On */
break;
case 2:
*status = 2; /* Blink */
break;
case 3:
*status = 0; /* Off */
break;
default:
*status = 0xFF;
break;
}
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_power_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u16 slot_ctrl;
u8 pwr_state;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl);
if (retval) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
return retval;
}
dbg("%s: SLOTCTRL %x value read %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl);
pwr_state = (slot_ctrl & PWR_CTRL) >> 10;
switch (pwr_state) {
case 0:
*status = 1;
break;
case 1:
*status = 0;
break;
default:
*status = 0xFF;
break;
}
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_latch_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u16 slot_status;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
return retval;
}
*status = (((slot_status & MRL_STATE) >> 5) == 0) ? 0 : 1;
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_get_adapter_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u16 slot_status;
u8 card_state;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
return retval;
}
card_state = (u8)((slot_status & PRSN_STATE) >> 6);
*status = (card_state == 1) ? 1 : 0;
DBG_LEAVE_ROUTINE
return 0;
}
static int hpc_query_power_fault(struct slot *slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_status;
u8 pwr_fault;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s: Cannot check for power fault\n", __FUNCTION__);
return retval;
}
pwr_fault = (u8)((slot_status & PWR_FAULT_DETECTED) >> 1);
DBG_LEAVE_ROUTINE
return pwr_fault;
}
static int hpc_get_emi_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u16 slot_status;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s : Cannot check EMI status\n", __FUNCTION__);
return retval;
}
*status = (slot_status & EMI_STATE) >> EMI_STATUS_BIT;
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_toggle_emi(struct slot *slot)
{
u16 slot_cmd;
u16 cmd_mask;
int rc;
DBG_ENTER_ROUTINE
slot_cmd = EMI_CTRL;
cmd_mask = EMI_CTRL;
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd | HP_INTR_ENABLE;
cmd_mask = cmd_mask | HP_INTR_ENABLE;
}
rc = pcie_write_cmd(slot, slot_cmd, cmd_mask);
slot->last_emi_toggle = get_seconds();
DBG_LEAVE_ROUTINE
return rc;
}
static int hpc_set_attention_status(struct slot *slot, u8 value)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
int rc;
DBG_ENTER_ROUTINE
cmd_mask = ATTN_LED_CTRL;
switch (value) {
case 0 : /* turn off */
slot_cmd = 0x00C0;
break;
case 1: /* turn on */
slot_cmd = 0x0040;
break;
case 2: /* turn blink */
slot_cmd = 0x0080;
break;
default:
return -1;
}
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd | HP_INTR_ENABLE;
cmd_mask = cmd_mask | HP_INTR_ENABLE;
}
rc = pcie_write_cmd(slot, slot_cmd, cmd_mask);
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return rc;
}
static void hpc_set_green_led_on(struct slot *slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
DBG_ENTER_ROUTINE
slot_cmd = 0x0100;
cmd_mask = PWR_LED_CTRL;
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd | HP_INTR_ENABLE;
cmd_mask = cmd_mask | HP_INTR_ENABLE;
}
pcie_write_cmd(slot, slot_cmd, cmd_mask);
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return;
}
static void hpc_set_green_led_off(struct slot *slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
DBG_ENTER_ROUTINE
slot_cmd = 0x0300;
cmd_mask = PWR_LED_CTRL;
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd | HP_INTR_ENABLE;
cmd_mask = cmd_mask | HP_INTR_ENABLE;
}
pcie_write_cmd(slot, slot_cmd, cmd_mask);
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return;
}
