Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/dma/iop-adma.c
Dan Williams a06d568f7c async_xor: dma_map destination DMA_BIDIRECTIONAL
Mapping the destination multiple times is a misuse of the dma-api.
Since the destination may be reused as a source, ensure that it is only
mapped once and that it is mapped bidirectionally.  This appears to add
ugliness on the unmap side in that it always reads back the destination
address from the descriptor, but gcc can determine that dma_unmap is a
nop and not emit the code that calculates its arguments.

Cc: <stable@kernel.org>
Cc: Saeed Bishara <saeed@marvell.com>
Acked-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-12-08 13:46:00 -07:00

1449 lines
40 KiB
C

/*
* offload engine driver for the Intel Xscale series of i/o processors
* Copyright © 2006, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
/*
* This driver supports the asynchrounous DMA copy and RAID engines available
* on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/async_tx.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/memory.h>
#include <linux/ioport.h>
#include <mach/adma.h>
#define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
#define to_iop_adma_device(dev) \
container_of(dev, struct iop_adma_device, common)
#define tx_to_iop_adma_slot(tx) \
container_of(tx, struct iop_adma_desc_slot, async_tx)
/**
* iop_adma_free_slots - flags descriptor slots for reuse
* @slot: Slot to free
* Caller must hold &iop_chan->lock while calling this function
*/
static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
{
int stride = slot->slots_per_op;
while (stride--) {
slot->slots_per_op = 0;
slot = list_entry(slot->slot_node.next,
struct iop_adma_desc_slot,
slot_node);
}
}
static dma_cookie_t
iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
{
BUG_ON(desc->async_tx.cookie < 0);
if (desc->async_tx.cookie > 0) {
cookie = desc->async_tx.cookie;
desc->async_tx.cookie = 0;
/* call the callback (must not sleep or submit new
* operations to this channel)
*/
if (desc->async_tx.callback)
desc->async_tx.callback(
desc->async_tx.callback_param);
/* unmap dma addresses
* (unmap_single vs unmap_page?)
*/
if (desc->group_head && desc->unmap_len) {
struct iop_adma_desc_slot *unmap = desc->group_head;
struct device *dev =
&iop_chan->device->pdev->dev;
u32 len = unmap->unmap_len;
enum dma_ctrl_flags flags = desc->async_tx.flags;
u32 src_cnt;
dma_addr_t addr;
dma_addr_t dest;
src_cnt = unmap->unmap_src_cnt;
dest = iop_desc_get_dest_addr(unmap, iop_chan);
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
enum dma_data_direction dir;
if (src_cnt > 1) /* is xor? */
dir = DMA_BIDIRECTIONAL;
else
dir = DMA_FROM_DEVICE;
dma_unmap_page(dev, dest, len, dir);
}
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
while (src_cnt--) {
addr = iop_desc_get_src_addr(unmap,
iop_chan,
src_cnt);
if (addr == dest)
continue;
dma_unmap_page(dev, addr, len,
DMA_TO_DEVICE);
}
}
desc->group_head = NULL;
}
}
/* run dependent operations */
async_tx_run_dependencies(&desc->async_tx);
return cookie;
}
static int
iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *iop_chan)
{
/* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->async_tx))
return 0;
/* leave the last descriptor in the chain
* so we can append to it
*/
if (desc->chain_node.next == &iop_chan->chain)
return 1;
dev_dbg(iop_chan->device->common.dev,
"\tfree slot: %d slots_per_op: %d\n",
desc->idx, desc->slots_per_op);
list_del(&desc->chain_node);
iop_adma_free_slots(desc);
return 0;
}
static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
dma_cookie_t cookie = 0;
u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
int busy = iop_chan_is_busy(iop_chan);
int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
/* free completed slots from the chain starting with
