Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/video/pnx4008/sdum.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

873 lines
20 KiB
C

/*
* drivers/video/pnx4008/sdum.c
*
* Display Update Master support
*
* Authors: Grigory Tolstolytkin <gtolstolytkin@ru.mvista.com>
* Vitaly Wool <vitalywool@gmail.com>
* Based on Philips Semiconductors's code
*
* Copyrght (c) 2005-2006 MontaVista Software, Inc.
* Copyright (c) 2005 Philips Semiconductors
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/gfp.h>
#include <asm/uaccess.h>
#include <mach/gpio.h>
#include "sdum.h"
#include "fbcommon.h"
#include "dum.h"
/* Framebuffers we have */
static struct pnx4008_fb_addr {
int fb_type;
long addr_offset;
long fb_length;
} fb_addr[] = {
[0] = {
FB_TYPE_YUV, 0, 0xB0000
},
[1] = {
FB_TYPE_RGB, 0xB0000, 0x50000
},
};
static struct dum_data {
u32 lcd_phys_start;
u32 lcd_virt_start;
u32 slave_phys_base;
u32 *slave_virt_base;
int fb_owning_channel[MAX_DUM_CHANNELS];
struct dumchannel_uf chan_uf_store[MAX_DUM_CHANNELS];
} dum_data;
/* Different local helper functions */
static u32 nof_pixels_dx(struct dum_ch_setup *ch_setup)
{
return (ch_setup->xmax - ch_setup->xmin + 1);
}
static u32 nof_pixels_dy(struct dum_ch_setup *ch_setup)
{
return (ch_setup->ymax - ch_setup->ymin + 1);
}
static u32 nof_pixels_dxy(struct dum_ch_setup *ch_setup)
{
return (nof_pixels_dx(ch_setup) * nof_pixels_dy(ch_setup));
}
static u32 nof_bytes(struct dum_ch_setup *ch_setup)
{
u32 r = nof_pixels_dxy(ch_setup);
switch (ch_setup->format) {
case RGB888:
case RGB666:
r *= 4;
break;
default:
r *= 2;
break;
}
return r;
}
static u32 build_command(int disp_no, u32 reg, u32 val)
{
return ((disp_no << 26) | BIT(25) | (val << 16) | (disp_no << 10) |
(reg << 0));
}
static u32 build_double_index(int disp_no, u32 val)
{
return ((disp_no << 26) | (val << 16) | (disp_no << 10) | (val << 0));
}
static void build_disp_window(struct dum_ch_setup * ch_setup, struct disp_window * dw)
{
dw->ymin = ch_setup->ymin;
dw->ymax = ch_setup->ymax;
dw->xmin_l = ch_setup->xmin & 0xFF;
dw->xmin_h = (ch_setup->xmin & BIT(8)) >> 8;
dw->xmax_l = ch_setup->xmax & 0xFF;
dw->xmax_h = (ch_setup->xmax & BIT(8)) >> 8;
}
static int put_channel(struct dumchannel chan)
{
int i = chan.channelnr;
if (i < 0 || i > MAX_DUM_CHANNELS)
return -EINVAL;
else {
DUM_CH_MIN(i) = chan.dum_ch_min;
DUM_CH_MAX(i) = chan.dum_ch_max;
DUM_CH_CONF(i) = chan.dum_ch_conf;
DUM_CH_CTRL(i) = chan.dum_ch_ctrl;
}
return 0;
}
static void clear_channel(int channr)
{
struct dumchannel chan;
chan.channelnr = channr;
chan.dum_ch_min = 0;
chan.dum_ch_max = 0;
chan.dum_ch_conf = 0;
chan.dum_ch_ctrl = 0;
put_channel(chan);
}
static int put_cmd_string(struct cmdstring cmds)
{
u16 *cmd_str_virtaddr;
u32 *cmd_ptr0_virtaddr;
u32 cmd_str_physaddr;
int i = cmds.channelnr;
if (i < 0 || i > MAX_DUM_CHANNELS)
return -EINVAL;
else if ((cmd_ptr0_virtaddr =
(int *)ioremap_nocache(DUM_COM_BASE,
sizeof(int) * MAX_DUM_CHANNELS)) ==
NULL)
return -EIOREMAPFAILED;
else {
cmd_str_physaddr = ioread32(&cmd_ptr0_virtaddr[cmds.channelnr]);
