#ifndef __CTREE__ #define __CTREE__ #include "list.h" #include "kerncompat.h" #define CTREE_BLOCKSIZE 1024 /* * the key defines the order in the tree, and so it also defines (optimal) * block layout. objectid corresonds to the inode number. The flags * tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with flags of 1 might refer to the inode * data, flags of 2 may point to file data in the btree and flags == 3 * may point to extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; __le32 flags; __le64 offset; } __attribute__ ((__packed__)); struct btrfs_key { u64 objectid; u32 flags; u64 offset; } __attribute__ ((__packed__)); /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { __le64 fsid[2]; /* FS specific uuid */ __le64 blocknr; /* which block this node is supposed to live in */ __le64 parentid; /* objectid of the tree root */ __le32 csum; __le32 ham; __le16 nritems; __le16 flags; /* generation flags to be added */ } __attribute__ ((__packed__)); #define MAX_LEVEL 8 #define NODEPTRS_PER_BLOCK ((CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) / \ (sizeof(struct btrfs_disk_key) + sizeof(u64))) struct tree_buffer; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. current_insert is used * only for the extent tree. */ struct ctree_root { struct tree_buffer *node; struct tree_buffer *commit_root; struct ctree_root *extent_root; struct btrfs_key current_insert; struct btrfs_key last_insert; int fp; struct radix_tree_root cache_radix; struct radix_tree_root pinned_radix; struct list_head trans; struct list_head cache; int cache_size; }; /* * describes a tree on disk */ struct ctree_root_info { u64 fsid[2]; /* FS specific uuid */ u64 blocknr; /* blocknr of this block */ u64 objectid; /* inode number of this root */ u64 tree_root; /* the tree root block */ u32 csum; u32 ham; u64 snapuuid[2]; /* root specific uuid */ } __attribute__ ((__packed__)); /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct ctree_super_block { struct ctree_root_info root_info; struct ctree_root_info extent_info; } __attribute__ ((__packed__)); /* * A leaf is full of items. The exact type of item is defined by * the key flags parameter. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le16 offset; __le16 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ #define LEAF_DATA_SIZE (CTREE_BLOCKSIZE - sizeof(struct btrfs_header)) struct leaf { struct btrfs_header header; union { struct btrfs_item items[LEAF_DATA_SIZE/ sizeof(struct btrfs_item)]; u8 data[CTREE_BLOCKSIZE-sizeof(struct btrfs_header)]; }; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct node { struct btrfs_header header; struct btrfs_disk_key keys[NODEPTRS_PER_BLOCK]; u64 blockptrs[NODEPTRS_PER_BLOCK]; } __attribute__ ((__packed__)); /* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */ struct extent_item { u32 refs; u64 owner; } __attribute__ ((__packed__)); /* * ctree_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct ctree_path { struct tree_buffer *nodes[MAX_LEVEL]; int slots[MAX_LEVEL]; }; static inline u16 btrfs_item_offset(struct btrfs_item *item) { return le16_to_cpu(item->offset); } static inline void btrfs_set_item_offset(struct btrfs_item *item, u16 val) { item->offset = cpu_to_le16(val); } static inline u16 btrfs_item_end(struct btrfs_item *item) { return le16_to_cpu(item->offset) + le16_to_cpu(item->size); } static inline u16 btrfs_item_size(struct btrfs_item *item) { return le16_to_cpu(item->size); } static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val) { item->size = cpu_to_le16(val); } static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->flags = le32_to_cpu(disk->flags); cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->flags = cpu_to_le32(cpu->flags); disk->objectid = cpu_to_le64(cpu->objectid); } static inline u64 btrfs_key_objectid(struct btrfs_disk_key *disk) { return le64_to_cpu(disk->objectid); } static inline void btrfs_set_key_objectid(struct btrfs_disk_key *disk, u64 val) { disk->objectid = cpu_to_le64(val); } static inline u64 btrfs_key_offset(struct btrfs_disk_key *disk) { return le64_to_cpu(disk->offset); } static inline void btrfs_set_key_offset(struct btrfs_disk_key *disk, u64 val) { disk->offset = cpu_to_le64(val); } static inline u32 btrfs_key_flags(struct btrfs_disk_key *disk) { return le32_to_cpu(disk->flags); } static inline void btrfs_set_key_flags(struct btrfs_disk_key *disk, u32 val) { disk->flags = cpu_to_le32(val); } static inline u64 btrfs_header_blocknr(struct btrfs_header *h) { return le64_to_cpu(h->blocknr); } static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr) { h->blocknr = cpu_to_le64(blocknr); } static inline u64 btrfs_header_parentid(struct btrfs_header *h) { return le64_to_cpu(h->parentid); } static inline void btrfs_set_header_parentid(struct btrfs_header *h, u64 parentid) { h->parentid = cpu_to_le64(parentid); } static inline u16 btrfs_header_nritems(struct btrfs_header *h) { return le16_to_cpu(h->nritems); } static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val) { h->nritems = cpu_to_le16(val); } static inline u16 btrfs_header_flags(struct btrfs_header *h) { return le16_to_cpu(h->flags); } static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val) { h->flags = cpu_to_le16(val); } static inline int btrfs_header_level(struct btrfs_header *h) { return btrfs_header_flags(h) & (MAX_LEVEL - 1); } static inline void btrfs_set_header_level(struct btrfs_header *h, int level) { u16 flags; BUG_ON(level > MAX_LEVEL); flags = btrfs_header_flags(h) & ~(MAX_LEVEL - 1); btrfs_set_header_flags(h, flags | level); } static inline int btrfs_is_leaf(struct node *n) { return (btrfs_header_level(&n->header) == 0); } struct tree_buffer *alloc_free_block(struct ctree_root *root); int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf); int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks); int search_slot(struct ctree_root *root, struct btrfs_key *key, struct ctree_path *p, int ins_len, int cow); void release_path(struct ctree_root *root, struct ctree_path *p); void init_path(struct ctree_path *p); int del_item(struct ctree_root *root, struct ctree_path *path); int insert_item(struct ctree_root *root, struct btrfs_key *key, void *data, int data_size); int next_leaf(struct ctree_root *root, struct ctree_path *path); int leaf_free_space(struct leaf *leaf); int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap); int btrfs_finish_extent_commit(struct ctree_root *root); #endif