Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/uwb/wlp/eda.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

416 lines
12 KiB
C

/*
* WUSB Wire Adapter: WLP interface
* Ethernet to device address cache
*
* Copyright (C) 2005-2006 Intel Corporation
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
*
* We need to be able to map ethernet addresses to device addresses
* and back because there is not explicit relationship between the eth
* addresses used in the ETH frames and the device addresses (no, it
* would not have been simpler to force as ETH address the MBOA MAC
* address...no, not at all :).
*
* A device has one MBOA MAC address and one device address. It is possible
* for a device to have more than one virtual MAC address (although a
* virtual address can be the same as the MBOA MAC address). The device
* address is guaranteed to be unique among the devices in the extended
* beacon group (see ECMA 17.1.1). We thus use the device address as index
* to this cache. We do allow searching based on virtual address as this
* is how Ethernet frames will be addressed.
*
* We need to support virtual EUI-48. Although, right now the virtual
* EUI-48 will always be the same as the MAC SAP address. The EDA cache
* entry thus contains a MAC SAP address as well as the virtual address
* (used to map the network stack address to a neighbor). When we move
* to support more than one virtual MAC on a host then this organization
* will have to change. Perhaps a neighbor has a list of WSSs, each with a
* tag and virtual EUI-48.
*
* On data transmission
* it is used to determine if the neighbor is connected and what WSS it
* belongs to. With this we know what tag to add to the WLP frame. Storing
* the WSS in the EDA cache may be overkill because we only support one
* WSS. Hopefully we will support more than one WSS at some point.
* On data reception it is used to determine the WSS based on
* the tag and address of the transmitting neighbor.
*/
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/slab.h>
#include <linux/wlp.h>
#include "wlp-internal.h"
/* FIXME: cache is not purged, only on device close */
/* FIXME: does not scale, change to dynamic array */
/*
* Initialize the EDA cache
*
* @returns 0 if ok, < 0 errno code on error
*
* Call when the interface is being brought up
*
* NOTE: Keep it as a separate function as the implementation will
* change and be more complex.
*/
void wlp_eda_init(struct wlp_eda *eda)
{
INIT_LIST_HEAD(&eda->cache);
spin_lock_init(&eda->lock);
}
/*
* Release the EDA cache
*
* @returns 0 if ok, < 0 errno code on error
*
* Called when the interface is brought down
*/
void wlp_eda_release(struct wlp_eda *eda)
{
unsigned long flags;
struct wlp_eda_node *itr, *next;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry_safe(itr, next, &eda->cache, list_node) {
list_del(&itr->list_node);
kfree(itr);
}
spin_unlock_irqrestore(&eda->lock, flags);
}
/*
* Add an address mapping
*
* @returns 0 if ok, < 0 errno code on error
*
* An address mapping is initially created when the neighbor device is seen
* for the first time (it is "onair"). At this time the neighbor is not
* connected or associated with a WSS so we only populate the Ethernet and
* Device address fields.
*
*/
int wlp_eda_create_node(struct wlp_eda *eda,
const unsigned char eth_addr[ETH_ALEN],
const struct uwb_dev_addr *dev_addr)
{
int result = 0;
struct wlp_eda_node *itr;
unsigned long flags;
BUG_ON(dev_addr == NULL || eth_addr == NULL);
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(itr, &eda->cache, list_node) {
if (!memcmp(&itr->dev_addr, dev_addr, sizeof(itr->dev_addr))) {
printk(KERN_ERR "EDA cache already contains entry "
"for neighbor %02x:%02x\n",
dev_addr->data[1], dev_addr->data[0]);
result = -EEXIST;
goto out_unlock;
}
}
itr = kzalloc(sizeof(*itr), GFP_ATOMIC);
if (itr != NULL) {
memcpy(itr->eth_addr, eth_addr, sizeof(itr->eth_addr));
itr->dev_addr = *dev_addr;
list_add(&itr->list_node, &eda->cache);
} else
result = -ENOMEM;
out_unlock:
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
/*
* Remove entry from EDA cache
*
* This is done when the device goes off air.