if ((cmd_str_virtaddr =
(u16 *) ioremap_nocache(cmd_str_physaddr,
sizeof(cmds))) == NULL) {
iounmap(cmd_ptr0_virtaddr);
return -EIOREMAPFAILED;
} else {
int t;
for (t = 0; t < 8; t++)
iowrite16(*((u16 *)&cmds.prestringlen + t),
cmd_str_virtaddr + t);
for (t = 0; t < cmds.prestringlen / 2; t++)
iowrite16(*((u16 *)&cmds.precmd + t),
cmd_str_virtaddr + t + 8);
for (t = 0; t < cmds.poststringlen / 2; t++)
iowrite16(*((u16 *)&cmds.postcmd + t),
cmd_str_virtaddr + t + 8 +
cmds.prestringlen / 2);
iounmap(cmd_ptr0_virtaddr);
iounmap(cmd_str_virtaddr);
}
}
return 0;
}
static u32 dum_ch_setup(int ch_no, struct dum_ch_setup * ch_setup)
{
struct cmdstring cmds_c;
struct cmdstring *cmds = &cmds_c;
struct disp_window dw;
int standard;
u32 orientation = 0;
struct dumchannel chan = { 0 };
int ret;
if ((ch_setup->xmirror) || (ch_setup->ymirror) || (ch_setup->rotate)) {
standard = 0;
orientation = BIT(1); /* always set 9-bit-bus */
if (ch_setup->xmirror)
orientation |= BIT(4);
if (ch_setup->ymirror)
orientation |= BIT(3);
if (ch_setup->rotate)
orientation |= BIT(0);
} else
standard = 1;
cmds->channelnr = ch_no;
/* build command string header */
if (standard) {
cmds->prestringlen = 32;
cmds->poststringlen = 0;
} else {
cmds->prestringlen = 48;
cmds->poststringlen = 16;
}
cmds->format =
(u16) ((ch_setup->disp_no << 4) | (BIT(3)) | (ch_setup->format));
cmds->reserved = 0x0;
cmds->startaddr_low = (ch_setup->minadr & 0xFFFF);
cmds->startaddr_high = (ch_setup->minadr >> 16);
if ((ch_setup->minadr == 0) && (ch_setup->maxadr == 0)
&& (ch_setup->xmin == 0)
&& (ch_setup->ymin == 0) && (ch_setup->xmax == 0)
&& (ch_setup->ymax == 0)) {
cmds->pixdatlen_low = 0;
cmds->pixdatlen_high = 0;
} else {
u32 nbytes = nof_bytes(ch_setup);
cmds->pixdatlen_low = (nbytes & 0xFFFF);
cmds->pixdatlen_high = (nbytes >> 16);
}
if (ch_setup->slave_trans)
cmds->pixdatlen_high |= BIT(15);
/* build pre-string */
build_disp_window(ch_setup, &dw);
if (standard) {
cmds->precmd[0] =
build_command(ch_setup->disp_no, DISP_XMIN_L_REG, 0x99);
cmds->precmd[1] =
build_command(ch_setup->disp_no, DISP_XMIN_L_REG,
dw.xmin_l);
cmds->precmd[2] =
build_command(ch_setup->disp_no, DISP_XMIN_H_REG,
dw.xmin_h);
cmds->precmd[3] =
build_command(ch_setup->disp_no, DISP_YMIN_REG, dw.ymin);
cmds->precmd[4] =
build_command(ch_setup->disp_no, DISP_XMAX_L_REG,
dw.xmax_l);
cmds->precmd[5] =
build_command(ch_setup->disp_no, DISP_XMAX_H_REG,
dw.xmax_h);
cmds->precmd[6] =
build_command(ch_setup->disp_no, DISP_YMAX_REG, dw.ymax);
cmds->precmd[7] =
build_double_index(ch_setup->disp_no, DISP_PIXEL_REG);
} else {
if (dw.xmin_l == ch_no)
cmds->precmd[0] =
build_command(ch_setup->disp_no, DISP_XMIN_L_REG,
0x99);
else
cmds->precmd[0] =
build_command(ch_setup->disp_no, DISP_XMIN_L_REG,
ch_no);
cmds->precmd[1] =
build_command(ch_setup->disp_no, DISP_XMIN_L_REG,
dw.xmin_l);
cmds->precmd[2] =
build_command(ch_setup->disp_no, DISP_XMIN_H_REG,
dw.xmin_h);
cmds->precmd[3] =
build_command(ch_setup->disp_no, DISP_YMIN_REG, dw.ymin);
cmds->precmd[4] =
build_command(ch_setup->disp_no, DISP_XMAX_L_REG,
