Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/staging/rtl8192e/rtllib_crypt_tkip.c
Sean MacLennan 3b148be0df staging/rtl8192e: Register against lib80211
Convert rtllib from registering the crypt drivers against rtllib_crypt
and instead register the against lib80211. The crypto functions have
R- prepended (R-CCMP, R-TKIP, R-WEP) so they will not clash with the
lib80211 versions.

We cannot use the lib80211 crypt drivers since the rtl8192e has some
hardware support that is not handled by the lib80211 crypt drivers.

Signed-off-by: Sean MacLennan <seanm@seanm.ca>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-22 13:48:59 -08:00

770 lines
20 KiB
C

/*
* Host AP crypt: host-based TKIP encryption implementation for Host AP driver
*
* Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_ether.h>
#include <linux/if_arp.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/crc32.h>
#include "rtllib.h"
struct rtllib_tkip_data {
#define TKIP_KEY_LEN 32
u8 key[TKIP_KEY_LEN];
int key_set;
u32 tx_iv32;
u16 tx_iv16;
u16 tx_ttak[5];
int tx_phase1_done;
u32 rx_iv32;
u16 rx_iv16;
bool initialized;
u16 rx_ttak[5];
int rx_phase1_done;
u32 rx_iv32_new;
u16 rx_iv16_new;
u32 dot11RSNAStatsTKIPReplays;
u32 dot11RSNAStatsTKIPICVErrors;
u32 dot11RSNAStatsTKIPLocalMICFailures;
int key_idx;
struct crypto_blkcipher *rx_tfm_arc4;
struct crypto_hash *rx_tfm_michael;
struct crypto_blkcipher *tx_tfm_arc4;
struct crypto_hash *tx_tfm_michael;
/* scratch buffers for virt_to_page() (crypto API) */
u8 rx_hdr[16], tx_hdr[16];
};
static void *rtllib_tkip_init(int key_idx)
{
struct rtllib_tkip_data *priv;
priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
if (priv == NULL)
goto fail;
priv->key_idx = key_idx;
priv->tx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(priv->tx_tfm_arc4)) {
printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
"crypto API arc4\n");
priv->tx_tfm_arc4 = NULL;
goto fail;
}
priv->tx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(priv->tx_tfm_michael)) {
printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
"crypto API michael_mic\n");
priv->tx_tfm_michael = NULL;
goto fail;
}
priv->rx_tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(priv->rx_tfm_arc4)) {
printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
"crypto API arc4\n");
priv->rx_tfm_arc4 = NULL;
goto fail;
}
priv->rx_tfm_michael = crypto_alloc_hash("michael_mic", 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(priv->rx_tfm_michael)) {
printk(KERN_DEBUG "rtllib_crypt_tkip: could not allocate "
"crypto API michael_mic\n");
priv->rx_tfm_michael = NULL;
goto fail;
}
return priv;
fail:
if (priv) {
if (priv->tx_tfm_michael)
crypto_free_hash(priv->tx_tfm_michael);
if (priv->tx_tfm_arc4)
crypto_free_blkcipher(priv->tx_tfm_arc4);
if (priv->rx_tfm_michael)
crypto_free_hash(priv->rx_tfm_michael);
if (priv->rx_tfm_arc4)
crypto_free_blkcipher(priv->rx_tfm_arc4);
kfree(priv);
}
return NULL;
}
static void rtllib_tkip_deinit(void *priv)
{
struct rtllib_tkip_data *_priv = priv;
if (_priv) {
if (_priv->tx_tfm_michael)
crypto_free_hash(_priv->tx_tfm_michael);
if (_priv->tx_tfm_arc4)
crypto_free_blkcipher(_priv->tx_tfm_arc4);
if (_priv->rx_tfm_michael)
crypto_free_hash(_priv->rx_tfm_michael);
if (_priv->rx_tfm_arc4)
crypto_free_blkcipher(_priv->rx_tfm_arc4);
}
kfree(priv);
}
static inline u16 RotR1(u16 val)
{
return (val >> 1) | (val << 15);
