dect
/
linux-2.6
Archived
13
0
Fork 0

Merge branch 'nvram' into next

This commit is contained in:
Benjamin Herrenschmidt 2010-12-09 14:36:38 +11:00
commit f4b9841595
5 changed files with 385 additions and 367 deletions

View File

@ -10,31 +10,7 @@
#ifndef _ASM_POWERPC_NVRAM_H
#define _ASM_POWERPC_NVRAM_H
#include <linux/errno.h>
#define NVRW_CNT 0x20
#define NVRAM_HEADER_LEN 16 /* sizeof(struct nvram_header) */
#define NVRAM_BLOCK_LEN 16
#define NVRAM_MAX_REQ (2080/NVRAM_BLOCK_LEN)
#define NVRAM_MIN_REQ (1056/NVRAM_BLOCK_LEN)
#define NVRAM_AS0 0x74
#define NVRAM_AS1 0x75
#define NVRAM_DATA 0x77
/* RTC Offsets */
#define MOTO_RTC_SECONDS 0x1FF9
#define MOTO_RTC_MINUTES 0x1FFA
#define MOTO_RTC_HOURS 0x1FFB
#define MOTO_RTC_DAY_OF_WEEK 0x1FFC
#define MOTO_RTC_DAY_OF_MONTH 0x1FFD
#define MOTO_RTC_MONTH 0x1FFE
#define MOTO_RTC_YEAR 0x1FFF
#define MOTO_RTC_CONTROLA 0x1FF8
#define MOTO_RTC_CONTROLB 0x1FF9
/* Signatures for nvram partitions */
#define NVRAM_SIG_SP 0x02 /* support processor */
#define NVRAM_SIG_OF 0x50 /* open firmware config */
#define NVRAM_SIG_FW 0x51 /* general firmware */
@ -49,32 +25,19 @@
#define NVRAM_SIG_OS 0xa0 /* OS defined */
#define NVRAM_SIG_PANIC 0xa1 /* Apple OSX "panic" */
/* If change this size, then change the size of NVNAME_LEN */
struct nvram_header {
unsigned char signature;
unsigned char checksum;
unsigned short length;
char name[12];
};
#ifdef __KERNEL__
#include <linux/errno.h>
#include <linux/list.h>
struct nvram_partition {
struct list_head partition;
struct nvram_header header;
unsigned int index;
};
#ifdef CONFIG_PPC_PSERIES
extern int nvram_write_error_log(char * buff, int length,
unsigned int err_type, unsigned int err_seq);
extern int nvram_read_error_log(char * buff, int length,
unsigned int * err_type, unsigned int *err_seq);
extern int nvram_clear_error_log(void);
extern int pSeries_nvram_init(void);
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_MMIO_NVRAM
extern int mmio_nvram_init(void);
@ -85,6 +48,13 @@ static inline int mmio_nvram_init(void)
}
#endif
extern int __init nvram_scan_partitions(void);
extern loff_t nvram_create_partition(const char *name, int sig,
int req_size, int min_size);
extern int nvram_remove_partition(const char *name, int sig);
extern int nvram_get_partition_size(loff_t data_index);
extern loff_t nvram_find_partition(const char *name, int sig, int *out_size);
#endif /* __KERNEL__ */
/* PowerMac specific nvram stuffs */