dw.xmax_l);
cmds->precmd[5] =
build_command(ch_setup->disp_no, DISP_XMAX_H_REG,
dw.xmax_h);
cmds->precmd[6] =
build_command(ch_setup->disp_no, DISP_YMAX_REG, dw.ymax);
cmds->precmd[7] =
build_command(ch_setup->disp_no, DISP_1_REG, orientation);
cmds->precmd[8] =
build_double_index(ch_setup->disp_no, DISP_PIXEL_REG);
cmds->precmd[9] =
build_double_index(ch_setup->disp_no, DISP_PIXEL_REG);
cmds->precmd[0xA] =
build_double_index(ch_setup->disp_no, DISP_PIXEL_REG);
cmds->precmd[0xB] =
build_double_index(ch_setup->disp_no, DISP_PIXEL_REG);
cmds->postcmd[0] =
build_command(ch_setup->disp_no, DISP_1_REG, BIT(1));
cmds->postcmd[1] =
build_command(ch_setup->disp_no, DISP_DUMMY1_REG, 1);
cmds->postcmd[2] =
build_command(ch_setup->disp_no, DISP_DUMMY1_REG, 2);
cmds->postcmd[3] =
build_command(ch_setup->disp_no, DISP_DUMMY1_REG, 3);
}
if ((ret = put_cmd_string(cmds_c)) != 0) {
return ret;
}
chan.channelnr = cmds->channelnr;
chan.dum_ch_min = ch_setup->dirtybuffer + ch_setup->minadr;
chan.dum_ch_max = ch_setup->dirtybuffer + ch_setup->maxadr;
chan.dum_ch_conf = 0x002;
chan.dum_ch_ctrl = 0x04;
put_channel(chan);
return 0;
}
static u32 display_open(int ch_no, int auto_update, u32 * dirty_buffer,
u32 * frame_buffer, u32 xpos, u32 ypos, u32 w, u32 h)
{
struct dum_ch_setup k;
int ret;
/* keep width & height within display area */
if ((xpos + w) > DISP_MAX_X_SIZE)
w = DISP_MAX_X_SIZE - xpos;
if ((ypos + h) > DISP_MAX_Y_SIZE)
h = DISP_MAX_Y_SIZE - ypos;
/* assume 1 display only */
k.disp_no = 0;
k.xmin = xpos;
k.ymin = ypos;
k.xmax = xpos + (w - 1);
k.ymax = ypos + (h - 1);
/* adjust min and max values if necessary */
if (k.xmin > DISP_MAX_X_SIZE - 1)
k.xmin = DISP_MAX_X_SIZE - 1;
if (k.ymin > DISP_MAX_Y_SIZE - 1)
k.ymin = DISP_MAX_Y_SIZE - 1;
if (k.xmax > DISP_MAX_X_SIZE - 1)
k.xmax = DISP_MAX_X_SIZE - 1;
if (k.ymax > DISP_MAX_Y_SIZE - 1)
k.ymax = DISP_MAX_Y_SIZE - 1;
k.xmirror = 0;
k.ymirror = 0;
k.rotate = 0;
k.minadr = (u32) frame_buffer;
k.maxadr = (u32) frame_buffer + (((w - 1) << 10) | ((h << 2) - 2));
k.pad = PAD_1024;
k.dirtybuffer = (u32) dirty_buffer;
k.format = RGB888;
k.hwdirty = 0;
k.slave_trans = 0;
ret = dum_ch_setup(ch_no, &k);
return ret;
}
static void lcd_reset(void)
{
u32 *dum_pio_base = (u32 *)IO_ADDRESS(PNX4008_PIO_BASE);
udelay(1);
iowrite32(BIT(19), &dum_pio_base[2]);
udelay(1);
iowrite32(BIT(19), &dum_pio_base[1]);
udelay(1);
}
static int dum_init(struct platform_device *pdev)
{
struct clk *clk;
/* enable DUM clock */
clk = clk_get(&pdev->dev, "dum_ck");
if (IS_ERR(clk)) {
printk(KERN_ERR "pnx4008_dum: Unable to access DUM clock\n");
return PTR_ERR(clk);
}
clk_set_rate(clk, 1);
clk_put(clk);
DUM_CTRL = V_DUM_RESET;
/* set priority to "round-robin". All other params to "false" */
DUM_CONF = BIT(9);
/* Display 1 */
DUM_WTCFG1 = PNX4008_DUM_WT_CFG;
DUM_RTCFG1 = PNX4008_DUM_RT_CFG;
DUM_TCFG = PNX4008_DUM_T_CFG;
return 0;
}
static void dum_chan_init(void)
{
int i = 0, ch = 0;
u32 *cmdptrs;
u32 *cmdstrings;
DUM_COM_BASE =
CMDSTRING_BASEADDR + BYTES_PER_CMDSTRING * NR_OF_CMDSTRINGS;
if ((cmdptrs =
