Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/dma/ste_dma40.c
Linus Walleij 058276303d DMAENGINE: extend the control command to include an arg
This adds an argument to the DMAengine control function, so that
we can later provide control commands that need some external data
passed in through an argument akin to the ioctl() operation
prototype.

[dan.j.williams@intel.com: fix up some missed conversions]
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2010-05-17 16:30:42 -07:00

2658 lines
66 KiB
C

/*
* driver/dma/ste_dma40.c
*
* Copyright (C) ST-Ericsson 2007-2010
* License terms: GNU General Public License (GPL) version 2
* Author: Per Friden <per.friden@stericsson.com>
* Author: Jonas Aaberg <jonas.aberg@stericsson.com>
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <plat/ste_dma40.h>
#include "ste_dma40_ll.h"
#define D40_NAME "dma40"
#define D40_PHY_CHAN -1
/* For masking out/in 2 bit channel positions */
#define D40_CHAN_POS(chan) (2 * (chan / 2))
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
/* Maximum iterations taken before giving up suspending a channel */
#define D40_SUSPEND_MAX_IT 500
#define D40_ALLOC_FREE (1 << 31)
#define D40_ALLOC_PHY (1 << 30)
#define D40_ALLOC_LOG_FREE 0
/* The number of free d40_desc to keep in memory before starting
* to kfree() them */
#define D40_DESC_CACHE_SIZE 50
/* Hardware designer of the block */
#define D40_PERIPHID2_DESIGNER 0x8
/**
* enum 40_command - The different commands and/or statuses.
*
* @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
* @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
* @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
* @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
*/
enum d40_command {
D40_DMA_STOP = 0,
D40_DMA_RUN = 1,
D40_DMA_SUSPEND_REQ = 2,
D40_DMA_SUSPENDED = 3
};
/**
* struct d40_lli_pool - Structure for keeping LLIs in memory
*
* @base: Pointer to memory area when the pre_alloc_lli's are not large
* enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
* pre_alloc_lli is used.
* @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
* @pre_alloc_lli: Pre allocated area for the most common case of transfers,
* one buffer to one buffer.
*/
struct d40_lli_pool {
void *base;
int size;
/* Space for dst and src, plus an extra for padding */
u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
};
/**
* struct d40_desc - A descriptor is one DMA job.
*
* @lli_phy: LLI settings for physical channel. Both src and dst=
* points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
* lli_len equals one.
* @lli_log: Same as above but for logical channels.
* @lli_pool: The pool with two entries pre-allocated.
* @lli_len: Number of LLI's in lli_pool
* @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len
* then this transfer job is done.
* @txd: DMA engine struct. Used for among other things for communication
* during a transfer.
* @node: List entry.
* @dir: The transfer direction of this job.
* @is_in_client_list: true if the client owns this descriptor.
*
* This descriptor is used for both logical and physical transfers.
*/
struct d40_desc {
/* LLI physical */
struct d40_phy_lli_bidir lli_phy;
/* LLI logical */
struct d40_log_lli_bidir lli_log;
struct d40_lli_pool lli_pool;
u32 lli_len;
u32 lli_tcount;
struct dma_async_tx_descriptor txd;
struct list_head node;
enum dma_data_direction dir;
bool is_in_client_list;
};
/**
* struct d40_lcla_pool - LCLA pool settings and data.
*
* @base: The virtual address of LCLA.
* @phy: Physical base address of LCLA.
* @base_size: size of lcla.
* @lock: Lock to protect the content in this struct.
* @alloc_map: Mapping between physical channel and LCLA entries.
* @num_blocks: The number of entries of alloc_map. Equals to the
* number of physical channels.
*/
struct d40_lcla_pool {
void *base;
dma_addr_t phy;
resource_size_t base_size;
spinlock_t lock;
u32 *alloc_map;
int num_blocks;
};
/**
* struct d40_phy_res - struct for handling eventlines mapped to physical
* channels.
*
* @lock: A lock protection this entity.
* @num: The physical channel number of this entity.
* @allocated_src: Bit mapped to show which src event line's are mapped to
* this physical channel. Can also be free or physically allocated.
* @allocated_dst: Same as for src but is dst.
* allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
* event line number. Both allocated_src and allocated_dst can not be
* allocated to a physical channel, since the interrupt handler has then
* no way of figure out which one the interrupt belongs to.
*/
struct d40_phy_res {
spinlock_t lock;
int num;
u32 allocated_src;
u32 allocated_dst;
};
struct d40_base;
/**
* struct d40_chan - Struct that describes a channel.
*
* @lock: A spinlock to protect this struct.
* @log_num: The logical number, if any of this channel.
* @completed: Starts with 1, after first interrupt it is set to dma engine's
* current cookie.
* @pending_tx: The number of pending transfers. Used between interrupt handler
* and tasklet.
* @busy: Set to true when transfer is ongoing on this channel.
* @phy_chan: Pointer to physical channel which this instance runs on.
* @chan: DMA engine handle.
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a
* transfer and call client callback.
* @client: Cliented owned descriptor list.
* @active: Active descriptor.
* @queue: Queued jobs.
* @free: List of free descripts, ready to be reused.
* @free_len: Number of descriptors in the free list.
* @dma_cfg: The client configuration of this dma channel.
* @base: Pointer to the device instance struct.
* @src_def_cfg: Default cfg register setting for src.
* @dst_def_cfg: Default cfg register setting for dst.
* @log_def: Default logical channel settings.
* @lcla: Space for one dst src pair for logical channel transfers.
* @lcpa: Pointer to dst and src lcpa settings.
*
* This struct can either "be" a logical or a physical channel.
*/
struct d40_chan {
spinlock_t lock;
int log_num;
/* ID of the most recent completed transfer */
int completed;
int pending_tx;
bool busy;
struct d40_phy_res *phy_chan;
struct dma_chan chan;
struct tasklet_struct tasklet;
struct list_head client;
struct list_head active;
struct list_head queue;
struct list_head free;
int free_len;
struct stedma40_chan_cfg dma_cfg;
struct d40_base *base;
/* Default register configurations */
u32 src_def_cfg;
u32 dst_def_cfg;
struct d40_def_lcsp log_def;
struct d40_lcla_elem lcla;
struct d40_log_lli_full *lcpa;
};
/**
* struct d40_base - The big global struct, one for each probe'd instance.
*
* @interrupt_lock: Lock used to make sure one interrupt is handle a time.
* @execmd_lock: Lock for execute command usage since several channels share
* the same physical register.
* @dev: The device structure.
* @virtbase: The virtual base address of the DMA's register.
* @clk: Pointer to the DMA clock structure.
* @phy_start: Physical memory start of the DMA registers.
* @phy_size: Size of the DMA register map.
* @irq: The IRQ number.
* @num_phy_chans: The number of physical channels. Read from HW. This
* is the number of available channels for this driver, not counting "Secure
* mode" allocated physical channels.
* @num_log_chans: The number of logical channels. Calculated from
* num_phy_chans.
* @dma_both: dma_device channels that can do both memcpy and slave transfers.
* @dma_slave: dma_device channels that can do only do slave transfers.
* @dma_memcpy: dma_device channels that can do only do memcpy transfers.
* @phy_chans: Room for all possible physical channels in system.
* @log_chans: Room for all possible logical channels in system.
* @lookup_log_chans: Used to map interrupt number to logical channel. Points
* to log_chans entries.
* @lookup_phy_chans: Used to map interrupt number to physical channel. Points
* to phy_chans entries.
* @plat_data: Pointer to provided platform_data which is the driver
* configuration.
* @phy_res: Vector containing all physical channels.