* the oldest descriptor
*/
list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
chain_node) {
pr_debug("\tcookie: %d slot: %d busy: %d "
"this_desc: %#x next_desc: %#x ack: %d\n",
iter->async_tx.cookie, iter->idx, busy,
iter->async_tx.phys, iop_desc_get_next_desc(iter),
async_tx_test_ack(&iter->async_tx));
prefetch(_iter);
prefetch(&_iter->async_tx);
/* do not advance past the current descriptor loaded into the
* hardware channel, subsequent descriptors are either in
* process or have not been submitted
*/
if (seen_current)
break;
/* stop the search if we reach the current descriptor and the
* channel is busy, or if it appears that the current descriptor
* needs to be re-read (i.e. has been appended to)
*/
if (iter->async_tx.phys == current_desc) {
BUG_ON(seen_current++);
if (busy || iop_desc_get_next_desc(iter))
break;
}
/* detect the start of a group transaction */
if (!slot_cnt && !slots_per_op) {
slot_cnt = iter->slot_cnt;
slots_per_op = iter->slots_per_op;
if (slot_cnt <= slots_per_op) {
slot_cnt = 0;
slots_per_op = 0;
}
}
if (slot_cnt) {
pr_debug("\tgroup++\n");
if (!grp_start)
grp_start = iter;
slot_cnt -= slots_per_op;
}
/* all the members of a group are complete */
if (slots_per_op != 0 && slot_cnt == 0) {
struct iop_adma_desc_slot *grp_iter, *_grp_iter;
int end_of_chain = 0;
pr_debug("\tgroup end\n");
/* collect the total results */
if (grp_start->xor_check_result) {
u32 zero_sum_result = 0;
slot_cnt = grp_start->slot_cnt;
grp_iter = grp_start;
list_for_each_entry_from(grp_iter,
&iop_chan->chain, chain_node) {
zero_sum_result |=
iop_desc_get_zero_result(grp_iter);
pr_debug("\titer%d result: %d\n",
grp_iter->idx, zero_sum_result);
slot_cnt -= slots_per_op;
if (slot_cnt == 0)
break;
}
pr_debug("\tgrp_start->xor_check_result: %p\n",
grp_start->xor_check_result);
*grp_start->xor_check_result = zero_sum_result;
}
/* clean up the group */
slot_cnt = grp_start->slot_cnt;
grp_iter = grp_start;
list_for_each_entry_safe_from(grp_iter, _grp_iter,
&iop_chan->chain, chain_node) {
cookie = iop_adma_run_tx_complete_actions(
grp_iter, iop_chan, cookie);
slot_cnt -= slots_per_op;
end_of_chain = iop_adma_clean_slot(grp_iter,
iop_chan);
if (slot_cnt == 0 || end_of_chain)
break;
}
/* the group should be complete at this point */
BUG_ON(slot_cnt);
slots_per_op = 0;
grp_start = NULL;
if (end_of_chain)
break;
else
continue;
} else if (slots_per_op) /* wait for group completion */
continue;
/* write back zero sum results (single descriptor case) */
if (iter->xor_check_result && iter->async_tx.cookie)
*iter->xor_check_result =
iop_desc_get_zero_result(iter);
cookie = iop_adma_run_tx_complete_actions(
iter, iop_chan, cookie);
if (iop_adma_clean_slot(iter, iop_chan))
break;
}
BUG_ON(!seen_current);
if (cookie > 0) {
iop_chan->completed_cookie = cookie;
pr_debug("\tcompleted cookie %d\n", cookie);
}
}
static void
iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
{
spin_lock_bh(&iop_chan->lock);
__iop_adma_slot_cleanup(iop_chan);
spin_unlock_bh(&iop_chan->lock);
}
static void iop_adma_tasklet(unsigned long data)
{
struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
spin_lock(&iop_chan->lock);
__iop_adma_slot_cleanup(iop_chan);
spin_unlock(&iop_chan->lock);
}
static struct iop_adma_desc_slot *
iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
int slots_per_op)
{
struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
LIST_HEAD(chain);
int slots_found, retry = 0;
/* start search from the last allocated descrtiptor
* if a contiguous allocation can not be found start searching
* from the beginning of the list
*/
retry:
slots_found = 0;
if (retry == 0)
iter = iop_chan->last_used;
else
iter = list_entry(&iop_chan->all_slots,
struct iop_adma_desc_slot,
slot_node);
list_for_each_entry_safe_continue(
iter, _iter, &iop_chan->all_slots, slot_node) {