(u32 *) ioremap_nocache(DUM_COM_BASE,
sizeof(u32) * NR_OF_CMDSTRINGS)) == NULL)
return;
for (ch = 0; ch < NR_OF_CMDSTRINGS; ch++)
iowrite32(CMDSTRING_BASEADDR + BYTES_PER_CMDSTRING * ch,
cmdptrs + ch);
for (ch = 0; ch < MAX_DUM_CHANNELS; ch++)
clear_channel(ch);
/* Clear the cmdstrings */
cmdstrings =
(u32 *)ioremap_nocache(*cmdptrs,
BYTES_PER_CMDSTRING * NR_OF_CMDSTRINGS);
if (!cmdstrings)
goto out;
for (i = 0; i < NR_OF_CMDSTRINGS * BYTES_PER_CMDSTRING / sizeof(u32);
i++)
iowrite32(0, cmdstrings + i);
iounmap((u32 *)cmdstrings);
out:
iounmap((u32 *)cmdptrs);
}
static void lcd_init(void)
{
lcd_reset();
DUM_OUTP_FORMAT1 = 0; /* RGB666 */
udelay(1);
iowrite32(V_LCD_STANDBY_OFF, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_USE_9BIT_BUS, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_SYNC_RISE_L, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_SYNC_RISE_H, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_SYNC_FALL_L, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_SYNC_FALL_H, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_SYNC_ENABLE, dum_data.slave_virt_base);
udelay(1);
iowrite32(V_LCD_DISPLAY_ON, dum_data.slave_virt_base);
udelay(1);
}
/* Interface exported to framebuffer drivers */
int pnx4008_get_fb_addresses(int fb_type, void **virt_addr,
dma_addr_t *phys_addr, int *fb_length)
{
int i;
int ret = -1;
for (i = 0; i < ARRAY_SIZE(fb_addr); i++)
if (fb_addr[i].fb_type == fb_type) {
*virt_addr = (void *)(dum_data.lcd_virt_start +
fb_addr[i].addr_offset);
*phys_addr =
dum_data.lcd_phys_start + fb_addr[i].addr_offset;
*fb_length = fb_addr[i].fb_length;
ret = 0;
break;
}
return ret;
}
EXPORT_SYMBOL(pnx4008_get_fb_addresses);
int pnx4008_alloc_dum_channel(int dev_id)
{
int i = 0;
while ((i < MAX_DUM_CHANNELS) && (dum_data.fb_owning_channel[i] != -1))
i++;
if (i == MAX_DUM_CHANNELS)
return -ENORESOURCESLEFT;
else {
dum_data.fb_owning_channel[i] = dev_id;
return i;
}
}
EXPORT_SYMBOL(pnx4008_alloc_dum_channel);
int pnx4008_free_dum_channel(int channr, int dev_id)
{
if (channr < 0 || channr > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[channr] != dev_id)
return -EFBNOTOWNER;
else {
clear_channel(channr);
dum_data.fb_owning_channel[channr] = -1;
}
return 0;
}
EXPORT_SYMBOL(pnx4008_free_dum_channel);
int pnx4008_put_dum_channel_uf(struct dumchannel_uf chan_uf, int dev_id)
{
int i = chan_uf.channelnr;
int ret;
if (i < 0 || i > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[i] != dev_id)
return -EFBNOTOWNER;
else if ((ret =
display_open(chan_uf.channelnr, 0, chan_uf.dirty,
chan_uf.source, chan_uf.y_offset,
chan_uf.x_offset, chan_uf.height,
chan_uf.width)) != 0)
return ret;
else {
dum_data.chan_uf_store[i].dirty = chan_uf.dirty;
dum_data.chan_uf_store[i].source = chan_uf.source;
dum_data.chan_uf_store[i].x_offset = chan_uf.x_offset;
dum_data.chan_uf_store[i].y_offset = chan_uf.y_offset;
dum_data.chan_uf_store[i].width = chan_uf.width;
dum_data.chan_uf_store[i].height = chan_uf.height;
}
return 0;
}
EXPORT_SYMBOL(pnx4008_put_dum_channel_uf);