* @lcla_pool: lcla pool settings and data.
* @lcpa_base: The virtual mapped address of LCPA.
* @phy_lcpa: The physical address of the LCPA.
* @lcpa_size: The size of the LCPA area.
*/
struct d40_base {
spinlock_t interrupt_lock;
spinlock_t execmd_lock;
struct device *dev;
void __iomem *virtbase;
struct clk *clk;
phys_addr_t phy_start;
resource_size_t phy_size;
int irq;
int num_phy_chans;
int num_log_chans;
struct dma_device dma_both;
struct dma_device dma_slave;
struct dma_device dma_memcpy;
struct d40_chan *phy_chans;
struct d40_chan *log_chans;
struct d40_chan **lookup_log_chans;
struct d40_chan **lookup_phy_chans;
struct stedma40_platform_data *plat_data;
/* Physical half channels */
struct d40_phy_res *phy_res;
struct d40_lcla_pool lcla_pool;
void *lcpa_base;
dma_addr_t phy_lcpa;
resource_size_t lcpa_size;
};
/**
* struct d40_interrupt_lookup - lookup table for interrupt handler
*
* @src: Interrupt mask register.
* @clr: Interrupt clear register.
* @is_error: true if this is an error interrupt.
* @offset: start delta in the lookup_log_chans in d40_base. If equals to
* D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
*/
struct d40_interrupt_lookup {
u32 src;
u32 clr;
bool is_error;
int offset;
};
/**
* struct d40_reg_val - simple lookup struct
*
* @reg: The register.
* @val: The value that belongs to the register in reg.
*/
struct d40_reg_val {
unsigned int reg;
unsigned int val;
};
static int d40_pool_lli_alloc(struct d40_desc *d40d,
int lli_len, bool is_log)
{
u32 align;
void *base;
if (is_log)
align = sizeof(struct d40_log_lli);
else
align = sizeof(struct d40_phy_lli);
if (lli_len == 1) {
base = d40d->lli_pool.pre_alloc_lli;
d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
d40d->lli_pool.base = NULL;
} else {
d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
d40d->lli_pool.base = base;
if (d40d->lli_pool.base == NULL)
return -ENOMEM;
}
if (is_log) {
d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
align);
d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
align);
} else {
d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
align);
d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
align);
d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
}
return 0;
}
static void d40_pool_lli_free(struct d40_desc *d40d)
{
kfree(d40d->lli_pool.base);
d40d->lli_pool.base = NULL;
d40d->lli_pool.size = 0;
d40d->lli_log.src = NULL;
d40d->lli_log.dst = NULL;
d40d->lli_phy.src = NULL;
d40d->lli_phy.dst = NULL;
d40d->lli_phy.src_addr = 0;
d40d->lli_phy.dst_addr = 0;
}
static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
struct d40_desc *desc)
{
dma_cookie_t cookie = d40c->chan.cookie;
if (++cookie < 0)
cookie = 1;
d40c->chan.cookie = cookie;
desc->txd.cookie = cookie;
return cookie;
}
static void d40_desc_reset(struct d40_desc *d40d)
{
d40d->lli_tcount = 0;
}
static void d40_desc_remove(struct d40_desc *d40d)
{
list_del(&d40d->node);
}
static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
{
struct d40_desc *desc;
struct d40_desc *d;
struct d40_desc *_d;
if (!list_empty(&d40c->client)) {
list_for_each_entry_safe(d, _d, &d40c->client, node)
if (async_tx_test_ack(&d->txd)) {
d40_pool_lli_free(d);
d40_desc_remove(d);
desc = d;
goto out;
}
}
if (list_empty(&d40c->free)) {
/* Alloc new desc because we're out of used ones */
desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT);
if (desc == NULL)
goto out;
INIT_LIST_HEAD(&desc->node);
} else {
/* Reuse an old desc. */
desc = list_first_entry(&d40c->free,
struct d40_desc,
node);
list_del(&desc->node);
d40c->free_len--;
}
out:
return desc;
}
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
{
if (d40c->free_len < D40_DESC_CACHE_SIZE) {
list_add_tail(&d40d->node, &d40c->free);
d40c->free_len++;
} else
kfree(d40d);
}
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
{
list_add_tail(&desc->node, &d40c->active);
}
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
{
struct d40_desc *d;
if (list_empty(&d40c->active))
return NULL;
d = list_first_entry(&d40c->active,
struct d40_desc,
node);
return d;
}
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
{
list_add_tail(&desc->node, &d40c->queue);
}
static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
{
struct d40_desc *d;
if (list_empty(&d40c->queue))
return NULL;
d = list_first_entry(&d40c->queue,
struct d40_desc,
node);
return d;
}
/* Support functions for logical channels */
static int d40_lcla_id_get(struct d40_chan *d40c,
struct d40_lcla_pool *pool)
{
int src_id = 0;
int dst_id = 0;
struct d40_log_lli *lcla_lidx_base =
pool->base + d40c->phy_chan->num * 1024;
int i;
int lli_per_log = d40c->base->plat_data->llis_per_log;
if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
return 0;
if (pool->num_blocks > 32)
return -EINVAL;
spin_lock(&pool->lock);
for (i = 0; i < pool->num_blocks; i++) {
if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
break;
}
}
src_id = i;
if (src_id >= pool->num_blocks)
goto err;
for (; i < pool->num_blocks; i++) {
if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
break;
}
}
dst_id = i;
if (dst_id == src_id)
goto err;
d40c->lcla.src_id = src_id;
d40c->lcla.dst_id = dst_id;
d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
spin_unlock(&pool->lock);
return 0;
err:
spin_unlock(&pool->lock);
return -EINVAL;
}
static void d40_lcla_id_put(struct d40_chan *d40c,
struct d40_lcla_pool *pool,
int id)
{
if (id < 0)
return;
d40c->lcla.src_id = -1;
d40c->lcla.dst_id = -1;
spin_lock(&pool->lock);
pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id));
spin_unlock(&pool->lock);
}
static int d40_channel_execute_command(struct d40_chan *d40c,
enum d40_command command)
{
int status, i;
void __iomem *active_reg;
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&d40c->base->execmd_lock, flags);
if (d40c->phy_chan->num % 2 == 0)
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
else
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
if (command == D40_DMA_SUSPEND_REQ) {
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
goto done;
}
writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg);
if (command == D40_DMA_SUSPEND_REQ) {
for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
cpu_relax();
/*
* Reduce the number of bus accesses while
* waiting for the DMA to suspend.