}
static inline u8 Lo8(u16 val)
{
return val & 0xff;
}
static inline u8 Hi8(u16 val)
{
return val >> 8;
}
static inline u16 Lo16(u32 val)
{
return val & 0xffff;
}
static inline u16 Hi16(u32 val)
{
return val >> 16;
}
static inline u16 Mk16(u8 hi, u8 lo)
{
return lo | (((u16) hi) << 8);
}
static inline u16 Mk16_le(u16 *v)
{
return le16_to_cpu(*v);
}
static const u16 Sbox[256] = {
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
};
static inline u16 _S_(u16 v)
{
u16 t = Sbox[Hi8(v)];
return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
}
#define PHASE1_LOOP_COUNT 8
static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
{
int i, j;
/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
TTAK[0] = Lo16(IV32);
TTAK[1] = Hi16(IV32);
TTAK[2] = Mk16(TA[1], TA[0]);
TTAK[3] = Mk16(TA[3], TA[2]);
TTAK[4] = Mk16(TA[5], TA[4]);
for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
j = 2 * (i & 1);
TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
}
}
static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
u16 IV16)
{
/* Make temporary area overlap WEP seed so that the final copy can be
* avoided on little endian hosts. */
u16 *PPK = (u16 *) &WEPSeed[4];
/* Step 1 - make copy of TTAK and bring in TSC */
PPK[0] = TTAK[0];
PPK[1] = TTAK[1];
PPK[2] = TTAK[2];
PPK[3] = TTAK[3];
PPK[4] = TTAK[4];
PPK[5] = TTAK[4] + IV16;
/* Step 2 - 96-bit bijective mixing using S-box */
PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) &TK[0]));
PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) &TK[2]));
PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) &TK[4]));
PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) &TK[6]));
PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) &TK[8]));
PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) &TK[10]));
PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) &TK[12]));
PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) &TK[14]));
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
* WEPSeed[0..2] is transmitted as WEP IV */
WEPSeed[0] = Hi8(IV16);
WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
WEPSeed[2] = Lo8(IV16);
WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) &TK[0])) >> 1);
#ifdef __BIG_ENDIAN
{
int i;
for (i = 0; i < 6; i++)
PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
}
#endif
}
static int rtllib_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
int len;
u8 *pos;
struct rtllib_hdr_4addr *hdr;
struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = tkey->tx_tfm_arc4};
int ret = 0;
u8 rc4key[16], *icv;
u32 crc;
struct scatterlist sg;
if (skb_headroom(skb) < 8 || skb_tailroom(skb) < 4 ||
skb->len < hdr_len)
return -1;
hdr = (struct rtllib_hdr_4addr *) skb->data;
if (!tcb_desc->bHwSec) {
if (!tkey->tx_phase1_done) {
tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2,
tkey->tx_iv32);
tkey->tx_phase1_done = 1;
}
tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak,
tkey->tx_iv16);
} else
tkey->tx_phase1_done = 1;
len = skb->len - hdr_len;
pos = skb_push(skb, 8);
memmove(pos, pos + 8, hdr_len);
pos += hdr_len;
if (tcb_desc->bHwSec) {
*pos++ = Hi8(tkey->tx_iv16);
*pos++ = (Hi8(tkey->tx_iv16) | 0x20) & 0x7F;
*pos++ = Lo8(tkey->tx_iv16);
} else {
*pos++ = rc4key[0];
*pos++ = rc4key[1];
*pos++ = rc4key[2];
}
*pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */;
*pos++ = tkey->tx_iv32 & 0xff;