static void hpc_set_green_led_blink(struct slot *slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
DBG_ENTER_ROUTINE
slot_cmd = 0x0200;
cmd_mask = PWR_LED_CTRL;
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd | HP_INTR_ENABLE;
cmd_mask = cmd_mask | HP_INTR_ENABLE;
}
pcie_write_cmd(slot, slot_cmd, cmd_mask);
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return;
}
static void hpc_release_ctlr(struct controller *ctrl)
{
DBG_ENTER_ROUTINE
if (pciehp_poll_mode)
del_timer(&ctrl->poll_timer);
else
free_irq(ctrl->pci_dev->irq, ctrl);
/*
* If this is the last controller to be released, destroy the
* pciehp work queue
*/
if (atomic_dec_and_test(&pciehp_num_controllers))
destroy_workqueue(pciehp_wq);
DBG_LEAVE_ROUTINE
}
static int hpc_power_on_slot(struct slot * slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
u16 slot_status;
int retval = 0;
DBG_ENTER_ROUTINE
dbg("%s: slot->hp_slot %x\n", __FUNCTION__, slot->hp_slot);
/* Clear sticky power-fault bit from previous power failures */
retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (retval) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
return retval;
}
slot_status &= PWR_FAULT_DETECTED;
if (slot_status) {
retval = pciehp_writew(ctrl, SLOTSTATUS, slot_status);
if (retval) {
err("%s: Cannot write to SLOTSTATUS register\n",
__FUNCTION__);
return retval;
}
}
slot_cmd = POWER_ON;
cmd_mask = PWR_CTRL;
/* Enable detection that we turned off at slot power-off time */
if (!pciehp_poll_mode) {
slot_cmd = slot_cmd |
PWR_FAULT_DETECT_ENABLE |
MRL_DETECT_ENABLE |
PRSN_DETECT_ENABLE |
HP_INTR_ENABLE;
cmd_mask = cmd_mask |
PWR_FAULT_DETECT_ENABLE |
MRL_DETECT_ENABLE |
PRSN_DETECT_ENABLE |
HP_INTR_ENABLE;
}
retval = pcie_write_cmd(slot, slot_cmd, cmd_mask);
if (retval) {
err("%s: Write %x command failed!\n", __FUNCTION__, slot_cmd);
return -1;
}
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_power_off_slot(struct slot * slot)
{
struct controller *ctrl = slot->ctrl;
u16 slot_cmd;
u16 cmd_mask;
int retval = 0;
DBG_ENTER_ROUTINE
dbg("%s: slot->hp_slot %x\n", __FUNCTION__, slot->hp_slot);
slot_cmd = POWER_OFF;
cmd_mask = PWR_CTRL;
/*
* If we get MRL or presence detect interrupts now, the isr
* will notice the sticky power-fault bit too and issue power
* indicator change commands. This will lead to an endless loop
* of command completions, since the power-fault bit remains on
* till the slot is powered on again.
*/
if (!pciehp_poll_mode) {
slot_cmd = (slot_cmd &
~PWR_FAULT_DETECT_ENABLE &
~MRL_DETECT_ENABLE &
~PRSN_DETECT_ENABLE) | HP_INTR_ENABLE;
cmd_mask = cmd_mask |
PWR_FAULT_DETECT_ENABLE |
MRL_DETECT_ENABLE |
PRSN_DETECT_ENABLE |
HP_INTR_ENABLE;
}
retval = pcie_write_cmd(slot, slot_cmd, cmd_mask);
if (retval) {
err("%s: Write command failed!\n", __FUNCTION__);
return -1;
}
dbg("%s: SLOTCTRL %x write cmd %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_cmd);
DBG_LEAVE_ROUTINE
return retval;
}
static irqreturn_t pcie_isr(int irq, void *dev_id)
{
struct controller *ctrl = (struct controller *)dev_id;
u16 slot_status, intr_detect, intr_loc;
u16 temp_word;
int hp_slot = 0; /* only 1 slot per PCI Express port */
int rc = 0;
unsigned long flags;
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
return IRQ_NONE;
}
intr_detect = ( ATTN_BUTTN_PRESSED | PWR_FAULT_DETECTED | MRL_SENS_CHANGED |
PRSN_DETECT_CHANGED | CMD_COMPLETED );
intr_loc = slot_status & intr_detect;
/* Check to see if it was our interrupt */
if ( !intr_loc )
return IRQ_NONE;
dbg("%s: intr_loc %x\n", __FUNCTION__, intr_loc);
/* Mask Hot-plug Interrupt Enable */
if (!pciehp_poll_mode) {
spin_lock_irqsave(&ctrl->lock, flags);
rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word);