*/
udelay(3);
if (status == D40_DMA_STOP ||
status == D40_DMA_SUSPENDED)
break;
}
if (i == D40_SUSPEND_MAX_IT) {
dev_err(&d40c->chan.dev->device,
"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
__func__, d40c->phy_chan->num, d40c->log_num,
status);
dump_stack();
ret = -EBUSY;
}
}
done:
spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
return ret;
}
static void d40_term_all(struct d40_chan *d40c)
{
struct d40_desc *d40d;
struct d40_desc *d;
struct d40_desc *_d;
/* Release active descriptors */
while ((d40d = d40_first_active_get(d40c))) {
d40_desc_remove(d40d);
/* Return desc to free-list */
d40_desc_free(d40c, d40d);
}
/* Release queued descriptors waiting for transfer */
while ((d40d = d40_first_queued(d40c))) {
d40_desc_remove(d40d);
/* Return desc to free-list */
d40_desc_free(d40c, d40d);
}
/* Release client owned descriptors */
if (!list_empty(&d40c->client))
list_for_each_entry_safe(d, _d, &d40c->client, node) {
d40_pool_lli_free(d);
d40_desc_remove(d);
/* Return desc to free-list */
d40_desc_free(d40c, d40d);
}
d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
d40c->lcla.src_id);
d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
d40c->lcla.dst_id);
d40c->pending_tx = 0;
d40c->busy = false;
}
static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
{
u32 val;
unsigned long flags;
if (do_enable)
val = D40_ACTIVATE_EVENTLINE;
else
val = D40_DEACTIVATE_EVENTLINE;
spin_lock_irqsave(&d40c->phy_chan->lock, flags);
/* Enable event line connected to device (or memcpy) */
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
writel((val << D40_EVENTLINE_POS(event)) |
~D40_EVENTLINE_MASK(event),
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SSLNK);
}
if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
writel((val << D40_EVENTLINE_POS(event)) |
~D40_EVENTLINE_MASK(event),
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDLNK);
}
spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
}
static u32 d40_chan_has_events(struct d40_chan *d40c)
{
u32 val = 0;
/* If SSLNK or SDLNK is zero all events are disabled */
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SSLNK);
if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDLNK);
return val;
}
static void d40_config_enable_lidx(struct d40_chan *d40c)
{
/* Set LIDX for lcla */
writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
D40_SREG_ELEM_LOG_LIDX_MASK,
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
D40_SREG_ELEM_LOG_LIDX_MASK,
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
}
static int d40_config_write(struct d40_chan *d40c)
{
u32 addr_base;
u32 var;
int res;
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res)
return res;
/* Odd addresses are even addresses + 4 */
addr_base = (d40c->phy_chan->num % 2) * 4;
/* Setup channel mode to logical or physical */
var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
D40_CHAN_POS(d40c->phy_chan->num);
writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
/* Setup operational mode option register */
var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
0x3) << D40_CHAN_POS(d40c->phy_chan->num);
writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
if (d40c->log_num != D40_PHY_CHAN) {
/* Set default config for CFG reg */
writel(d40c->src_def_cfg,
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SSCFG);
writel(d40c->dst_def_cfg,
d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDCFG);
d40_config_enable_lidx(d40c);
}
return res;
}
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
{
if (d40d->lli_phy.dst && d40d->lli_phy.src) {
d40_phy_lli_write(d40c->base->virtbase,
d40c->phy_chan->num,
d40d->lli_phy.dst,
d40d->lli_phy.src);
d40d->lli_tcount = d40d->lli_len;
} else if (d40d->lli_log.dst && d40d->lli_log.src) {
u32 lli_len;
struct d40_log_lli *src = d40d->lli_log.src;
struct d40_log_lli *dst = d40d->lli_log.dst;
src += d40d->lli_tcount;
dst += d40d->lli_tcount;
if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
lli_len = d40d->lli_len;
else
lli_len = d40c->base->plat_data->llis_per_log;
d40d->lli_tcount += lli_len;
d40_log_lli_write(d40c->lcpa, d40c->lcla.src,
d40c->lcla.dst,
dst, src,
d40c->base->plat_data->llis_per_log);
}
}
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct d40_chan *d40c = container_of(tx->chan,
struct d40_chan,
chan);
struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
tx->cookie = d40_assign_cookie(d40c, d40d);
d40_desc_queue(d40c, d40d);
spin_unlock_irqrestore(&d40c->lock, flags);
return tx->cookie;
}
static int d40_start(struct d40_chan *d40c)
{
int err;
if (d40c->log_num != D40_PHY_CHAN) {
err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (err)
return err;
d40_config_set_event(d40c, true);
}
err = d40_channel_execute_command(d40c, D40_DMA_RUN);
return err;
}
static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
{
struct d40_desc *d40d;
int err;
/* Start queued jobs, if any */
d40d = d40_first_queued(d40c);
if (d40d != NULL) {
d40c->busy = true;
/* Remove from queue */
d40_desc_remove(d40d);
/* Add to active queue */
d40_desc_submit(d40c, d40d);
/* Initiate DMA job */
d40_desc_load(d40c, d40d);
/* Start dma job */
err = d40_start(d40c);
if (err)
return NULL;
}
return d40d;
}
/* called from interrupt context */
static void dma_tc_handle(struct d40_chan *d40c)
{
struct d40_desc *d40d;
if (!d40c->phy_chan)
return;
/* Get first active entry from list */
d40d = d40_first_active_get(d40c);
if (d40d == NULL)
return;
if (d40d->lli_tcount < d40d->lli_len) {
d40_desc_load(d40c, d40d);
/* Start dma job */
(void) d40_start(d40c);
return;
}
if (d40_queue_start(d40c) == NULL)
d40c->busy = false;
d40c->pending_tx++;
tasklet_schedule(&d40c->tasklet);
}
static void dma_tasklet(unsigned long data)
{
struct d40_chan *d40c = (struct d40_chan *) data;
struct d40_desc *d40d_fin;
unsigned long flags;
dma_async_tx_callback callback;
void *callback_param;
spin_lock_irqsave(&d40c->lock, flags);
/* Get first active entry from list */
d40d_fin = d40_first_active_get(d40c);
if (d40d_fin == NULL)
goto err;
d40c->completed = d40d_fin->txd.cookie;
/*
* If terminating a channel pending_tx is set to zero.
* This prevents any finished active jobs to return to the client.
*/
if (d40c->pending_tx == 0) {
spin_unlock_irqrestore(&d40c->lock, flags);
return;
}
/* Callback to client */
callback = d40d_fin->txd.callback;
callback_param = d40d_fin->txd.callback_param;
if (async_tx_test_ack(&d40d_fin->txd)) {
d40_pool_lli_free(d40d_fin);
d40_desc_remove(d40d_fin);
/* Return desc to free-list */
d40_desc_free(d40c, d40d_fin);
} else {
d40_desc_reset(d40d_fin);
if (!d40d_fin->is_in_client_list) {
d40_desc_remove(d40d_fin);
list_add_tail(&d40d_fin->node, &d40c->client);
d40d_fin->is_in_client_list = true;
}
}
d40c->pending_tx--;
if (d40c->pending_tx)
tasklet_schedule(&d40c->tasklet);
spin_unlock_irqrestore(&d40c->lock, flags);
if (callback)
callback(callback_param);
return;
err:
/* Rescue manouver if receiving double interrupts */
if (d40c->pending_tx > 0)
d40c->pending_tx--;
spin_unlock_irqrestore(&d40c->lock, flags);
}
static irqreturn_t d40_handle_interrupt(int irq, void *data)
{
static const struct d40_interrupt_lookup il[] = {
{D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
{D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
{D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
{D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
{D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
{D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
{D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
};
int i;
u32 regs[ARRAY_SIZE(il)];
u32 tmp;
u32 idx;
u32 row;
long chan = -1;
struct d40_chan *d40c;
unsigned long flags;
struct d40_base *base = data;
spin_lock_irqsave(&base->interrupt_lock, flags);
/* Read interrupt status of both logical and physical channels */
for (i = 0; i < ARRAY_SIZE(il); i++)
regs[i] = readl(base->virtbase + il[i].src);
for (;;) {
chan = find_next_bit((unsigned long *)regs,
BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
/* No more set bits found? */
if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
break;
row = chan / BITS_PER_LONG;
idx = chan & (BITS_PER_LONG - 1);
/* ACK interrupt */
tmp = readl(base->virtbase + il[row].clr);
tmp |= 1 << idx;
writel(tmp, base->virtbase + il[row].clr);
if (il[row].offset == D40_PHY_CHAN)
d40c = base->lookup_phy_chans[idx];
else
d40c = base->lookup_log_chans[il[row].offset + idx];
spin_lock(&d40c->lock);
if (!il[row].is_error)
dma_tc_handle(d40c);
else
dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n",
__func__, chan, il[row].offset, idx);
spin_unlock(&d40c->lock);
}
spin_unlock_irqrestore(&base->interrupt_lock, flags);
return IRQ_HANDLED;
}
static int d40_validate_conf(struct d40_chan *d40c,
struct stedma40_chan_cfg *conf)
{
int res = 0;
u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
== STEDMA40_CHANNEL_IN_LOG_MODE;
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
dst_event_group == STEDMA40_DEV_DST_MEMORY) {
dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
__func__);
res = -EINVAL;
}
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
src_event_group == STEDMA40_DEV_SRC_MEMORY) {
dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
__func__);
res = -EINVAL;
}
if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
dev_err(&d40c->chan.dev->device,
"[%s] No event line\n", __func__);
res = -EINVAL;
}
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
(src_event_group != dst_event_group)) {
dev_err(&d40c->chan.dev->device,
"[%s] Invalid event group\n", __func__);
res = -EINVAL;
}
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
/*
* DMAC HW supports it. Will be added to this driver,
* in case any dma client requires it.