prefetch(_iter);
prefetch(&_iter->async_tx);
if (iter->slots_per_op) {
/* give up after finding the first busy slot
* on the second pass through the list
*/
if (retry)
break;
slots_found = 0;
continue;
}
/* start the allocation if the slot is correctly aligned */
if (!slots_found++) {
if (iop_desc_is_aligned(iter, slots_per_op))
alloc_start = iter;
else {
slots_found = 0;
continue;
}
}
if (slots_found == num_slots) {
struct iop_adma_desc_slot *alloc_tail = NULL;
struct iop_adma_desc_slot *last_used = NULL;
iter = alloc_start;
while (num_slots) {
int i;
dev_dbg(iop_chan->device->common.dev,
"allocated slot: %d "
"(desc %p phys: %#x) slots_per_op %d\n",
iter->idx, iter->hw_desc,
iter->async_tx.phys, slots_per_op);
/* pre-ack all but the last descriptor */
if (num_slots != slots_per_op)
async_tx_ack(&iter->async_tx);
list_add_tail(&iter->chain_node, &chain);
alloc_tail = iter;
iter->async_tx.cookie = 0;
iter->slot_cnt = num_slots;
iter->xor_check_result = NULL;
for (i = 0; i < slots_per_op; i++) {
iter->slots_per_op = slots_per_op - i;
last_used = iter;
iter = list_entry(iter->slot_node.next,
struct iop_adma_desc_slot,
slot_node);
}
num_slots -= slots_per_op;
}
alloc_tail->group_head = alloc_start;
alloc_tail->async_tx.cookie = -EBUSY;
list_splice(&chain, &alloc_tail->async_tx.tx_list);
iop_chan->last_used = last_used;
iop_desc_clear_next_desc(alloc_start);
iop_desc_clear_next_desc(alloc_tail);
return alloc_tail;
}
}
if (!retry++)
goto retry;
/* perform direct reclaim if the allocation fails */
__iop_adma_slot_cleanup(iop_chan);
return NULL;
}
static dma_cookie_t
iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
struct iop_adma_desc_slot *desc)
{
dma_cookie_t cookie = iop_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
iop_chan->common.cookie = desc->async_tx.cookie = cookie;
return cookie;
}
static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
{
dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
iop_chan->pending);
if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
iop_chan->pending = 0;
iop_chan_append(iop_chan);
}
}
static dma_cookie_t
iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
struct iop_adma_desc_slot *grp_start, *old_chain_tail;
int slot_cnt;
int slots_per_op;
dma_cookie_t cookie;
dma_addr_t next_dma;
grp_start = sw_desc->group_head;
slot_cnt = grp_start->slot_cnt;
slots_per_op = grp_start->slots_per_op;
spin_lock_bh(&iop_chan->lock);
cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
old_chain_tail = list_entry(iop_chan->chain.prev,
struct iop_adma_desc_slot, chain_node);
list_splice_init(&sw_desc->async_tx.tx_list,
&old_chain_tail->chain_node);
/* fix up the hardware chain */
next_dma = grp_start->async_tx.phys;
iop_desc_set_next_desc(old_chain_tail, next_dma);
BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
/* check for pre-chained descriptors */
iop_paranoia(iop_desc_get_next_desc(sw_desc));
/* increment the pending count by the number of slots
* memcpy operations have a 1:1 (slot:operation) relation
* other operations are heavier and will pop the threshold
* more often.
*/
iop_chan->pending += slot_cnt;
iop_adma_check_threshold(iop_chan);
spin_unlock_bh(&iop_chan->lock);
dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
__func__, sw_desc->async_tx.cookie, sw_desc->idx);
return cookie;
}
static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
/**
* iop_adma_alloc_chan_resources - returns the number of allocated descriptors
* @chan - allocate descriptor resources for this channel
* @client - current client requesting the channel be ready for requests
*
* Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
* avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
* greater than 2x the number slots needed to satisfy a device->max_xor
* request.