*pos++ = (tkey->tx_iv32 >> 8) & 0xff;
*pos++ = (tkey->tx_iv32 >> 16) & 0xff;
*pos++ = (tkey->tx_iv32 >> 24) & 0xff;
if (!tcb_desc->bHwSec) {
icv = skb_put(skb, 4);
crc = ~crc32_le(~0, pos, len);
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
sg_init_one(&sg, pos, len+4);
crypto_blkcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16);
ret = crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
}
tkey->tx_iv16++;
if (tkey->tx_iv16 == 0) {
tkey->tx_phase1_done = 0;
tkey->tx_iv32++;
}
if (!tcb_desc->bHwSec)
return ret;
else
return 0;
}
static int rtllib_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
u8 keyidx, *pos;
u32 iv32;
u16 iv16;
struct rtllib_hdr_4addr *hdr;
struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb +
MAX_DEV_ADDR_SIZE);
struct blkcipher_desc desc = {.tfm = tkey->rx_tfm_arc4};
u8 rc4key[16];
u8 icv[4];
u32 crc;
struct scatterlist sg;
int plen;
if (skb->len < hdr_len + 8 + 4)
return -1;
hdr = (struct rtllib_hdr_4addr *) skb->data;
pos = skb->data + hdr_len;
keyidx = pos[3];
if (!(keyidx & (1 << 5))) {
if (net_ratelimit()) {
printk(KERN_DEBUG "TKIP: received packet without ExtIV"
" flag from %pM\n", hdr->addr2);
}
return -2;
}
keyidx >>= 6;
if (tkey->key_idx != keyidx) {
printk(KERN_DEBUG "TKIP: RX tkey->key_idx=%d frame "
"keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv);
return -6;
}
if (!tkey->key_set) {
if (net_ratelimit()) {
printk(KERN_DEBUG "TKIP: received packet from %pM"
" with keyid=%d that does not have a configured"
" key\n", hdr->addr2, keyidx);
}
return -3;
}
iv16 = (pos[0] << 8) | pos[2];
iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
pos += 8;
if (!tcb_desc->bHwSec || (skb->cb[0] == 1)) {
if ((iv32 < tkey->rx_iv32 ||
(iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) &&
tkey->initialized) {
if (net_ratelimit()) {
printk(KERN_DEBUG "TKIP: replay detected: STA="
" %pM previous TSC %08x%04x received "
"TSC %08x%04x\n",hdr->addr2,
tkey->rx_iv32, tkey->rx_iv16, iv32, iv16);
}
tkey->dot11RSNAStatsTKIPReplays++;
return -4;
}
tkey->initialized = true;
if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) {
tkip_mixing_phase1(tkey->rx_ttak, tkey->key,
hdr->addr2, iv32);
tkey->rx_phase1_done = 1;
}
tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16);
plen = skb->len - hdr_len - 12;
sg_init_one(&sg, pos, plen+4);
crypto_blkcipher_setkey(tkey->rx_tfm_arc4, rc4key, 16);
if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4)) {
if (net_ratelimit()) {
printk(KERN_DEBUG ": TKIP: failed to decrypt "
"received packet from %pM\n",
hdr->addr2);
}
return -7;
}
crc = ~crc32_le(~0, pos, plen);
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
if (memcmp(icv, pos + plen, 4) != 0) {
if (iv32 != tkey->rx_iv32) {
/* Previously cached Phase1 result was already
* lost, so it needs to be recalculated for the
* next packet. */
tkey->rx_phase1_done = 0;
}
if (net_ratelimit()) {
printk(KERN_DEBUG "TKIP: ICV error detected: STA="
" %pM\n", hdr->addr2);
}
tkey->dot11RSNAStatsTKIPICVErrors++;
return -5;
}
}
/* Update real counters only after Michael MIC verification has
* completed */
tkey->rx_iv32_new = iv32;
tkey->rx_iv16_new = iv16;
/* Remove IV and ICV */
memmove(skb->data + 8, skb->data, hdr_len);
skb_pull(skb, 8);
skb_trim(skb, skb->len - 4);
return keyidx;
}
static int michael_mic(struct crypto_hash *tfm_michael, u8 *key, u8 *hdr,
u8 *data, size_t data_len, u8 *mic)