*/
dev_err(&d40c->chan.dev->device,
"[%s] periph to periph not supported\n",
__func__);
res = -EINVAL;
}
return res;
}
static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
int log_event_line, bool is_log)
{
unsigned long flags;
spin_lock_irqsave(&phy->lock, flags);
if (!is_log) {
/* Physical interrupts are masked per physical full channel */
if (phy->allocated_src == D40_ALLOC_FREE &&
phy->allocated_dst == D40_ALLOC_FREE) {
phy->allocated_dst = D40_ALLOC_PHY;
phy->allocated_src = D40_ALLOC_PHY;
goto found;
} else
goto not_found;
}
/* Logical channel */
if (is_src) {
if (phy->allocated_src == D40_ALLOC_PHY)
goto not_found;
if (phy->allocated_src == D40_ALLOC_FREE)
phy->allocated_src = D40_ALLOC_LOG_FREE;
if (!(phy->allocated_src & (1 << log_event_line))) {
phy->allocated_src |= 1 << log_event_line;
goto found;
} else
goto not_found;
} else {
if (phy->allocated_dst == D40_ALLOC_PHY)
goto not_found;
if (phy->allocated_dst == D40_ALLOC_FREE)
phy->allocated_dst = D40_ALLOC_LOG_FREE;
if (!(phy->allocated_dst & (1 << log_event_line))) {
phy->allocated_dst |= 1 << log_event_line;
goto found;
} else
goto not_found;
}
not_found:
spin_unlock_irqrestore(&phy->lock, flags);
return false;
found:
spin_unlock_irqrestore(&phy->lock, flags);
return true;
}
static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
int log_event_line)
{
unsigned long flags;
bool is_free = false;
spin_lock_irqsave(&phy->lock, flags);
if (!log_event_line) {
/* Physical interrupts are masked per physical full channel */
phy->allocated_dst = D40_ALLOC_FREE;
phy->allocated_src = D40_ALLOC_FREE;
is_free = true;
goto out;
}
/* Logical channel */
if (is_src) {
phy->allocated_src &= ~(1 << log_event_line);
if (phy->allocated_src == D40_ALLOC_LOG_FREE)
phy->allocated_src = D40_ALLOC_FREE;
} else {
phy->allocated_dst &= ~(1 << log_event_line);
if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
phy->allocated_dst = D40_ALLOC_FREE;
}
is_free = ((phy->allocated_src | phy->allocated_dst) ==
D40_ALLOC_FREE);
out:
spin_unlock_irqrestore(&phy->lock, flags);
return is_free;
}
static int d40_allocate_channel(struct d40_chan *d40c)
{
int dev_type;
int event_group;
int event_line;
struct d40_phy_res *phys;
int i;
int j;
int log_num;
bool is_src;
bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
== STEDMA40_CHANNEL_IN_LOG_MODE;
phys = d40c->base->phy_res;
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
dev_type = d40c->dma_cfg.src_dev_type;
log_num = 2 * dev_type;
is_src = true;
} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
/* dst event lines are used for logical memcpy */
dev_type = d40c->dma_cfg.dst_dev_type;
log_num = 2 * dev_type + 1;
is_src = false;
} else
return -EINVAL;
event_group = D40_TYPE_TO_GROUP(dev_type);
event_line = D40_TYPE_TO_EVENT(dev_type);
if (!is_log) {
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
/* Find physical half channel */
for (i = 0; i < d40c->base->num_phy_chans; i++) {
if (d40_alloc_mask_set(&phys[i], is_src,
0, is_log))
goto found_phy;
}
} else
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
int phy_num = j + event_group * 2;
for (i = phy_num; i < phy_num + 2; i++) {
if (d40_alloc_mask_set(&phys[i], is_src,
0, is_log))
goto found_phy;
}
}
return -EINVAL;
found_phy:
d40c->phy_chan = &phys[i];
d40c->log_num = D40_PHY_CHAN;
goto out;
}
if (dev_type == -1)
return -EINVAL;
/* Find logical channel */
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
int phy_num = j + event_group * 2;
/*
* Spread logical channels across all available physical rather
* than pack every logical channel at the first available phy
* channels.
*/
if (is_src) {
for (i = phy_num; i < phy_num + 2; i++) {
if (d40_alloc_mask_set(&phys[i], is_src,
event_line, is_log))
goto found_log;
}
} else {
for (i = phy_num + 1; i >= phy_num; i--) {
if (d40_alloc_mask_set(&phys[i], is_src,
event_line, is_log))
goto found_log;
}
}
}
return -EINVAL;
found_log:
d40c->phy_chan = &phys[i];
d40c->log_num = log_num;
out:
if (is_log)
d40c->base->lookup_log_chans[d40c->log_num] = d40c;
else
d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
return 0;
}
static int d40_config_chan(struct d40_chan *d40c,
struct stedma40_chan_cfg *info)
{
/* Fill in basic CFG register values */
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
&d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
if (d40c->log_num != D40_PHY_CHAN) {
d40_log_cfg(&d40c->dma_cfg,
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.src_dev_type * 32;
else
d40c->lcpa = d40c->base->lcpa_base +
d40c->dma_cfg.dst_dev_type * 32 + 16;
}
/* Write channel configuration to the DMA */
return d40_config_write(d40c);
}
static int d40_config_memcpy(struct d40_chan *d40c)
{
dma_cap_mask_t cap = d40c->chan.device->cap_mask;
if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
memcpy[d40c->chan.chan_id];
} else if (dma_has_cap(DMA_MEMCPY, cap) &&
dma_has_cap(DMA_SLAVE, cap)) {
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
} else {
dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
__func__);
return -EINVAL;
}
return 0;
}
static int d40_free_dma(struct d40_chan *d40c)
{
int res = 0;
u32 event, dir;
struct d40_phy_res *phy = d40c->phy_chan;
bool is_src;
/* Terminate all queued and active transfers */
d40_term_all(d40c);
if (phy == NULL) {
dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
__func__);
return -EINVAL;
}
if (phy->allocated_src == D40_ALLOC_FREE &&
phy->allocated_dst == D40_ALLOC_FREE) {
dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
__func__);
return -EINVAL;
}
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res) {
dev_err(&d40c->chan.dev->device, "[%s] suspend\n",
__func__);
return res;
}
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
dir = D40_CHAN_REG_SDLNK;
is_src = false;
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
dir = D40_CHAN_REG_SSLNK;
is_src = true;
} else {
dev_err(&d40c->chan.dev->device,
"[%s] Unknown direction\n", __func__);
return -EINVAL;
}
if (d40c->log_num != D40_PHY_CHAN) {
/*
* Release logical channel, deactivate the event line during
* the time physical res is suspended.