* */
static int iop_adma_alloc_chan_resources(struct dma_chan *chan,
struct dma_client *client)
{
char *hw_desc;
int idx;
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *slot = NULL;
int init = iop_chan->slots_allocated ? 0 : 1;
struct iop_adma_platform_data *plat_data =
iop_chan->device->pdev->dev.platform_data;
int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
/* Allocate descriptor slots */
do {
idx = iop_chan->slots_allocated;
if (idx == num_descs_in_pool)
break;
slot = kzalloc(sizeof(*slot), GFP_KERNEL);
if (!slot) {
printk(KERN_INFO "IOP ADMA Channel only initialized"
" %d descriptor slots", idx);
break;
}
hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
dma_async_tx_descriptor_init(&slot->async_tx, chan);
slot->async_tx.tx_submit = iop_adma_tx_submit;
INIT_LIST_HEAD(&slot->chain_node);
INIT_LIST_HEAD(&slot->slot_node);
INIT_LIST_HEAD(&slot->async_tx.tx_list);
hw_desc = (char *) iop_chan->device->dma_desc_pool;
slot->async_tx.phys =
(dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
slot->idx = idx;
spin_lock_bh(&iop_chan->lock);
iop_chan->slots_allocated++;
list_add_tail(&slot->slot_node, &iop_chan->all_slots);
spin_unlock_bh(&iop_chan->lock);
} while (iop_chan->slots_allocated < num_descs_in_pool);
if (idx && !iop_chan->last_used)
iop_chan->last_used = list_entry(iop_chan->all_slots.next,
struct iop_adma_desc_slot,
slot_node);
dev_dbg(iop_chan->device->common.dev,
"allocated %d descriptor slots last_used: %p\n",
iop_chan->slots_allocated, iop_chan->last_used);
/* initialize the channel and the chain with a null operation */
if (init) {
if (dma_has_cap(DMA_MEMCPY,
iop_chan->device->common.cap_mask))
iop_chan_start_null_memcpy(iop_chan);
else if (dma_has_cap(DMA_XOR,
iop_chan->device->common.cap_mask))
iop_chan_start_null_xor(iop_chan);
else
BUG();
}
return (idx > 0) ? idx : -ENOMEM;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_interrupt(grp_start, iop_chan);
grp_start->unmap_len = 0;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
__func__, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_memcpy(grp_start, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
iop_desc_set_memcpy_src_addr(grp_start, dma_src);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
int value, size_t len, unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
__func__, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_memset(grp_start, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_block_fill_val(grp_start, value);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
sw_desc->unmap_src_cnt = 1;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
dev_dbg(iop_chan->device->common.dev,
"%s src_cnt: %d len: %u flags: %lx\n",
__func__, src_cnt, len, flags);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_xor(grp_start, src_cnt, flags);
iop_desc_set_byte_count(grp_start, iop_chan, len);
iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
while (src_cnt--)
iop_desc_set_xor_src_addr(grp_start, src_cnt,
dma_src[src_cnt]);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static struct dma_async_tx_descriptor *
iop_adma_prep_dma_zero_sum(struct dma_chan *chan, dma_addr_t *dma_src,
unsigned int src_cnt, size_t len, u32 *result,
unsigned long flags)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *sw_desc, *grp_start;
int slot_cnt, slots_per_op;
if (unlikely(!len))
return NULL;
dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
__func__, src_cnt, len);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
iop_desc_init_zero_sum(grp_start, src_cnt, flags);
iop_desc_set_zero_sum_byte_count(grp_start, len);
grp_start->xor_check_result = result;
pr_debug("\t%s: grp_start->xor_check_result: %p\n",
__func__, grp_start->xor_check_result);
sw_desc->unmap_src_cnt = src_cnt;
sw_desc->unmap_len = len;
sw_desc->async_tx.flags = flags;
while (src_cnt--)
iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
dma_src[src_cnt]);
}
spin_unlock_bh(&iop_chan->lock);
return sw_desc ? &sw_desc->async_tx : NULL;
}
static void iop_adma_free_chan_resources(struct dma_chan *chan)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
struct iop_adma_desc_slot *iter, *_iter;
int in_use_descs = 0;
iop_adma_slot_cleanup(iop_chan);
spin_lock_bh(&iop_chan->lock);
list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
chain_node) {
in_use_descs++;
list_del(&iter->chain_node);
}
list_for_each_entry_safe_reverse(
iter, _iter, &iop_chan->all_slots, slot_node) {
list_del(&iter->slot_node);
kfree(iter);
iop_chan->slots_allocated--;
}
iop_chan->last_used = NULL;
dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
__func__, iop_chan->slots_allocated);
spin_unlock_bh(&iop_chan->lock);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
in_use_descs - 1);
}
/**
* iop_adma_is_complete - poll the status of an ADMA transaction
* @chan: ADMA channel handle
* @cookie: ADMA transaction identifier
*/
static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = iop_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS)
return ret;
iop_adma_slot_cleanup(iop_chan);
last_used = chan->cookie;
last_complete = iop_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static irqreturn_t iop_adma_eot_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
dev_dbg(chan->device->common.dev, "%s\n", __func__);
tasklet_schedule(&chan->irq_tasklet);
iop_adma_device_clear_eot_status(chan);
return IRQ_HANDLED;
}
static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
dev_dbg(chan->device->common.dev, "%s\n", __func__);
tasklet_schedule(&chan->irq_tasklet);
iop_adma_device_clear_eoc_status(chan);
return IRQ_HANDLED;
}
static irqreturn_t iop_adma_err_handler(int irq, void *data)
{
struct iop_adma_chan *chan = data;
unsigned long status = iop_chan_get_status(chan);
dev_printk(KERN_ERR, chan->device->common.dev,
"error ( %s%s%s%s%s%s%s)\n",
iop_is_err_int_parity(status, chan) ? "int_parity " : "",
iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
iop_is_err_split_tx(status, chan) ? "split_tx " : "");
iop_adma_device_clear_err_status(chan);
BUG();
return IRQ_HANDLED;
}
static void iop_adma_issue_pending(struct dma_chan *chan)
{
struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
if (iop_chan->pending) {
iop_chan->pending = 0;
iop_chan_append(iop_chan);
}
}
/*
* Perform a transaction to verify the HW works.