if (rc) {
err("%s: Cannot read SLOT_CTRL register\n",
__FUNCTION__);
spin_unlock_irqrestore(&ctrl->lock, flags);
return IRQ_NONE;
}
dbg("%s: pciehp_readw(SLOTCTRL) with value %x\n",
__FUNCTION__, temp_word);
temp_word = (temp_word & ~HP_INTR_ENABLE & ~CMD_CMPL_INTR_ENABLE) | 0x00;
rc = pciehp_writew(ctrl, SLOTCTRL, temp_word);
if (rc) {
err("%s: Cannot write to SLOTCTRL register\n",
__FUNCTION__);
spin_unlock_irqrestore(&ctrl->lock, flags);
return IRQ_NONE;
}
spin_unlock_irqrestore(&ctrl->lock, flags);
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOT_STATUS register\n",
__FUNCTION__);
return IRQ_NONE;
}
dbg("%s: pciehp_readw(SLOTSTATUS) with value %x\n",
__FUNCTION__, slot_status);
/* Clear command complete interrupt caused by this write */
temp_word = 0x1f;
rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word);
if (rc) {
err("%s: Cannot write to SLOTSTATUS register\n",
__FUNCTION__);
return IRQ_NONE;
}
}
if (intr_loc & CMD_COMPLETED) {
/*
* Command Complete Interrupt Pending
*/
ctrl->cmd_busy = 0;
wake_up_interruptible(&ctrl->queue);
}
if (intr_loc & MRL_SENS_CHANGED)
pciehp_handle_switch_change(hp_slot, ctrl);
if (intr_loc & ATTN_BUTTN_PRESSED)
pciehp_handle_attention_button(hp_slot, ctrl);
if (intr_loc & PRSN_DETECT_CHANGED)
pciehp_handle_presence_change(hp_slot, ctrl);
if (intr_loc & PWR_FAULT_DETECTED)
pciehp_handle_power_fault(hp_slot, ctrl);
/* Clear all events after serving them */
temp_word = 0x1F;
rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word);
if (rc) {
err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__);
return IRQ_NONE;
}
/* Unmask Hot-plug Interrupt Enable */
if (!pciehp_poll_mode) {
spin_lock_irqsave(&ctrl->lock, flags);
rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word);
if (rc) {
err("%s: Cannot read SLOTCTRL register\n",
__FUNCTION__);
spin_unlock_irqrestore(&ctrl->lock, flags);
return IRQ_NONE;
}
dbg("%s: Unmask Hot-plug Interrupt Enable\n", __FUNCTION__);
temp_word = (temp_word & ~HP_INTR_ENABLE) | HP_INTR_ENABLE;
rc = pciehp_writew(ctrl, SLOTCTRL, temp_word);
if (rc) {
err("%s: Cannot write to SLOTCTRL register\n",
__FUNCTION__);
spin_unlock_irqrestore(&ctrl->lock, flags);
return IRQ_NONE;
}
spin_unlock_irqrestore(&ctrl->lock, flags);
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOT_STATUS register\n",
__FUNCTION__);
return IRQ_NONE;
}
/* Clear command complete interrupt caused by this write */
temp_word = 0x1F;
rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word);
if (rc) {
err("%s: Cannot write to SLOTSTATUS failed\n",
__FUNCTION__);
return IRQ_NONE;
}
dbg("%s: pciehp_writew(SLOTSTATUS) with value %x\n",
__FUNCTION__, temp_word);
}
return IRQ_HANDLED;
}
static int hpc_get_max_lnk_speed (struct slot *slot, enum pci_bus_speed *value)
{
struct controller *ctrl = slot->ctrl;
enum pcie_link_speed lnk_speed;
u32 lnk_cap;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap);
if (retval) {
err("%s: Cannot read LNKCAP register\n", __FUNCTION__);
return retval;
}
switch (lnk_cap & 0x000F) {
case 1:
lnk_speed = PCIE_2PT5GB;
break;
default:
lnk_speed = PCIE_LNK_SPEED_UNKNOWN;
break;
}
*value = lnk_speed;
dbg("Max link speed = %d\n", lnk_speed);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_max_lnk_width (struct slot *slot, enum pcie_link_width *value)
{
struct controller *ctrl = slot->ctrl;
enum pcie_link_width lnk_wdth;
u32 lnk_cap;
int retval = 0;
DBG_ENTER_ROUTINE
retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap);
if (retval) {
err("%s: Cannot read LNKCAP register\n", __FUNCTION__);
return retval;
}
switch ((lnk_cap & 0x03F0) >> 4){
case 0:
lnk_wdth = PCIE_LNK_WIDTH_RESRV;
break;
case 1:
lnk_wdth = PCIE_LNK_X1;
break;
case 2:
lnk_wdth = PCIE_LNK_X2;
break;
case 4:
lnk_wdth = PCIE_LNK_X4;
break;
case 8:
lnk_wdth = PCIE_LNK_X8;
break;
case 12:
lnk_wdth = PCIE_LNK_X12;
break;
case 16:
lnk_wdth = PCIE_LNK_X16;
break;
case 32:
lnk_wdth = PCIE_LNK_X32;
break;
default:
lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN;
break;
}
*value = lnk_wdth;
dbg("Max link width = %d\n", lnk_wdth);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_cur_lnk_speed (struct slot *slot, enum pci_bus_speed *value)
{
struct controller *ctrl = slot->ctrl;
enum pcie_link_speed lnk_speed = PCI_SPEED_UNKNOWN;
int retval = 0;
u16 lnk_status;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status);
if (retval) {
err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__);
return retval;
}
switch (lnk_status & 0x0F) {
case 1:
lnk_speed = PCIE_2PT5GB;
break;
default:
lnk_speed = PCIE_LNK_SPEED_UNKNOWN;
break;
}
*value = lnk_speed;
dbg("Current link speed = %d\n", lnk_speed);
DBG_LEAVE_ROUTINE
return retval;
}
static int hpc_get_cur_lnk_width (struct slot *slot, enum pcie_link_width *value)
{
struct controller *ctrl = slot->ctrl;
enum pcie_link_width lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN;
int retval = 0;
u16 lnk_status;
DBG_ENTER_ROUTINE
retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status);
if (retval) {
err("%s: Cannot read LNKSTATUS register\n", __FUNCTION__);
return retval;
}
switch ((lnk_status & 0x03F0) >> 4){
case 0:
lnk_wdth = PCIE_LNK_WIDTH_RESRV;
break;
case 1:
lnk_wdth = PCIE_LNK_X1;
break;
case 2:
lnk_wdth = PCIE_LNK_X2;
break;
case 4:
lnk_wdth = PCIE_LNK_X4;
break;
case 8:
lnk_wdth = PCIE_LNK_X8;
break;
case 12:
lnk_wdth = PCIE_LNK_X12;
break;
case 16:
lnk_wdth = PCIE_LNK_X16;
break;
case 32:
lnk_wdth = PCIE_LNK_X32;
break;
default:
lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN;
break;
}
*value = lnk_wdth;
dbg("Current link width = %d\n", lnk_wdth);
DBG_LEAVE_ROUTINE
return retval;
}
static struct hpc_ops pciehp_hpc_ops = {
.power_on_slot = hpc_power_on_slot,
.power_off_slot = hpc_power_off_slot,
.set_attention_status = hpc_set_attention_status,
.get_power_status = hpc_get_power_status,
.get_attention_status = hpc_get_attention_status,
.get_latch_status = hpc_get_latch_status,
.get_adapter_status = hpc_get_adapter_status,
.get_emi_status = hpc_get_emi_status,
.toggle_emi = hpc_toggle_emi,
.get_max_bus_speed = hpc_get_max_lnk_speed,
.get_cur_bus_speed = hpc_get_cur_lnk_speed,
.get_max_lnk_width = hpc_get_max_lnk_width,
.get_cur_lnk_width = hpc_get_cur_lnk_width,
.query_power_fault = hpc_query_power_fault,
.green_led_on = hpc_set_green_led_on,
.green_led_off = hpc_set_green_led_off,
.green_led_blink = hpc_set_green_led_blink,
.release_ctlr = hpc_release_ctlr,
.check_lnk_status = hpc_check_lnk_status,
};
#ifdef CONFIG_ACPI
int pciehp_acpi_get_hp_hw_control_from_firmware(struct pci_dev *dev)
{
acpi_status status;
acpi_handle chandle, handle = DEVICE_ACPI_HANDLE(&(dev->dev));
struct pci_dev *pdev = dev;
struct pci_bus *parent;
struct acpi_buffer string = { ACPI_ALLOCATE_BUFFER, NULL };
/*
* Per PCI firmware specification, we should run the ACPI _OSC
* method to get control of hotplug hardware before using it.
* If an _OSC is missing, we look for an OSHP to do the same thing.
* To handle different BIOS behavior, we look for _OSC and OSHP
* within the scope of the hotplug controller and its parents, upto
* the host bridge under which this controller exists.
*/
while (!handle) {
/*
* This hotplug controller was not listed in the ACPI name
* space at all. Try to get acpi handle of parent pci bus.