*/
writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
D40_EVENTLINE_MASK(event),
d40c->base->virtbase + D40_DREG_PCBASE +
phy->num * D40_DREG_PCDELTA + dir);
d40c->base->lookup_log_chans[d40c->log_num] = NULL;
/*
* Check if there are more logical allocation
* on this phy channel.
*/
if (!d40_alloc_mask_free(phy, is_src, event)) {
/* Resume the other logical channels if any */
if (d40_chan_has_events(d40c)) {
res = d40_channel_execute_command(d40c,
D40_DMA_RUN);
if (res) {
dev_err(&d40c->chan.dev->device,
"[%s] Executing RUN command\n",
__func__);
return res;
}
}
return 0;
}
} else
d40_alloc_mask_free(phy, is_src, 0);
/* Release physical channel */
res = d40_channel_execute_command(d40c, D40_DMA_STOP);
if (res) {
dev_err(&d40c->chan.dev->device,
"[%s] Failed to stop channel\n", __func__);
return res;
}
d40c->phy_chan = NULL;
/* Invalidate channel type */
d40c->dma_cfg.channel_type = 0;
d40c->base->lookup_phy_chans[phy->num] = NULL;
return 0;
}
static int d40_pause(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int res;
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res == 0) {
if (d40c->log_num != D40_PHY_CHAN) {
d40_config_set_event(d40c, false);
/* Resume the other logical channels if any */
if (d40_chan_has_events(d40c))
res = d40_channel_execute_command(d40c,
D40_DMA_RUN);
}
}
spin_unlock_irqrestore(&d40c->lock, flags);
return res;
}
static bool d40_is_paused(struct d40_chan *d40c)
{
bool is_paused = false;
unsigned long flags;
void __iomem *active_reg;
u32 status;
u32 event;
int res;
spin_lock_irqsave(&d40c->lock, flags);
if (d40c->log_num == D40_PHY_CHAN) {
if (d40c->phy_chan->num % 2 == 0)
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
else
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
status = (readl(active_reg) &
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
D40_CHAN_POS(d40c->phy_chan->num);
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
is_paused = true;
goto _exit;
}
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res != 0)
goto _exit;
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
else {
dev_err(&d40c->chan.dev->device,
"[%s] Unknown direction\n", __func__);
goto _exit;
}
status = d40_chan_has_events(d40c);
status = (status & D40_EVENTLINE_MASK(event)) >>
D40_EVENTLINE_POS(event);
if (status != D40_DMA_RUN)
is_paused = true;
/* Resume the other logical channels if any */
if (d40_chan_has_events(d40c))
res = d40_channel_execute_command(d40c,
D40_DMA_RUN);
_exit:
spin_unlock_irqrestore(&d40c->lock, flags);
return is_paused;
}
static bool d40_tx_is_linked(struct d40_chan *d40c)
{
bool is_link;
if (d40c->log_num != D40_PHY_CHAN)
is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
else
is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDLNK) &
D40_SREG_LNK_PHYS_LNK_MASK;
return is_link;
}
static u32 d40_residue(struct d40_chan *d40c)
{
u32 num_elt;
if (d40c->log_num != D40_PHY_CHAN)
num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
>> D40_MEM_LCSP2_ECNT_POS;
else
num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
d40c->phy_chan->num * D40_DREG_PCDELTA +
D40_CHAN_REG_SDELT) &
D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS;
return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
}
static int d40_resume(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int res = 0;
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
if (d40c->log_num != D40_PHY_CHAN) {
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
if (res)
goto out;
/* If bytes left to transfer or linked tx resume job */
if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
d40_config_set_event(d40c, true);
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
}
} else if (d40_residue(d40c) || d40_tx_is_linked(d40c))
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
out:
spin_unlock_irqrestore(&d40c->lock, flags);
return res;
}
static u32 stedma40_residue(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
u32 bytes_left;
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
bytes_left = d40_residue(d40c);
spin_unlock_irqrestore(&d40c->lock, flags);
return bytes_left;
}
/* Public DMA functions in addition to the DMA engine framework */
int stedma40_set_psize(struct dma_chan *chan,
int src_psize,
int dst_psize)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
if (d40c->log_num != D40_PHY_CHAN) {
d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
goto out;
}
if (src_psize == STEDMA40_PSIZE_PHY_1)
d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
else {
d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
D40_SREG_CFG_PSIZE_POS);
d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
}
if (dst_psize == STEDMA40_PSIZE_PHY_1)
d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
else {
d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
D40_SREG_CFG_PSIZE_POS);
d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
}
out:
spin_unlock_irqrestore(&d40c->lock, flags);
return 0;
}
EXPORT_SYMBOL(stedma40_set_psize);
struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
struct scatterlist *sgl_dst,
struct scatterlist *sgl_src,
unsigned int sgl_len,
unsigned long flags)
{
int res;
struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan);
unsigned long flg;
int lli_max = d40c->base->plat_data->llis_per_log;
spin_lock_irqsave(&d40c->lock, flg);
d40d = d40_desc_get(d40c);
if (d40d == NULL)
goto err;
memset(d40d, 0, sizeof(struct d40_desc));
d40d->lli_len = sgl_len;
d40d->txd.flags = flags;
if (d40c->log_num != D40_PHY_CHAN) {
if (sgl_len > 1)
/*
* Check if there is space available in lcla. If not,
* split list into 1-length and run only in lcpa
* space.