*/
#define IOP_ADMA_TEST_SIZE 2000
static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
{
int i;
void *src, *dest;
dma_addr_t src_dma, dest_dma;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
struct dma_async_tx_descriptor *tx;
int err = 0;
struct iop_adma_chan *iop_chan;
dev_dbg(device->common.dev, "%s\n", __func__);
src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
((u8 *) src)[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) {
err = -ENODEV;
goto out;
}
dest_dma = dma_map_single(dma_chan->device->dev, dest,
IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
src_dma = dma_map_single(dma_chan->device->dev, src,
IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
IOP_ADMA_TEST_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(1);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
iop_chan = to_iop_adma_chan(dma_chan);
dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
iop_adma_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
#define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
static int __devinit
iop_adma_xor_zero_sum_self_test(struct iop_adma_device *device)
{
int i, src_idx;
struct page *dest;
struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
dma_addr_t dma_addr, dest_dma;
struct dma_async_tx_descriptor *tx;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
u8 cmp_byte = 0;
u32 cmp_word;
u32 zero_sum_result;
int err = 0;
struct iop_adma_chan *iop_chan;
dev_dbg(device->common.dev, "%s\n", __func__);
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
if (!xor_srcs[src_idx])
while (src_idx--) {
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
}
dest = alloc_page(GFP_KERNEL);
if (!dest)
while (src_idx--) {
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
/* Fill in src buffers */
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
u8 *ptr = page_address(xor_srcs[src_idx]);
for (i = 0; i < PAGE_SIZE; i++)
ptr[i] = (1 << src_idx);
}
for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
cmp_byte ^= (u8) (1 << src_idx);
cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
(cmp_byte << 8) | cmp_byte;
memset(page_address(dest), 0, PAGE_SIZE);
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (iop_adma_alloc_chan_resources(dma_chan, NULL) < 1) {
err = -ENODEV;
goto out;
}
/* test xor */
dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
0, PAGE_SIZE, DMA_TO_DEVICE);
tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
iop_chan = to_iop_adma_chan(dma_chan);
dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
u32 *ptr = page_address(dest);
if (ptr[i] != cmp_word) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test xor failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
}
dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
PAGE_SIZE, DMA_TO_DEVICE);
/* skip zero sum if the capability is not present */
if (!dma_has_cap(DMA_ZERO_SUM, dma_chan->device->cap_mask))
goto free_resources;
/* zero sum the sources with the destintation page */
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
zero_sum_srcs[i] = xor_srcs[i];
zero_sum_srcs[i] = dest;
zero_sum_result = 1;
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev,
zero_sum_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs,
IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
&zero_sum_result,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test zero sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != 0) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test zero sum failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
/* test memset */
dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test memset timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
u32 *ptr = page_address(dest);
if (ptr[i]) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test memset failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
}
/* test for non-zero parity sum */
zero_sum_result = 0;
for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dma_chan->device->dev,
zero_sum_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = iop_adma_prep_dma_zero_sum(dma_chan, dma_srcs,
IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
&zero_sum_result,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
cookie = iop_adma_tx_submit(tx);
iop_adma_issue_pending(dma_chan);