*/
if (!pdev || !pdev->bus->parent)
break;
parent = pdev->bus->parent;
dbg("Could not find %s in acpi namespace, trying parent\n",
pci_name(pdev));
if (!parent->self)
/* Parent must be a host bridge */
handle = acpi_get_pci_rootbridge_handle(
pci_domain_nr(parent),
parent->number);
else
handle = DEVICE_ACPI_HANDLE(
&(parent->self->dev));
pdev = parent->self;
}
while (handle) {
acpi_get_name(handle, ACPI_FULL_PATHNAME, &string);
dbg("Trying to get hotplug control for %s \n",
(char *)string.pointer);
status = pci_osc_control_set(handle,
OSC_PCI_EXPRESS_NATIVE_HP_CONTROL);
if (status == AE_NOT_FOUND)
status = acpi_run_oshp(handle);
if (ACPI_SUCCESS(status)) {
dbg("Gained control for hotplug HW for pci %s (%s)\n",
pci_name(dev), (char *)string.pointer);
kfree(string.pointer);
return 0;
}
if (acpi_root_bridge(handle))
break;
chandle = handle;
status = acpi_get_parent(chandle, &handle);
if (ACPI_FAILURE(status))
break;
}
err("Cannot get control of hotplug hardware for pci %s\n",
pci_name(dev));
kfree(string.pointer);
return -1;
}
#endif
int pcie_init(struct controller * ctrl, struct pcie_device *dev)
{
int rc;
u16 temp_word;
u16 cap_reg;
u16 intr_enable = 0;
u32 slot_cap;
int cap_base;
u16 slot_status, slot_ctrl;
struct pci_dev *pdev;
DBG_ENTER_ROUTINE
pdev = dev->port;
ctrl->pci_dev = pdev; /* save pci_dev in context */
dbg("%s: hotplug controller vendor id 0x%x device id 0x%x\n",
__FUNCTION__, pdev->vendor, pdev->device);
if ((cap_base = pci_find_capability(pdev, PCI_CAP_ID_EXP)) == 0) {
dbg("%s: Can't find PCI_CAP_ID_EXP (0x10)\n", __FUNCTION__);
goto abort_free_ctlr;
}
ctrl->cap_base = cap_base;
dbg("%s: pcie_cap_base %x\n", __FUNCTION__, cap_base);
rc = pciehp_readw(ctrl, CAPREG, &cap_reg);
if (rc) {
err("%s: Cannot read CAPREG register\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: CAPREG offset %x cap_reg %x\n",
__FUNCTION__, ctrl->cap_base + CAPREG, cap_reg);
if (((cap_reg & SLOT_IMPL) == 0) || (((cap_reg & DEV_PORT_TYPE) != 0x0040)
&& ((cap_reg & DEV_PORT_TYPE) != 0x0060))) {
dbg("%s : This is not a root port or the port is not connected to a slot\n", __FUNCTION__);
goto abort_free_ctlr;
}
rc = pciehp_readl(ctrl, SLOTCAP, &slot_cap);
if (rc) {
err("%s: Cannot read SLOTCAP register\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: SLOTCAP offset %x slot_cap %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCAP, slot_cap);
if (!(slot_cap & HP_CAP)) {
dbg("%s : This slot is not hot-plug capable\n", __FUNCTION__);
goto abort_free_ctlr;
}
/* For debugging purpose */
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: SLOTSTATUS offset %x slot_status %x\n",
__FUNCTION__, ctrl->cap_base + SLOTSTATUS, slot_status);
rc = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl);
if (rc) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: SLOTCTRL offset %x slot_ctrl %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, slot_ctrl);
for ( rc = 0; rc < DEVICE_COUNT_RESOURCE; rc++)
if (pci_resource_len(pdev, rc) > 0)
dbg("pci resource[%d] start=0x%llx(len=0x%llx)\n", rc,
(unsigned long long)pci_resource_start(pdev, rc),
(unsigned long long)pci_resource_len(pdev, rc));
info("HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device,
pdev->subsystem_vendor, pdev->subsystem_device);
mutex_init(&ctrl->crit_sect);
mutex_init(&ctrl->ctrl_lock);
spin_lock_init(&ctrl->lock);
/* setup wait queue */
init_waitqueue_head(&ctrl->queue);
/* return PCI Controller Info */
ctrl->slot_device_offset = 0;
ctrl->num_slots = 1;
ctrl->first_slot = slot_cap >> 19;
ctrl->ctrlcap = slot_cap & 0x0000007f;