*/
if (d40_lcla_id_get(d40c,
&d40c->base->lcla_pool) != 0)
lli_max = 1;
if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
goto err;
}
(void) d40_log_sg_to_lli(d40c->lcla.src_id,
sgl_src,
sgl_len,
d40d->lli_log.src,
d40c->log_def.lcsp1,
d40c->dma_cfg.src_info.data_width,
flags & DMA_PREP_INTERRUPT, lli_max,
d40c->base->plat_data->llis_per_log);
(void) d40_log_sg_to_lli(d40c->lcla.dst_id,
sgl_dst,
sgl_len,
d40d->lli_log.dst,
d40c->log_def.lcsp3,
d40c->dma_cfg.dst_info.data_width,
flags & DMA_PREP_INTERRUPT, lli_max,
d40c->base->plat_data->llis_per_log);
} else {
if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
goto err;
}
res = d40_phy_sg_to_lli(sgl_src,
sgl_len,
0,
d40d->lli_phy.src,
d40d->lli_phy.src_addr,
d40c->src_def_cfg,
d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.src_info.psize,
true);
if (res < 0)
goto err;
res = d40_phy_sg_to_lli(sgl_dst,
sgl_len,
0,
d40d->lli_phy.dst,
d40d->lli_phy.dst_addr,
d40c->dst_def_cfg,
d40c->dma_cfg.dst_info.data_width,
d40c->dma_cfg.dst_info.psize,
true);
if (res < 0)
goto err;
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
d40d->lli_pool.size, DMA_TO_DEVICE);
}
dma_async_tx_descriptor_init(&d40d->txd, chan);
d40d->txd.tx_submit = d40_tx_submit;
spin_unlock_irqrestore(&d40c->lock, flg);
return &d40d->txd;
err:
spin_unlock_irqrestore(&d40c->lock, flg);
return NULL;
}
EXPORT_SYMBOL(stedma40_memcpy_sg);
bool stedma40_filter(struct dma_chan *chan, void *data)
{
struct stedma40_chan_cfg *info = data;
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int err;
if (data) {
err = d40_validate_conf(d40c, info);
if (!err)
d40c->dma_cfg = *info;
} else
err = d40_config_memcpy(d40c);
return err == 0;
}
EXPORT_SYMBOL(stedma40_filter);
/* DMA ENGINE functions */
static int d40_alloc_chan_resources(struct dma_chan *chan)
{
int err;
unsigned long flags;
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
spin_lock_irqsave(&d40c->lock, flags);
d40c->completed = chan->cookie = 1;
/*
* If no dma configuration is set (channel_type == 0)
* use default configuration
*/
if (d40c->dma_cfg.channel_type == 0) {
err = d40_config_memcpy(d40c);
if (err)
goto err_alloc;
}
err = d40_allocate_channel(d40c);
if (err) {
dev_err(&d40c->chan.dev->device,
"[%s] Failed to allocate channel\n", __func__);
goto err_alloc;
}
err = d40_config_chan(d40c, &d40c->dma_cfg);
if (err) {
dev_err(&d40c->chan.dev->device,
"[%s] Failed to configure channel\n",
__func__);
goto err_config;
}
spin_unlock_irqrestore(&d40c->lock, flags);
return 0;
err_config:
(void) d40_free_dma(d40c);
err_alloc:
spin_unlock_irqrestore(&d40c->lock, flags);
dev_err(&d40c->chan.dev->device,
"[%s] Channel allocation failed\n", __func__);
return -EINVAL;
}
static void d40_free_chan_resources(struct dma_chan *chan)
{
struct d40_chan *d40c =
container_of(chan, struct d40_chan, chan);
int err;
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
err = d40_free_dma(d40c);
if (err)
dev_err(&d40c->chan.dev->device,
"[%s] Failed to free channel\n", __func__);
spin_unlock_irqrestore(&d40c->lock, flags);
}
static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
dma_addr_t dst,
dma_addr_t src,
size_t size,
unsigned long flags)
{
struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan);
unsigned long flg;
int err = 0;
spin_lock_irqsave(&d40c->lock, flg);
d40d = d40_desc_get(d40c);
if (d40d == NULL) {
dev_err(&d40c->chan.dev->device,
"[%s] Descriptor is NULL\n", __func__);
goto err;
}
memset(d40d, 0, sizeof(struct d40_desc));
d40d->txd.flags = flags;
dma_async_tx_descriptor_init(&d40d->txd, chan);
d40d->txd.tx_submit = d40_tx_submit;
if (d40c->log_num != D40_PHY_CHAN) {
if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
goto err;
}
d40d->lli_len = 1;
d40_log_fill_lli(d40d->lli_log.src,
src,
size,
0,
d40c->log_def.lcsp1,
d40c->dma_cfg.src_info.data_width,
true, true);
d40_log_fill_lli(d40d->lli_log.dst,
dst,
size,
0,
d40c->log_def.lcsp3,
d40c->dma_cfg.dst_info.data_width,
true, true);
} else {
if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
goto err;
}
err = d40_phy_fill_lli(d40d->lli_phy.src,
src,
size,
d40c->dma_cfg.src_info.psize,
0,
d40c->src_def_cfg,
true,
d40c->dma_cfg.src_info.data_width,
false);
if (err)
goto err_fill_lli;
err = d40_phy_fill_lli(d40d->lli_phy.dst,
dst,
size,
d40c->dma_cfg.dst_info.psize,
0,
d40c->dst_def_cfg,
true,
d40c->dma_cfg.dst_info.data_width,
false);
if (err)
goto err_fill_lli;
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
d40d->lli_pool.size, DMA_TO_DEVICE);
}
spin_unlock_irqrestore(&d40c->lock, flg);
return &d40d->txd;
err_fill_lli:
dev_err(&d40c->chan.dev->device,
"[%s] Failed filling in PHY LLI\n", __func__);
d40_pool_lli_free(d40d);
err:
spin_unlock_irqrestore(&d40c->lock, flg);
return NULL;
}
static int d40_prep_slave_sg_log(struct d40_desc *d40d,
struct d40_chan *d40c,
struct scatterlist *sgl,
unsigned int sg_len,
enum dma_data_direction direction,
unsigned long flags)
{
dma_addr_t dev_addr = 0;
int total_size;
int lli_max = d40c->base->plat_data->llis_per_log;
if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
return -ENOMEM;
}
d40d->lli_len = sg_len;
d40d->lli_tcount = 0;
if (sg_len > 1)
/*
* Check if there is space available in lcla.
* If not, split list into 1-length and run only
* in lcpa space.
*/
if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0)
lli_max = 1;
if (direction == DMA_FROM_DEVICE) {
dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
total_size = d40_log_sg_to_dev(&d40c->lcla,
sgl, sg_len,
&d40d->lli_log,
&d40c->log_def,
d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.dst_info.data_width,
direction,
flags & DMA_PREP_INTERRUPT,
dev_addr, lli_max,
d40c->base->plat_data->llis_per_log);
} else if (direction == DMA_TO_DEVICE) {
dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
total_size = d40_log_sg_to_dev(&d40c->lcla,
sgl, sg_len,
&d40d->lli_log,
&d40c->log_def,
d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.dst_info.data_width,
direction,
flags & DMA_PREP_INTERRUPT,
dev_addr, lli_max,
d40c->base->plat_data->llis_per_log);
} else
return -EINVAL;
if (total_size < 0)
return -EINVAL;
return 0;
}
static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
struct d40_chan *d40c,
struct scatterlist *sgl,
unsigned int sgl_len,
enum dma_data_direction direction,
unsigned long flags)
{
dma_addr_t src_dev_addr;
dma_addr_t dst_dev_addr;
int res;
if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
dev_err(&d40c->chan.dev->device,
"[%s] Out of memory\n", __func__);
return -ENOMEM;
}
d40d->lli_len = sgl_len;
d40d->lli_tcount = 0;
if (direction == DMA_FROM_DEVICE) {
dst_dev_addr = 0;
src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
} else if (direction == DMA_TO_DEVICE) {
dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
src_dev_addr = 0;
} else
return -EINVAL;
res = d40_phy_sg_to_lli(sgl,
sgl_len,
src_dev_addr,
d40d->lli_phy.src,
d40d->lli_phy.src_addr,
d40c->src_def_cfg,
d40c->dma_cfg.src_info.data_width,
d40c->dma_cfg.src_info.psize,
true);
if (res < 0)
return res;
res = d40_phy_sg_to_lli(sgl,
sgl_len,
dst_dev_addr,
d40d->lli_phy.dst,
d40d->lli_phy.dst_addr,
d40c->dst_def_cfg,
d40c->dma_cfg.dst_info.data_width,
d40c->dma_cfg.dst_info.psize,
true);
if (res < 0)
return res;
(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
d40d->lli_pool.size, DMA_TO_DEVICE);
return 0;
}