{
struct hash_desc desc;
struct scatterlist sg[2];
if (tfm_michael == NULL) {
printk(KERN_WARNING "michael_mic: tfm_michael == NULL\n");
return -1;
}
sg_init_table(sg, 2);
sg_set_buf(&sg[0], hdr, 16);
sg_set_buf(&sg[1], data, data_len);
if (crypto_hash_setkey(tfm_michael, key, 8))
return -1;
desc.tfm = tfm_michael;
desc.flags = 0;
return crypto_hash_digest(&desc, sg, data_len + 16, mic);
}
static void michael_mic_hdr(struct sk_buff *skb, u8 *hdr)
{
struct rtllib_hdr_4addr *hdr11;
hdr11 = (struct rtllib_hdr_4addr *) skb->data;
switch (le16_to_cpu(hdr11->frame_ctl) &
(RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS)) {
case RTLLIB_FCTL_TODS:
memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
break;
case RTLLIB_FCTL_FROMDS:
memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
break;
case RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS:
memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
memcpy(hdr + ETH_ALEN, hdr11->addr4, ETH_ALEN); /* SA */
break;
case 0:
memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
break;
}
hdr[12] = 0; /* priority */
hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
}
static int rtllib_michael_mic_add(struct sk_buff *skb, int hdr_len, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
u8 *pos;
struct rtllib_hdr_4addr *hdr;
hdr = (struct rtllib_hdr_4addr *) skb->data;
if (skb_tailroom(skb) < 8 || skb->len < hdr_len) {
printk(KERN_DEBUG "Invalid packet for Michael MIC add "
"(tailroom=%d hdr_len=%d skb->len=%d)\n",
skb_tailroom(skb), hdr_len, skb->len);
return -1;
}
michael_mic_hdr(skb, tkey->tx_hdr);
if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
tkey->tx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;
pos = skb_put(skb, 8);
if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr,
skb->data + hdr_len, skb->len - 8 - hdr_len, pos))
return -1;
return 0;
}
static void rtllib_michael_mic_failure(struct net_device *dev,
struct rtllib_hdr_4addr *hdr,
int keyidx)
{
union iwreq_data wrqu;
struct iw_michaelmicfailure ev;
/* TODO: needed parameters: count, keyid, key type, TSC */
memset(&ev, 0, sizeof(ev));
ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
if (hdr->addr1[0] & 0x01)
ev.flags |= IW_MICFAILURE_GROUP;
else
ev.flags |= IW_MICFAILURE_PAIRWISE;
ev.src_addr.sa_family = ARPHRD_ETHER;
memcpy(ev.src_addr.sa_data, hdr->addr2, ETH_ALEN);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = sizeof(ev);
wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *) &ev);
}
static int rtllib_michael_mic_verify(struct sk_buff *skb, int keyidx,
int hdr_len, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
u8 mic[8];
struct rtllib_hdr_4addr *hdr;
hdr = (struct rtllib_hdr_4addr *) skb->data;
if (!tkey->key_set)
return -1;
michael_mic_hdr(skb, tkey->rx_hdr);
if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl)))
tkey->rx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07;
if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr,
skb->data + hdr_len, skb->len - 8 - hdr_len, mic))
return -1;
if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) {
struct rtllib_hdr_4addr *hdr;
hdr = (struct rtllib_hdr_4addr *) skb->data;
printk(KERN_DEBUG "%s: Michael MIC verification failed for "
"MSDU from %pM keyidx=%d\n",
skb->dev ? skb->dev->name : "N/A", hdr->addr2,
keyidx);
printk(KERN_DEBUG "%d\n",
memcmp(mic, skb->data + skb->len - 8, 8) != 0);