/* Mask Hot-plug Interrupt Enable */
rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word);
if (rc) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
goto abort_free_ctlr;
}
dbg("%s: SLOTCTRL %x value read %x\n",
__FUNCTION__, ctrl->cap_base + SLOTCTRL, temp_word);
temp_word = (temp_word & ~HP_INTR_ENABLE & ~CMD_CMPL_INTR_ENABLE) | 0x00;
rc = pciehp_writew(ctrl, SLOTCTRL, temp_word);
if (rc) {
err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__);
goto abort_free_ctlr;
}
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
goto abort_free_ctlr;
}
temp_word = 0x1F; /* Clear all events */
rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word);
if (rc) {
err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__);
goto abort_free_ctlr;
}
if (pciehp_poll_mode) {
/* Install interrupt polling timer. Start with 10 sec delay */
init_timer(&ctrl->poll_timer);
start_int_poll_timer(ctrl, 10);
} else {
/* Installs the interrupt handler */
rc = request_irq(ctrl->pci_dev->irq, pcie_isr, IRQF_SHARED,
MY_NAME, (void *)ctrl);
dbg("%s: request_irq %d for hpc%d (returns %d)\n",
__FUNCTION__, ctrl->pci_dev->irq,
atomic_read(&pciehp_num_controllers), rc);
if (rc) {
err("Can't get irq %d for the hotplug controller\n",
ctrl->pci_dev->irq);
goto abort_free_ctlr;
}
}
dbg("pciehp ctrl b:d:f:irq=0x%x:%x:%x:%x\n", pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), dev->irq);
/*
* If this is the first controller to be initialized,
* initialize the pciehp work queue
*/
if (atomic_add_return(1, &pciehp_num_controllers) == 1) {
pciehp_wq = create_singlethread_workqueue("pciehpd");
if (!pciehp_wq) {
rc = -ENOMEM;
goto abort_free_irq;
}
}
rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word);
if (rc) {
err("%s: Cannot read SLOTCTRL register\n", __FUNCTION__);
goto abort_free_irq;
}
intr_enable = intr_enable | PRSN_DETECT_ENABLE;
if (ATTN_BUTTN(slot_cap))
intr_enable = intr_enable | ATTN_BUTTN_ENABLE;
if (POWER_CTRL(slot_cap))
intr_enable = intr_enable | PWR_FAULT_DETECT_ENABLE;
if (MRL_SENS(slot_cap))
intr_enable = intr_enable | MRL_DETECT_ENABLE;
temp_word = (temp_word & ~intr_enable) | intr_enable;
if (pciehp_poll_mode) {
temp_word = (temp_word & ~HP_INTR_ENABLE) | 0x0;
} else {
temp_word = (temp_word & ~HP_INTR_ENABLE) | HP_INTR_ENABLE;
}
/* Unmask Hot-plug Interrupt Enable for the interrupt notification mechanism case */
rc = pciehp_writew(ctrl, SLOTCTRL, temp_word);
if (rc) {
err("%s: Cannot write to SLOTCTRL register\n", __FUNCTION__);
goto abort_free_irq;
}
rc = pciehp_readw(ctrl, SLOTSTATUS, &slot_status);
if (rc) {
err("%s: Cannot read SLOTSTATUS register\n", __FUNCTION__);
goto abort_disable_intr;
}
temp_word = 0x1F; /* Clear all events */
rc = pciehp_writew(ctrl, SLOTSTATUS, temp_word);
if (rc) {
err("%s: Cannot write to SLOTSTATUS register\n", __FUNCTION__);
goto abort_disable_intr;
}
if (pciehp_force) {
dbg("Bypassing BIOS check for pciehp use on %s\n",
pci_name(ctrl->pci_dev));
} else {
rc = pciehp_get_hp_hw_control_from_firmware(ctrl->pci_dev);
if (rc)
goto abort_disable_intr;
}
ctrl->hpc_ops = &pciehp_hpc_ops;
DBG_LEAVE_ROUTINE
return 0;
/* We end up here for the many possible ways to fail this API. */
abort_disable_intr:
rc = pciehp_readw(ctrl, SLOTCTRL, &temp_word);
if (!rc) {
temp_word &= ~(intr_enable | HP_INTR_ENABLE);
rc = pciehp_writew(ctrl, SLOTCTRL, temp_word);
}
if (rc)
err("%s : disabling interrupts failed\n", __FUNCTION__);
abort_free_irq:
if (pciehp_poll_mode)
del_timer_sync(&ctrl->poll_timer);
else
free_irq(ctrl->pci_dev->irq, ctrl);
abort_free_ctlr:
DBG_LEAVE_ROUTINE
return -1;
}