View File

@ -34,15 +34,26 @@
#undef DEBUG_NVRAM
static struct nvram_partition * nvram_part;
static long nvram_error_log_index = -1;
static long nvram_error_log_size = 0;
#define NVRAM_HEADER_LEN sizeof(struct nvram_header)
#define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN
struct err_log_info {
int error_type;
unsigned int seq_num;
/* If change this size, then change the size of NVNAME_LEN */
struct nvram_header {
unsigned char signature;
unsigned char checksum;
unsigned short length;
/* Terminating null required only for names < 12 chars. */
char name[12];
};
struct nvram_partition {
struct list_head partition;
struct nvram_header header;
unsigned int index;
};
static LIST_HEAD(nvram_partitions);
static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
{
int size;
@ -186,14 +197,12 @@ static struct miscdevice nvram_dev = {
#ifdef DEBUG_NVRAM
static void __init nvram_print_partitions(char * label)
{
struct list_head * p;
struct nvram_partition * tmp_part;
printk(KERN_WARNING "--------%s---------\n", label);
printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
list_for_each(p, &nvram_part->partition) {
tmp_part = list_entry(p, struct nvram_partition, partition);
printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%s\n",
list_for_each_entry(tmp_part, &nvram_partitions, partition) {
printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12s\n",
tmp_part->index, tmp_part->header.signature,
tmp_part->header.checksum, tmp_part->header.length,
tmp_part->header.name);
@ -228,95 +237,113 @@ static unsigned char __init nvram_checksum(struct nvram_header *p)
return c_sum;
}
static int __init nvram_remove_os_partition(void)
/**
* nvram_remove_partition - Remove one or more partitions in nvram
* @name: name of the partition to remove, or NULL for a
* signature only match
* @sig: signature of the partition(s) to remove
*/
int __init nvram_remove_partition(const char *name, int sig)
{
struct list_head *i;
struct list_head *j;
struct nvram_partition * part;
struct nvram_partition * cur_part;
struct nvram_partition *part, *prev, *tmp;
int rc;
list_for_each(i, &nvram_part->partition) {
part = list_entry(i, struct nvram_partition, partition);
if (part->header.signature != NVRAM_SIG_OS)
list_for_each_entry(part, &nvram_partitions, partition) {
if (part->header.signature != sig)
continue;
/* Make os partition a free partition */
if (name && strncmp(name, part->header.name, 12))
continue;
/* Make partition a free partition */
part->header.signature = NVRAM_SIG_FREE;
sprintf(part->header.name, "wwwwwwwwwwww");
strncpy(part->header.name, "wwwwwwwwwwww", 12);
part->header.checksum = nvram_checksum(&part->header);
/* Merge contiguous free partitions backwards */
list_for_each_prev(j, &part->partition) {
cur_part = list_entry(j, struct nvram_partition, partition);
if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
break;
}
part->header.length += cur_part->header.length;
part->header.checksum = nvram_checksum(&part->header);
part->index = cur_part->index;
list_del(&cur_part->partition);
kfree(cur_part);
j = &part->partition; /* fixup our loop */
}
/* Merge contiguous free partitions forwards */
list_for_each(j, &part->partition) {
cur_part = list_entry(j, struct nvram_partition, partition);
if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
break;
}
part->header.length += cur_part->header.length;
part->header.checksum = nvram_checksum(&part->header);
list_del(&cur_part->partition);
kfree(cur_part);
j = &part->partition; /* fixup our loop */
}
rc = nvram_write_header(part);
if (rc <= 0) {
printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
return rc;
}
}
/* Merge contiguous ones */
prev = NULL;
list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
if (part->header.signature != NVRAM_SIG_FREE) {
prev = NULL;
continue;
}
if (prev) {
prev->header.length += part->header.length;
prev->header.checksum = nvram_checksum(&part->header);
rc = nvram_write_header(part);
if (rc <= 0) {
printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
return rc;
}
list_del(&part->partition);
kfree(part);
} else
prev = part;
}
return 0;
}
/* nvram_create_os_partition
/**
* nvram_create_partition - Create a partition in nvram
* @name: name of the partition to create
* @sig: signature of the partition to create
* @req_size: size of data to allocate in bytes
* @min_size: minimum acceptable size (0 means req_size)
*
* Create a OS linux partition to buffer error logs.
* Will create a partition starting at the first free
* space found if space has enough room.
* Returns a negative error code or a positive nvram index
* of the beginning of the data area of the newly created
* partition. If you provided a min_size smaller than req_size
* you need to query for the actual size yourself after the
* call using nvram_partition_get_size().
*/
static int __init nvram_create_os_partition(void)
loff_t __init nvram_create_partition(const char *name, int sig,
int req_size, int min_size)
{
struct nvram_partition *part;
struct nvram_partition *new_part;
struct nvram_partition *free_part = NULL;
int seq_init[2] = { 0, 0 };
static char nv_init_vals[16];
loff_t tmp_index;
long size = 0;
int rc;
/* Convert sizes from bytes to blocks */
req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
/* If no minimum size specified, make it the same as the
* requested size
*/
if (min_size == 0)
min_size = req_size;
if (min_size > req_size)
return -EINVAL;
/* Now add one block to each for the header */
req_size += 1;
min_size += 1;