if (skb->dev) {
printk(KERN_INFO "skb->dev != NULL\n");
rtllib_michael_mic_failure(skb->dev, hdr, keyidx);
}
tkey->dot11RSNAStatsTKIPLocalMICFailures++;
return -1;
}
/* Update TSC counters for RX now that the packet verification has
* completed. */
tkey->rx_iv32 = tkey->rx_iv32_new;
tkey->rx_iv16 = tkey->rx_iv16_new;
skb_trim(skb, skb->len - 8);
return 0;
}
static int rtllib_tkip_set_key(void *key, int len, u8 *seq, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
int keyidx;
struct crypto_hash *tfm = tkey->tx_tfm_michael;
struct crypto_blkcipher *tfm2 = tkey->tx_tfm_arc4;
struct crypto_hash *tfm3 = tkey->rx_tfm_michael;
struct crypto_blkcipher *tfm4 = tkey->rx_tfm_arc4;
keyidx = tkey->key_idx;
memset(tkey, 0, sizeof(*tkey));
tkey->key_idx = keyidx;
tkey->tx_tfm_michael = tfm;
tkey->tx_tfm_arc4 = tfm2;
tkey->rx_tfm_michael = tfm3;
tkey->rx_tfm_arc4 = tfm4;
if (len == TKIP_KEY_LEN) {
memcpy(tkey->key, key, TKIP_KEY_LEN);
tkey->key_set = 1;
tkey->tx_iv16 = 1; /* TSC is initialized to 1 */
if (seq) {
tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) |
(seq[3] << 8) | seq[2];
tkey->rx_iv16 = (seq[1] << 8) | seq[0];
}
} else if (len == 0)
tkey->key_set = 0;
else
return -1;
return 0;
}
static int rtllib_tkip_get_key(void *key, int len, u8 *seq, void *priv)
{
struct rtllib_tkip_data *tkey = priv;
if (len < TKIP_KEY_LEN)
return -1;
if (!tkey->key_set)
return 0;
memcpy(key, tkey->key, TKIP_KEY_LEN);
if (seq) {
/* Return the sequence number of the last transmitted frame. */
u16 iv16 = tkey->tx_iv16;
u32 iv32 = tkey->tx_iv32;
if (iv16 == 0)
iv32--;
iv16--;
seq[0] = tkey->tx_iv16;
seq[1] = tkey->tx_iv16 >> 8;
seq[2] = tkey->tx_iv32;
seq[3] = tkey->tx_iv32 >> 8;
seq[4] = tkey->tx_iv32 >> 16;
seq[5] = tkey->tx_iv32 >> 24;
}
return TKIP_KEY_LEN;
}
static char *rtllib_tkip_print_stats(char *p, void *priv)
{
struct rtllib_tkip_data *tkip = priv;
p += sprintf(p, "key[%d] alg=TKIP key_set=%d "
"tx_pn=%02x%02x%02x%02x%02x%02x "
"rx_pn=%02x%02x%02x%02x%02x%02x "
"replays=%d icv_errors=%d local_mic_failures=%d\n",
tkip->key_idx, tkip->key_set,
(tkip->tx_iv32 >> 24) & 0xff,
(tkip->tx_iv32 >> 16) & 0xff,
(tkip->tx_iv32 >> 8) & 0xff,
tkip->tx_iv32 & 0xff,
(tkip->tx_iv16 >> 8) & 0xff,
tkip->tx_iv16 & 0xff,
(tkip->rx_iv32 >> 24) & 0xff,
(tkip->rx_iv32 >> 16) & 0xff,
(tkip->rx_iv32 >> 8) & 0xff,
tkip->rx_iv32 & 0xff,
(tkip->rx_iv16 >> 8) & 0xff,
tkip->rx_iv16 & 0xff,
tkip->dot11RSNAStatsTKIPReplays,
tkip->dot11RSNAStatsTKIPICVErrors,
tkip->dot11RSNAStatsTKIPLocalMICFailures);
return p;
}
static struct lib80211_crypto_ops rtllib_crypt_tkip = {
.name = "R-TKIP",
.init = rtllib_tkip_init,
.deinit = rtllib_tkip_deinit,
.encrypt_mpdu = rtllib_tkip_encrypt,
.decrypt_mpdu = rtllib_tkip_decrypt,
.encrypt_msdu = rtllib_michael_mic_add,
.decrypt_msdu = rtllib_michael_mic_verify,
.set_key = rtllib_tkip_set_key,
.get_key = rtllib_tkip_get_key,
.print_stats = rtllib_tkip_print_stats,
.extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */
.extra_mpdu_postfix_len = 4, /* ICV */
.extra_msdu_postfix_len = 8, /* MIC */
.owner = THIS_MODULE,
};
int __init rtllib_crypto_tkip_init(void)
{
return lib80211_register_crypto_ops(&rtllib_crypt_tkip);
}
void __exit rtllib_crypto_tkip_exit(void)
{
lib80211_unregister_crypto_ops(&rtllib_crypt_tkip);
}
module_init(rtllib_crypto_tkip_init);
module_exit(rtllib_crypto_tkip_exit);
MODULE_LICENSE("GPL");