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
struct scatterlist *sgl,
unsigned int sg_len,
enum dma_data_direction direction,
unsigned long flags)
{
struct d40_desc *d40d;
struct d40_chan *d40c = container_of(chan, struct d40_chan,
chan);
unsigned long flg;
int err;
if (d40c->dma_cfg.pre_transfer)
d40c->dma_cfg.pre_transfer(chan,
d40c->dma_cfg.pre_transfer_data,
sg_dma_len(sgl));
spin_lock_irqsave(&d40c->lock, flg);
d40d = d40_desc_get(d40c);
spin_unlock_irqrestore(&d40c->lock, flg);
if (d40d == NULL)
return NULL;
memset(d40d, 0, sizeof(struct d40_desc));
if (d40c->log_num != D40_PHY_CHAN)
err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
direction, flags);
else
err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
direction, flags);
if (err) {
dev_err(&d40c->chan.dev->device,
"[%s] Failed to prepare %s slave sg job: %d\n",
__func__,
d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
return NULL;
}
d40d->txd.flags = flags;
dma_async_tx_descriptor_init(&d40d->txd, chan);
d40d->txd.tx_submit = d40_tx_submit;
return &d40d->txd;
}
static enum dma_status d40_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
int ret;
last_complete = d40c->completed;
last_used = chan->cookie;
if (d40_is_paused(d40c))
ret = DMA_PAUSED;
else
ret = dma_async_is_complete(cookie, last_complete, last_used);
dma_set_tx_state(txstate, last_complete, last_used,
stedma40_residue(chan));
return ret;
}
static void d40_issue_pending(struct dma_chan *chan)
{
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
unsigned long flags;
spin_lock_irqsave(&d40c->lock, flags);
/* Busy means that pending jobs are already being processed */
if (!d40c->busy)
(void) d40_queue_start(d40c);
spin_unlock_irqrestore(&d40c->lock, flags);
}
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
unsigned long flags;
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
switch (cmd) {
case DMA_TERMINATE_ALL:
spin_lock_irqsave(&d40c->lock, flags);
d40_term_all(d40c);
spin_unlock_irqrestore(&d40c->lock, flags);
return 0;
case DMA_PAUSE:
return d40_pause(chan);
case DMA_RESUME:
return d40_resume(chan);
}
/* Other commands are unimplemented */
return -ENXIO;
}
/* Initialization functions */
static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
struct d40_chan *chans, int offset,
int num_chans)
{
int i = 0;
struct d40_chan *d40c;
INIT_LIST_HEAD(&dma->channels);
for (i = offset; i < offset + num_chans; i++) {
d40c = &chans[i];
d40c->base = base;
d40c->chan.device = dma;
/* Invalidate lcla element */
d40c->lcla.src_id = -1;
d40c->lcla.dst_id = -1;
spin_lock_init(&d40c->lock);
d40c->log_num = D40_PHY_CHAN;
INIT_LIST_HEAD(&d40c->free);
INIT_LIST_HEAD(&d40c->active);
INIT_LIST_HEAD(&d40c->queue);
INIT_LIST_HEAD(&d40c->client);
d40c->free_len = 0;
tasklet_init(&d40c->tasklet, dma_tasklet,
(unsigned long) d40c);
list_add_tail(&d40c->chan.device_node,
&dma->channels);
}
}
static int __init d40_dmaengine_init(struct d40_base *base,
int num_reserved_chans)
{
int err ;
d40_chan_init(base, &base->dma_slave, base->log_chans,
0, base->num_log_chans);
dma_cap_zero(base->dma_slave.cap_mask);
dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
base->dma_slave.device_tx_status = d40_tx_status;
base->dma_slave.device_issue_pending = d40_issue_pending;
base->dma_slave.device_control = d40_control;
base->dma_slave.dev = base->dev;
err = dma_async_device_register(&base->dma_slave);
if (err) {
dev_err(base->dev,
"[%s] Failed to register slave channels\n",
__func__);
goto failure1;
}
d40_chan_init(base, &base->dma_memcpy, base->log_chans,
base->num_log_chans, base->plat_data->memcpy_len);
dma_cap_zero(base->dma_memcpy.cap_mask);
dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
base->dma_memcpy.device_tx_status = d40_tx_status;
base->dma_memcpy.device_issue_pending = d40_issue_pending;
base->dma_memcpy.device_control = d40_control;
base->dma_memcpy.dev = base->dev;
/*
* This controller can only access address at even
* 32bit boundaries, i.e. 2^2
*/
base->dma_memcpy.copy_align = 2;
err = dma_async_device_register(&base->dma_memcpy);
if (err) {
dev_err(base->dev,
"[%s] Failed to regsiter memcpy only channels\n",
__func__);
goto failure2;
}
d40_chan_init(base, &base->dma_both, base->phy_chans,
0, num_reserved_chans);
dma_cap_zero(base->dma_both.cap_mask);
dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
base->dma_both.device_free_chan_resources = d40_free_chan_resources;
base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
base->dma_both.device_tx_status = d40_tx_status;
base->dma_both.device_issue_pending = d40_issue_pending;
base->dma_both.device_control = d40_control;
base->dma_both.dev = base->dev;
base->dma_both.copy_align = 2;
err = dma_async_device_register(&base->dma_both);
if (err) {
dev_err(base->dev,
"[%s] Failed to register logical and physical capable channels\n",
__func__);
goto failure3;
}
return 0;
failure3:
dma_async_device_unregister(&base->dma_memcpy);
failure2:
dma_async_device_unregister(&base->dma_slave);
failure1:
return err;
}
/* Initialization functions. */
static int __init d40_phy_res_init(struct d40_base *base)
{
int i;
int num_phy_chans_avail = 0;
u32 val[2];
int odd_even_bit = -2;
val[0] = readl(base->virtbase + D40_DREG_PRSME);
val[1] = readl(base->virtbase + D40_DREG_PRSMO);
for (i = 0; i < base->num_phy_chans; i++) {
base->phy_res[i].num = i;
odd_even_bit += 2 * ((i % 2) == 0);
if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
/* Mark security only channels as occupied */
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
} else {
base->phy_res[i].allocated_src = D40_ALLOC_FREE;
base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
num_phy_chans_avail++;
}
spin_lock_init(&base->phy_res[i].lock);
}
dev_info(base->dev, "%d of %d physical DMA channels available\n",
num_phy_chans_avail, base->num_phy_chans);
/* Verify settings extended vs standard */
val[0] = readl(base->virtbase + D40_DREG_PRTYP);
for (i = 0; i < base->num_phy_chans; i++) {
if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
(val[0] & 0x3) != 1)
dev_info(base->dev,
"[%s] INFO: channel %d is misconfigured (%d)\n",
__func__, i, val[0] & 0x3);
val[0] = val[0] >> 2;
}
return num_phy_chans_avail;
}
static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
{
static const struct d40_reg_val dma_id_regs[] = {
/* Peripheral Id */
{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
/*
* D40_DREG_PERIPHID2 Depends on HW revision:
* MOP500/HREF ED has 0x0008,
* ? has 0x0018,
* HREF V1 has 0x0028
*/
{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
/* PCell Id */
{ .reg = D40_DREG_CELLID0, .val = 0x000d},
{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
{ .reg = D40_DREG_CELLID2, .val = 0x0005},
{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
};
struct stedma40_platform_data *plat_data;
struct clk *clk = NULL;
void __iomem *virtbase = NULL;
struct resource *res = NULL;
struct d40_base *base = NULL;
int num_log_chans = 0;
int num_phy_chans;
int i;
clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "[%s] No matching clock found\n",
__func__);
goto failure;
}
clk_enable(clk);
/* Get IO for DMAC base address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
if (!res)
goto failure;
if (request_mem_region(res->start, resource_size(res),
D40_NAME " I/O base") == NULL)
goto failure;
