#include "amd64_edac.h" static struct edac_pci_ctl_info *amd64_ctl_pci; static int report_gart_errors; module_param(report_gart_errors, int, 0644); /* * Set by command line parameter. If BIOS has enabled the ECC, this override is * cleared to prevent re-enabling the hardware by this driver. */ static int ecc_enable_override; module_param(ecc_enable_override, int, 0644); /* Lookup table for all possible MC control instances */ struct amd64_pvt; static struct mem_ctl_info *mci_lookup[MAX_NUMNODES]; static struct amd64_pvt *pvt_lookup[MAX_NUMNODES]; /* * Memory scrubber control interface. For K8, memory scrubbing is handled by * hardware and can involve L2 cache, dcache as well as the main memory. With * F10, this is extended to L3 cache scrubbing on CPU models sporting that * functionality. * * This causes the "units" for the scrubbing speed to vary from 64 byte blocks * (dram) over to cache lines. This is nasty, so we will use bandwidth in * bytes/sec for the setting. * * Currently, we only do dram scrubbing. If the scrubbing is done in software on * other archs, we might not have access to the caches directly. */ /* * scan the scrub rate mapping table for a close or matching bandwidth value to * issue. If requested is too big, then use last maximum value found. */ static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_scrubrate) { u32 scrubval; int i; /* * map the configured rate (new_bw) to a value specific to the AMD64 * memory controller and apply to register. Search for the first * bandwidth entry that is greater or equal than the setting requested * and program that. If at last entry, turn off DRAM scrubbing. */ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { /* * skip scrub rates which aren't recommended * (see F10 BKDG, F3x58) */ if (scrubrates[i].scrubval < min_scrubrate) continue; if (scrubrates[i].bandwidth <= new_bw) break; /* * if no suitable bandwidth found, turn off DRAM scrubbing * entirely by falling back to the last element in the * scrubrates array. */ } scrubval = scrubrates[i].scrubval; if (scrubval) edac_printk(KERN_DEBUG, EDAC_MC, "Setting scrub rate bandwidth: %u\n", scrubrates[i].bandwidth); else edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); return 0; } static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) { struct amd64_pvt *pvt = mci->pvt_info; u32 min_scrubrate = 0x0; switch (boot_cpu_data.x86) { case 0xf: min_scrubrate = K8_MIN_SCRUB_RATE_BITS; break; case 0x10: min_scrubrate = F10_MIN_SCRUB_RATE_BITS; break; case 0x11: min_scrubrate = F11_MIN_SCRUB_RATE_BITS; break; default: amd64_printk(KERN_ERR, "Unsupported family!\n"); break; } return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, min_scrubrate); } static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) { struct amd64_pvt *pvt = mci->pvt_info; u32 scrubval = 0; int status = -1, i, ret = 0; ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); if (ret) debugf0("Reading K8_SCRCTRL failed\n"); scrubval = scrubval & 0x001F; edac_printk(KERN_DEBUG, EDAC_MC, "pci-read, sdram scrub control value: %d \n", scrubval); for (i = 0; ARRAY_SIZE(scrubrates); i++) { if (scrubrates[i].scrubval == scrubval) { *bw = scrubrates[i].bandwidth; status = 0; break; } } return status; }