msleep(8);
if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test non-zero sum timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (zero_sum_result != 1) {
dev_printk(KERN_ERR, dma_chan->device->dev,
"Self-test non-zero sum failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
iop_adma_free_chan_resources(dma_chan);
out:
src_idx = IOP_ADMA_NUM_SRC_TEST;
while (src_idx--)
__free_page(xor_srcs[src_idx]);
__free_page(dest);
return err;
}
static int __devexit iop_adma_remove(struct platform_device *dev)
{
struct iop_adma_device *device = platform_get_drvdata(dev);
struct dma_chan *chan, *_chan;
struct iop_adma_chan *iop_chan;
int i;
struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
dma_async_device_unregister(&device->common);
for (i = 0; i < 3; i++) {
unsigned int irq;
irq = platform_get_irq(dev, i);
free_irq(irq, device);
}
dma_free_coherent(&dev->dev, plat_data->pool_size,
device->dma_desc_pool_virt, device->dma_desc_pool);
do {
struct resource *res;
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
release_mem_region(res->start, res->end - res->start);
} while (0);
list_for_each_entry_safe(chan, _chan, &device->common.channels,
device_node) {
iop_chan = to_iop_adma_chan(chan);
list_del(&chan->device_node);
kfree(iop_chan);
}
kfree(device);
return 0;
}
static int __devinit iop_adma_probe(struct platform_device *pdev)
{
struct resource *res;
int ret = 0, i;
struct iop_adma_device *adev;
struct iop_adma_chan *iop_chan;
struct dma_device *dma_dev;
struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
if (!devm_request_mem_region(&pdev->dev, res->start,
res->end - res->start, pdev->name))
return -EBUSY;
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
dma_dev = &adev->common;
/* allocate coherent memory for hardware descriptors
* note: writecombine gives slightly better performance, but
* requires that we explicitly flush the writes
*/
if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
plat_data->pool_size,
&adev->dma_desc_pool,
GFP_KERNEL)) == NULL) {
ret = -ENOMEM;
goto err_free_adev;
}
dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
__func__, adev->dma_desc_pool_virt,
(void *) adev->dma_desc_pool);
adev->id = plat_data->hw_id;
/* discover transaction capabilites from the platform data */
dma_dev->cap_mask = plat_data->cap_mask;
adev->pdev = pdev;
platform_set_drvdata(pdev, adev);
INIT_LIST_HEAD(&dma_dev->channels);
/* set base routines */
dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
dma_dev->device_is_tx_complete = iop_adma_is_complete;
dma_dev->device_issue_pending = iop_adma_issue_pending;
dma_dev->dev = &pdev->dev;
/* set prep routines based on capability */
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
dma_dev->max_xor = iop_adma_get_max_xor();
dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
}
if (dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask))
dma_dev->device_prep_dma_zero_sum =
iop_adma_prep_dma_zero_sum;
if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
dma_dev->device_prep_dma_interrupt =
iop_adma_prep_dma_interrupt;
iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
if (!iop_chan) {
ret = -ENOMEM;
goto err_free_dma;
}
iop_chan->device = adev;
iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
res->end - res->start);
if (!iop_chan->mmr_base) {
ret = -ENOMEM;
goto err_free_iop_chan;
}
tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
iop_chan);
/* clear errors before enabling interrupts */
iop_adma_device_clear_err_status(iop_chan);
for (i = 0; i < 3; i++) {
irq_handler_t handler[] = { iop_adma_eot_handler,
iop_adma_eoc_handler,
iop_adma_err_handler };
int irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = -ENXIO;
goto err_free_iop_chan;
} else {
ret = devm_request_irq(&pdev->dev, irq,
handler[i], 0, pdev->name, iop_chan);
if (ret)
goto err_free_iop_chan;
}
}
spin_lock_init(&iop_chan->lock);
INIT_LIST_HEAD(&iop_chan->chain);
INIT_LIST_HEAD(&iop_chan->all_slots);
INIT_RCU_HEAD(&iop_chan->common.rcu);
iop_chan->common.device = dma_dev;
list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
ret = iop_adma_memcpy_self_test(adev);
dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
if (ret)
goto err_free_iop_chan;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
ret = iop_adma_xor_zero_sum_self_test(adev);
dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
if (ret)
goto err_free_iop_chan;
}
dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
"( %s%s%s%s%s%s%s%s%s%s)\n",
dma_has_cap(DMA_PQ_XOR, dma_dev->cap_mask) ? "pq_xor " : "",
dma_has_cap(DMA_PQ_UPDATE, dma_dev->cap_mask) ? "pq_update " : "",
dma_has_cap(DMA_PQ_ZERO_SUM, dma_dev->cap_mask) ? "pq_zero_sum " : "",
dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
dma_has_cap(DMA_DUAL_XOR, dma_dev->cap_mask) ? "dual_xor " : "",
dma_has_cap(DMA_ZERO_SUM, dma_dev->cap_mask) ? "xor_zero_sum " : "",
dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
dma_has_cap(DMA_MEMCPY_CRC32C, dma_dev->cap_mask) ? "cpy+crc " : "",
dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
dma_async_device_register(dma_dev);
goto out;
err_free_iop_chan:
kfree(iop_chan);
err_free_dma:
dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
adev->dma_desc_pool_virt, adev->dma_desc_pool);
err_free_adev:
kfree(adev);
out:
return ret;
}
static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *sw_desc, *grp_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
async_tx_ack(&sw_desc->async_tx);
iop_desc_init_memcpy(grp_start, 0);
iop_desc_set_byte_count(grp_start, iop_chan, 0);
iop_desc_set_dest_addr(grp_start, iop_chan, 0);
iop_desc_set_memcpy_src_addr(grp_start, 0);
cookie = iop_chan->common.cookie;
cookie++;
if (cookie <= 1)
cookie = 2;
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
iop_chan->completed_cookie = cookie - 1;
iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
/* channel should not be busy */
BUG_ON(iop_chan_is_busy(iop_chan));
/* clear any prior error-status bits */
iop_adma_device_clear_err_status(iop_chan);
/* disable operation */
iop_chan_disable(iop_chan);
/* set the descriptor address */
iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
/* 1/ don't add pre-chained descriptors
* 2/ dummy read to flush next_desc write
*/
BUG_ON(iop_desc_get_next_desc(sw_desc));
/* run the descriptor */
iop_chan_enable(iop_chan);
} else
dev_printk(KERN_ERR, iop_chan->device->common.dev,
"failed to allocate null descriptor\n");
spin_unlock_bh(&iop_chan->lock);
}
static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
{
struct iop_adma_desc_slot *sw_desc, *grp_start;
dma_cookie_t cookie;
int slot_cnt, slots_per_op;
dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
spin_lock_bh(&iop_chan->lock);
slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
if (sw_desc) {
grp_start = sw_desc->group_head;
list_splice_init(&sw_desc->async_tx.tx_list, &iop_chan->chain);
async_tx_ack(&sw_desc->async_tx);
iop_desc_init_null_xor(grp_start, 2, 0);
iop_desc_set_byte_count(grp_start, iop_chan, 0);
iop_desc_set_dest_addr(grp_start, iop_chan, 0);
iop_desc_set_xor_src_addr(grp_start, 0, 0);
iop_desc_set_xor_src_addr(grp_start, 1, 0);
cookie = iop_chan->common.cookie;
cookie++;
if (cookie <= 1)
cookie = 2;
/* initialize the completed cookie to be less than
* the most recently used cookie
*/
iop_chan->completed_cookie = cookie - 1;
iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
/* channel should not be busy */
BUG_ON(iop_chan_is_busy(iop_chan));
/* clear any prior error-status bits */
iop_adma_device_clear_err_status(iop_chan);
/* disable operation */
iop_chan_disable(iop_chan);
/* set the descriptor address */
iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
/* 1/ don't add pre-chained descriptors
* 2/ dummy read to flush next_desc write
*/
BUG_ON(iop_desc_get_next_desc(sw_desc));
/* run the descriptor */
iop_chan_enable(iop_chan);
} else
dev_printk(KERN_ERR, iop_chan->device->common.dev,
"failed to allocate null descriptor\n");
spin_unlock_bh(&iop_chan->lock);
}
MODULE_ALIAS("platform:iop-adma");
static struct platform_driver iop_adma_driver = {
.probe = iop_adma_probe,
.remove = iop_adma_remove,
.driver = {
.owner = THIS_MODULE,
.name = "iop-adma",
},
};
static int __init iop_adma_init (void)
{
return platform_driver_register(&iop_adma_driver);
}
/* it's currently unsafe to unload this module */
#if 0
static void __exit iop_adma_exit (void)
{
platform_driver_unregister(&iop_adma_driver);
return;
}
module_exit(iop_adma_exit);
#endif
module_init(iop_adma_init);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("IOP ADMA Engine Driver");
MODULE_LICENSE("GPL");