*/
void wlp_eda_rm_node(struct wlp_eda *eda, const struct uwb_dev_addr *dev_addr)
{
struct wlp_eda_node *itr, *next;
unsigned long flags;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry_safe(itr, next, &eda->cache, list_node) {
if (!memcmp(&itr->dev_addr, dev_addr, sizeof(itr->dev_addr))) {
list_del(&itr->list_node);
kfree(itr);
break;
}
}
spin_unlock_irqrestore(&eda->lock, flags);
}
/*
* Update an address mapping
*
* @returns 0 if ok, < 0 errno code on error
*/
int wlp_eda_update_node(struct wlp_eda *eda,
const struct uwb_dev_addr *dev_addr,
struct wlp_wss *wss,
const unsigned char virt_addr[ETH_ALEN],
const u8 tag, const enum wlp_wss_connect state)
{
int result = -ENOENT;
struct wlp_eda_node *itr;
unsigned long flags;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(itr, &eda->cache, list_node) {
if (!memcmp(&itr->dev_addr, dev_addr, sizeof(itr->dev_addr))) {
/* Found it, update it */
itr->wss = wss;
memcpy(itr->virt_addr, virt_addr,
sizeof(itr->virt_addr));
itr->tag = tag;
itr->state = state;
result = 0;
goto out_unlock;
}
}
/* Not found */
out_unlock:
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
/*
* Update only state field of an address mapping
*
* @returns 0 if ok, < 0 errno code on error
*/
int wlp_eda_update_node_state(struct wlp_eda *eda,
const struct uwb_dev_addr *dev_addr,
const enum wlp_wss_connect state)
{
int result = -ENOENT;
struct wlp_eda_node *itr;
unsigned long flags;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(itr, &eda->cache, list_node) {
if (!memcmp(&itr->dev_addr, dev_addr, sizeof(itr->dev_addr))) {
/* Found it, update it */
itr->state = state;
result = 0;
goto out_unlock;
}
}
/* Not found */
out_unlock:
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
/*
* Return contents of EDA cache entry
*
* @dev_addr: index to EDA cache
* @eda_entry: pointer to where contents of EDA cache will be copied
*/
int wlp_copy_eda_node(struct wlp_eda *eda, struct uwb_dev_addr *dev_addr,
struct wlp_eda_node *eda_entry)
{
int result = -ENOENT;
struct wlp_eda_node *itr;
unsigned long flags;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(itr, &eda->cache, list_node) {
if (!memcmp(&itr->dev_addr, dev_addr, sizeof(itr->dev_addr))) {
*eda_entry = *itr;
result = 0;
goto out_unlock;
}
}
/* Not found */
out_unlock:
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
/*
* Execute function for every element in the cache
*
* @function: function to execute on element of cache (must be atomic)
* @priv: private data of function
* @returns: result of first function that failed, or last function
* executed if no function failed.
*
* Stop executing when function returns error for any element in cache.
*
* IMPORTANT: We are using a spinlock here: the function executed on each
* element has to be atomic.
*/
int wlp_eda_for_each(struct wlp_eda *eda, wlp_eda_for_each_f function,
void *priv)
{
int result = 0;
struct wlp *wlp = container_of(eda, struct wlp, eda);
struct wlp_eda_node *entry;
unsigned long flags;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(entry, &eda->cache, list_node) {
result = (*function)(wlp, entry, priv);
if (result < 0)
break;
}
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
/*
* Execute function for single element in the cache (return dev addr)
*
* @virt_addr: index into EDA cache used to determine which element to
* execute the function on
* @dev_addr: device address of element in cache will be returned using
* @dev_addr
* @function: function to execute on element of cache (must be atomic)
* @priv: private data of function
* @returns: result of function
*
* IMPORTANT: We are using a spinlock here: the function executed on the
* element has to be atomic.