int pnx4008_set_dum_channel_sync(int channr, int val, int dev_id)
{
if (channr < 0 || channr > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[channr] != dev_id)
return -EFBNOTOWNER;
else {
if (val == CONF_SYNC_ON) {
DUM_CH_CONF(channr) |= CONF_SYNCENABLE;
DUM_CH_CONF(channr) |= DUM_CHANNEL_CFG_SYNC_MASK |
DUM_CHANNEL_CFG_SYNC_MASK_SET;
} else if (val == CONF_SYNC_OFF)
DUM_CH_CONF(channr) &= ~CONF_SYNCENABLE;
else
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(pnx4008_set_dum_channel_sync);
int pnx4008_set_dum_channel_dirty_detect(int channr, int val, int dev_id)
{
if (channr < 0 || channr > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[channr] != dev_id)
return -EFBNOTOWNER;
else {
if (val == CONF_DIRTYDETECTION_ON)
DUM_CH_CONF(channr) |= CONF_DIRTYENABLE;
else if (val == CONF_DIRTYDETECTION_OFF)
DUM_CH_CONF(channr) &= ~CONF_DIRTYENABLE;
else
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(pnx4008_set_dum_channel_dirty_detect);
#if 0 /* Functions not used currently, but likely to be used in future */
static int get_channel(struct dumchannel *p_chan)
{
int i = p_chan->channelnr;
if (i < 0 || i > MAX_DUM_CHANNELS)
return -EINVAL;
else {
p_chan->dum_ch_min = DUM_CH_MIN(i);
p_chan->dum_ch_max = DUM_CH_MAX(i);
p_chan->dum_ch_conf = DUM_CH_CONF(i);
p_chan->dum_ch_stat = DUM_CH_STAT(i);
p_chan->dum_ch_ctrl = 0; /* WriteOnly control register */
}
return 0;
}
int pnx4008_get_dum_channel_uf(struct dumchannel_uf *p_chan_uf, int dev_id)
{
int i = p_chan_uf->channelnr;
if (i < 0 || i > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[i] != dev_id)
return -EFBNOTOWNER;
else {
p_chan_uf->dirty = dum_data.chan_uf_store[i].dirty;
p_chan_uf->source = dum_data.chan_uf_store[i].source;
p_chan_uf->x_offset = dum_data.chan_uf_store[i].x_offset;
p_chan_uf->y_offset = dum_data.chan_uf_store[i].y_offset;
p_chan_uf->width = dum_data.chan_uf_store[i].width;
p_chan_uf->height = dum_data.chan_uf_store[i].height;
}
return 0;
}
EXPORT_SYMBOL(pnx4008_get_dum_channel_uf);
int pnx4008_get_dum_channel_config(int channr, int dev_id)
{
int ret;
struct dumchannel chan;
if (channr < 0 || channr > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[channr] != dev_id)
return -EFBNOTOWNER;
else {
chan.channelnr = channr;
if ((ret = get_channel(&chan)) != 0)
return ret;
}
return (chan.dum_ch_conf & DUM_CHANNEL_CFG_MASK);
}
EXPORT_SYMBOL(pnx4008_get_dum_channel_config);
int pnx4008_force_update_dum_channel(int channr, int dev_id)
{
if (channr < 0 || channr > MAX_DUM_CHANNELS)
return -EINVAL;
else if (dum_data.fb_owning_channel[channr] != dev_id)
return -EFBNOTOWNER;
else
DUM_CH_CTRL(channr) = CTRL_SETDIRTY;
return 0;
}
EXPORT_SYMBOL(pnx4008_force_update_dum_channel);
#endif
int pnx4008_sdum_mmap(struct fb_info *info, struct vm_area_struct *vma,
struct device *dev)
{
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
if (off < info->fix.smem_len) {
vma->vm_pgoff += 1;
return dma_mmap_writecombine(dev, vma,
(void *)dum_data.lcd_virt_start,
dum_data.lcd_phys_start,
FB_DMA_SIZE);
}
return -EINVAL;
}
EXPORT_SYMBOL(pnx4008_sdum_mmap);