virtbase = ioremap(res->start, resource_size(res));
if (!virtbase)
goto failure;
/* HW version check */
for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
if (dma_id_regs[i].val !=
readl(virtbase + dma_id_regs[i].reg)) {
dev_err(&pdev->dev,
"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
__func__,
dma_id_regs[i].val,
dma_id_regs[i].reg,
readl(virtbase + dma_id_regs[i].reg));
goto failure;
}
}
i = readl(virtbase + D40_DREG_PERIPHID2);
if ((i & 0xf) != D40_PERIPHID2_DESIGNER) {
dev_err(&pdev->dev,
"[%s] Unknown designer! Got %x wanted %x\n",
__func__, i & 0xf, D40_PERIPHID2_DESIGNER);
goto failure;
}
/* The number of physical channels on this HW */
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
(i >> 4) & 0xf, res->start);
plat_data = pdev->dev.platform_data;
/* Count the number of logical channels in use */
for (i = 0; i < plat_data->dev_len; i++)
if (plat_data->dev_rx[i] != 0)
num_log_chans++;
for (i = 0; i < plat_data->dev_len; i++)
if (plat_data->dev_tx[i] != 0)
num_log_chans++;
base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
(num_phy_chans + num_log_chans + plat_data->memcpy_len) *
sizeof(struct d40_chan), GFP_KERNEL);
if (base == NULL) {
dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
goto failure;
}
base->clk = clk;
base->num_phy_chans = num_phy_chans;
base->num_log_chans = num_log_chans;
base->phy_start = res->start;
base->phy_size = resource_size(res);
base->virtbase = virtbase;
base->plat_data = plat_data;
base->dev = &pdev->dev;
base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
base->log_chans = &base->phy_chans[num_phy_chans];
base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
GFP_KERNEL);
if (!base->phy_res)
goto failure;
base->lookup_phy_chans = kzalloc(num_phy_chans *
sizeof(struct d40_chan *),
GFP_KERNEL);
if (!base->lookup_phy_chans)
goto failure;
if (num_log_chans + plat_data->memcpy_len) {
/*
* The max number of logical channels are event lines for all
* src devices and dst devices
*/
base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
sizeof(struct d40_chan *),
GFP_KERNEL);
if (!base->lookup_log_chans)
goto failure;
}
base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
GFP_KERNEL);
if (!base->lcla_pool.alloc_map)
goto failure;
return base;
failure:
if (clk) {
clk_disable(clk);
clk_put(clk);
}
if (virtbase)
iounmap(virtbase);
if (res)
release_mem_region(res->start,
resource_size(res));
if (virtbase)
iounmap(virtbase);
if (base) {
kfree(base->lcla_pool.alloc_map);
kfree(base->lookup_log_chans);
kfree(base->lookup_phy_chans);
kfree(base->phy_res);
kfree(base);
}
return NULL;
}
static void __init d40_hw_init(struct d40_base *base)
{
static const struct d40_reg_val dma_init_reg[] = {
/* Clock every part of the DMA block from start */
{ .reg = D40_DREG_GCC, .val = 0x0000ff01},
/* Interrupts on all logical channels */
{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
};
int i;
u32 prmseo[2] = {0, 0};
u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
u32 pcmis = 0;
u32 pcicr = 0;
for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
writel(dma_init_reg[i].val,
base->virtbase + dma_init_reg[i].reg);
/* Configure all our dma channels to default settings */
for (i = 0; i < base->num_phy_chans; i++) {
activeo[i % 2] = activeo[i % 2] << 2;
if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
== D40_ALLOC_PHY) {
activeo[i % 2] |= 3;
continue;
}
/* Enable interrupt # */
pcmis = (pcmis << 1) | 1;
/* Clear interrupt # */
pcicr = (pcicr << 1) | 1;
/* Set channel to physical mode */
prmseo[i % 2] = prmseo[i % 2] << 2;
prmseo[i % 2] |= 1;
}
writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
/* Write which interrupt to enable */
writel(pcmis, base->virtbase + D40_DREG_PCMIS);
/* Write which interrupt to clear */
writel(pcicr, base->virtbase + D40_DREG_PCICR);
}
static int __init d40_probe(struct platform_device *pdev)
{
int err;
int ret = -ENOENT;
struct d40_base *base;
struct resource *res = NULL;
int num_reserved_chans;
u32 val;
base = d40_hw_detect_init(pdev);
if (!base)
goto failure;
num_reserved_chans = d40_phy_res_init(base);
platform_set_drvdata(pdev, base);
spin_lock_init(&base->interrupt_lock);
spin_lock_init(&base->execmd_lock);
/* Get IO for logical channel parameter address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
if (!res) {
ret = -ENOENT;
dev_err(&pdev->dev,
"[%s] No \"lcpa\" memory resource\n",
__func__);
goto failure;
}
base->lcpa_size = resource_size(res);
base->phy_lcpa = res->start;
if (request_mem_region(res->start, resource_size(res),
D40_NAME " I/O lcpa") == NULL) {
ret = -EBUSY;
dev_err(&pdev->dev,
"[%s] Failed to request LCPA region 0x%x-0x%x\n",
__func__, res->start, res->end);
goto failure;
}
/* We make use of ESRAM memory for this. */
val = readl(base->virtbase + D40_DREG_LCPA);
if (res->start != val && val != 0) {
dev_warn(&pdev->dev,
"[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
__func__, val, res->start);
} else
writel(res->start, base->virtbase + D40_DREG_LCPA);
base->lcpa_base = ioremap(res->start, resource_size(res));
if (!base->lcpa_base) {
ret = -ENOMEM;
dev_err(&pdev->dev,
"[%s] Failed to ioremap LCPA region\n",
__func__);
goto failure;
}
/* Get IO for logical channel link address */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla");
if (!res) {
ret = -ENOENT;
dev_err(&pdev->dev,
"[%s] No \"lcla\" resource defined\n",
__func__);
goto failure;
}
base->lcla_pool.base_size = resource_size(res);
base->lcla_pool.phy = res->start;
if (request_mem_region(res->start, resource_size(res),
D40_NAME " I/O lcla") == NULL) {
ret = -EBUSY;
dev_err(&pdev->dev,
"[%s] Failed to request LCLA region 0x%x-0x%x\n",
__func__, res->start, res->end);
goto failure;
}
val = readl(base->virtbase + D40_DREG_LCLA);
if (res->start != val && val != 0) {
dev_warn(&pdev->dev,
"[%s] Mismatch LCLA dma 0x%x, def 0x%x\n",
__func__, val, res->start);
} else
writel(res->start, base->virtbase + D40_DREG_LCLA);
base->lcla_pool.base = ioremap(res->start, resource_size(res));
if (!base->lcla_pool.base) {
ret = -ENOMEM;
dev_err(&pdev->dev,
"[%s] Failed to ioremap LCLA 0x%x-0x%x\n",
__func__, res->start, res->end);
goto failure;
}
spin_lock_init(&base->lcla_pool.lock);
base->lcla_pool.num_blocks = base->num_phy_chans;
base->irq = platform_get_irq(pdev, 0);
ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
if (ret) {
dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
goto failure;
}
err = d40_dmaengine_init(base, num_reserved_chans);
if (err)
goto failure;
d40_hw_init(base);
dev_info(base->dev, "initialized\n");
return 0;
failure:
if (base) {
if (base->virtbase)
iounmap(base->virtbase);
if (base->lcla_pool.phy)
release_mem_region(base->lcla_pool.phy,
base->lcla_pool.base_size);
if (base->phy_lcpa)
release_mem_region(base->phy_lcpa,
base->lcpa_size);
if (base->phy_start)
release_mem_region(base->phy_start,
base->phy_size);
if (base->clk) {
clk_disable(base->clk);
clk_put(base->clk);
}
kfree(base->lcla_pool.alloc_map);
kfree(base->lookup_log_chans);
kfree(base->lookup_phy_chans);
kfree(base->phy_res);
kfree(base);
}
dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
return ret;
}
static struct platform_driver d40_driver = {
.driver = {
.owner = THIS_MODULE,
.name = D40_NAME,
},
};
int __init stedma40_init(void)
{
return platform_driver_probe(&d40_driver, d40_probe);
}
arch_initcall(stedma40_init);