*/
int wlp_eda_for_virtual(struct wlp_eda *eda,
const unsigned char virt_addr[ETH_ALEN],
struct uwb_dev_addr *dev_addr,
wlp_eda_for_each_f function,
void *priv)
{
int result = 0;
struct wlp *wlp = container_of(eda, struct wlp, eda);
struct wlp_eda_node *itr;
unsigned long flags;
int found = 0;
spin_lock_irqsave(&eda->lock, flags);
list_for_each_entry(itr, &eda->cache, list_node) {
if (!memcmp(itr->virt_addr, virt_addr,
sizeof(itr->virt_addr))) {
result = (*function)(wlp, itr, priv);
*dev_addr = itr->dev_addr;
found = 1;
break;
}
}
if (!found)
result = -ENODEV;
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
static const char *__wlp_wss_connect_state[] = { "WLP_WSS_UNCONNECTED",
"WLP_WSS_CONNECTED",
"WLP_WSS_CONNECT_FAILED",
};
static const char *wlp_wss_connect_state_str(unsigned id)
{
if (id >= ARRAY_SIZE(__wlp_wss_connect_state))
return "unknown WSS connection state";
return __wlp_wss_connect_state[id];
}
/*
* View EDA cache from user space
*
* A debugging feature to give user visibility into the EDA cache. Also
* used to display members of WSS to user (called from wlp_wss_members_show())
*/
ssize_t wlp_eda_show(struct wlp *wlp, char *buf)
{
ssize_t result = 0;
struct wlp_eda_node *entry;
unsigned long flags;
struct wlp_eda *eda = &wlp->eda;
spin_lock_irqsave(&eda->lock, flags);
result = scnprintf(buf, PAGE_SIZE, "#eth_addr dev_addr wss_ptr "
"tag state virt_addr\n");
list_for_each_entry(entry, &eda->cache, list_node) {
result += scnprintf(buf + result, PAGE_SIZE - result,
"%pM %02x:%02x %p 0x%02x %s %pM\n",
entry->eth_addr,
entry->dev_addr.data[1],
entry->dev_addr.data[0], entry->wss,
entry->tag,
wlp_wss_connect_state_str(entry->state),
entry->virt_addr);
if (result >= PAGE_SIZE)
break;
}
spin_unlock_irqrestore(&eda->lock, flags);
return result;
}
EXPORT_SYMBOL_GPL(wlp_eda_show);
/*
* Add new EDA cache entry based on user input in sysfs
*
* Should only be used for debugging.
*
* The WSS is assumed to be the only WSS supported. This needs to be
* redesigned when we support more than one WSS.
*/
ssize_t wlp_eda_store(struct wlp *wlp, const char *buf, size_t size)
{
ssize_t result;
struct wlp_eda *eda = &wlp->eda;
u8 eth_addr[6];
struct uwb_dev_addr dev_addr;
u8 tag;
unsigned state;
result = sscanf(buf, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx "
"%02hhx:%02hhx %02hhx %u\n",
&eth_addr[0], &eth_addr[1],
&eth_addr[2], &eth_addr[3],
&eth_addr[4], &eth_addr[5],
&dev_addr.data[1], &dev_addr.data[0], &tag, &state);
switch (result) {
case 6: /* no dev addr specified -- remove entry NOT IMPLEMENTED */
/*result = wlp_eda_rm(eda, eth_addr, &dev_addr);*/
result = -ENOSYS;
break;
case 10:
state = state >= 1 ? 1 : 0;
result = wlp_eda_create_node(eda, eth_addr, &dev_addr);
if (result < 0 && result != -EEXIST)
goto error;
/* Set virtual addr to be same as MAC */
result = wlp_eda_update_node(eda, &dev_addr, &wlp->wss,
eth_addr, tag, state);
if (result < 0)
goto error;
break;
default: /* bad format */
result = -EINVAL;
}
error:
return result < 0 ? result : size;
}
EXPORT_SYMBOL_GPL(wlp_eda_store);