int pnx4008_set_dum_exit_notification(int dev_id)
{
int i;
for (i = 0; i < MAX_DUM_CHANNELS; i++)
if (dum_data.fb_owning_channel[i] == dev_id)
return -ERESOURCESNOTFREED;
return 0;
}
EXPORT_SYMBOL(pnx4008_set_dum_exit_notification);
/* Platform device driver for DUM */
static int sdum_suspend(struct platform_device *pdev, pm_message_t state)
{
int retval = 0;
struct clk *clk;
clk = clk_get(0, "dum_ck");
if (!IS_ERR(clk)) {
clk_set_rate(clk, 0);
clk_put(clk);
} else
retval = PTR_ERR(clk);
/* disable BAC */
DUM_CTRL = V_BAC_DISABLE_IDLE;
/* LCD standby & turn off display */
lcd_reset();
return retval;
}
static int sdum_resume(struct platform_device *pdev)
{
int retval = 0;
struct clk *clk;
clk = clk_get(0, "dum_ck");
if (!IS_ERR(clk)) {
clk_set_rate(clk, 1);
clk_put(clk);
} else
retval = PTR_ERR(clk);
/* wait for BAC disable */
DUM_CTRL = V_BAC_DISABLE_TRIG;
while (DUM_CTRL & BAC_ENABLED)
udelay(10);
/* re-init LCD */
lcd_init();
/* enable BAC and reset MUX */
DUM_CTRL = V_BAC_ENABLE;
udelay(1);
DUM_CTRL = V_MUX_RESET;
return 0;
}
static int __devinit sdum_probe(struct platform_device *pdev)
{
int ret = 0, i = 0;
/* map frame buffer */
dum_data.lcd_virt_start = (u32) dma_alloc_writecombine(&pdev->dev,
FB_DMA_SIZE,
&dum_data.lcd_phys_start,
GFP_KERNEL);
if (!dum_data.lcd_virt_start) {
ret = -ENOMEM;
goto out_3;
}
/* map slave registers */
dum_data.slave_phys_base = PNX4008_DUM_SLAVE_BASE;
dum_data.slave_virt_base =
(u32 *) ioremap_nocache(dum_data.slave_phys_base, sizeof(u32));
if (dum_data.slave_virt_base == NULL) {
ret = -ENOMEM;
goto out_2;
}
/* initialize DUM and LCD display */
ret = dum_init(pdev);
if (ret)
goto out_1;
dum_chan_init();
lcd_init();
DUM_CTRL = V_BAC_ENABLE;
udelay(1);
DUM_CTRL = V_MUX_RESET;
/* set decode address and sync clock divider */
DUM_DECODE = dum_data.lcd_phys_start & DUM_DECODE_MASK;
DUM_CLK_DIV = PNX4008_DUM_CLK_DIV;
for (i = 0; i < MAX_DUM_CHANNELS; i++)
dum_data.fb_owning_channel[i] = -1;
/*setup wakeup interrupt */
start_int_set_rising_edge(SE_DISP_SYNC_INT);
start_int_ack(SE_DISP_SYNC_INT);
start_int_umask(SE_DISP_SYNC_INT);
return 0;
out_1:
iounmap((void *)dum_data.slave_virt_base);
out_2:
dma_free_writecombine(&pdev->dev, FB_DMA_SIZE,
(void *)dum_data.lcd_virt_start,
dum_data.lcd_phys_start);
out_3:
return ret;
}
static int sdum_remove(struct platform_device *pdev)
{
struct clk *clk;
start_int_mask(SE_DISP_SYNC_INT);
clk = clk_get(0, "dum_ck");
if (!IS_ERR(clk)) {
clk_set_rate(clk, 0);
clk_put(clk);
}
iounmap((void *)dum_data.slave_virt_base);
dma_free_writecombine(&pdev->dev, FB_DMA_SIZE,
(void *)dum_data.lcd_virt_start,
dum_data.lcd_phys_start);
return 0;
}
static struct platform_driver sdum_driver = {
.driver = {
.name = "pnx4008-sdum",
},
.probe = sdum_probe,
.remove = sdum_remove,
.suspend = sdum_suspend,
.resume = sdum_resume,
};
int __init sdum_init(void)
{
return platform_driver_register(&sdum_driver);
}
static void __exit sdum_exit(void)
{
platform_driver_unregister(&sdum_driver);
};
module_init(sdum_init);
module_exit(sdum_exit);
MODULE_LICENSE("GPL");