/* Find a free partition that will give us the maximum needed size
If can't find one that will give us the minimum size needed */
list_for_each_entry(part, &nvram_part->partition, partition) {
list_for_each_entry(part, &nvram_partitions, partition) {
if (part->header.signature != NVRAM_SIG_FREE)
continue;
if (part->header.length >= NVRAM_MAX_REQ) {
size = NVRAM_MAX_REQ;
if (part->header.length >= req_size) {
size = req_size;
free_part = part;
break;
}
if (!size && part->header.length >= NVRAM_MIN_REQ) {
size = NVRAM_MIN_REQ;
if (part->header.length > size &&
part->header.length >= min_size) {
size = part->header.length;
free_part = part;
}
}
@ -326,136 +353,95 @@ static int __init nvram_create_os_partition(void)
/* Create our OS partition */
new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
if (!new_part) {
printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
pr_err("nvram_create_os_partition: kmalloc failed\n");
return -ENOMEM;
}
new_part->index = free_part->index;
new_part->header.signature = NVRAM_SIG_OS;
new_part->header.signature = sig;
new_part->header.length = size;
strcpy(new_part->header.name, "ppc64,linux");
strncpy(new_part->header.name, name, 12);
new_part->header.checksum = nvram_checksum(&new_part->header);
rc = nvram_write_header(new_part);
if (rc <= 0) {
printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
"failed (%d)\n", rc);
return rc;
}
/* make sure and initialize to zero the sequence number and the error
type logged */
tmp_index = new_part->index + NVRAM_HEADER_LEN;
rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_create_os_partition: nvram_write "
pr_err("nvram_create_os_partition: nvram_write_header "
"failed (%d)\n", rc);
return rc;
}
nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
nvram_error_log_size = ((part->header.length - 1) *
NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
list_add_tail(&new_part->partition, &free_part->partition);
if (free_part->header.length <= size) {
/* Adjust or remove the partition we stole the space from */
if (free_part->header.length > size) {
free_part->index += size * NVRAM_BLOCK_LEN;
free_part->header.length -= size;
free_part->header.checksum = nvram_checksum(&free_part->header);
rc = nvram_write_header(free_part);
if (rc <= 0) {
pr_err("nvram_create_os_partition: nvram_write_header "
"failed (%d)\n", rc);
return rc;
}
} else {
list_del(&free_part->partition);
kfree(free_part);
return 0;
}
/* Adjust the partition we stole the space from */
free_part->index += size * NVRAM_BLOCK_LEN;
free_part->header.length -= size;
free_part->header.checksum = nvram_checksum(&free_part->header);
rc = nvram_write_header(free_part);
if (rc <= 0) {
printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
"failed (%d)\n", rc);
return rc;
}
return 0;
}
/* nvram_setup_partition
*
* This will setup the partition we need for buffering the
* error logs and cleanup partitions if needed.
*
* The general strategy is the following:
* 1.) If there is ppc64,linux partition large enough then use it.
* 2.) If there is not a ppc64,linux partition large enough, search
* for a free partition that is large enough.
* 3.) If there is not a free partition large enough remove
* _all_ OS partitions and consolidate the space.
* 4.) Will first try getting a chunk that will satisfy the maximum
* error log size (NVRAM_MAX_REQ).
* 5.) If the max chunk cannot be allocated then try finding a chunk
* that will satisfy the minum needed (NVRAM_MIN_REQ).
*/
static int __init nvram_setup_partition(void)
{
struct list_head * p;
struct nvram_partition * part;
int rc;
/* For now, we don't do any of this on pmac, until I
* have figured out if it's worth killing some unused stuffs
* in our nvram, as Apple defined partitions use pretty much
* all of the space
*/
if (machine_is(powermac))
return -ENOSPC;
/* see if we have an OS partition that meets our needs.
will try getting the max we need. If not we'll delete
partitions and try again. */
list_for_each(p, &nvram_part->partition) {
part = list_entry(p, struct nvram_partition, partition);
if (part->header.signature != NVRAM_SIG_OS)
continue;
if (strcmp(part->header.name, "ppc64,linux"))
continue;
if (part->header.length >= NVRAM_MIN_REQ) {
/* found our partition */
nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
nvram_error_log_size = ((part->header.length - 1) *
NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
return 0;
/* Clear the new partition */
for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
tmp_index < ((size - 1) * NVRAM_BLOCK_LEN);
tmp_index += NVRAM_BLOCK_LEN) {
rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
if (rc <= 0) {
pr_err("nvram_create_partition: nvram_write failed (%d)\n", rc);
return rc;
}
}
/* try creating a partition with the free space we have */
rc = nvram_create_os_partition();
if (!rc) {
return 0;
}
/* need to free up some space */
rc = nvram_remove_os_partition();
if (rc) {
return rc;
}
return new_part->index + NVRAM_HEADER_LEN;
}
/**
* nvram_get_partition_size - Get the data size of an nvram partition
* @data_index: This is the offset of the start of the data of
* the partition. The same value that is returned by
* nvram_create_partition().
*/
int nvram_get_partition_size(loff_t data_index)
{
struct nvram_partition *part;
/* create a partition in this new space */
rc = nvram_create_os_partition();
if (rc) {
printk(KERN_ERR "nvram_create_os_partition: Could not find a "
"NVRAM partition large enough\n");
return rc;
list_for_each_entry(part, &nvram_partitions, partition) {
if (part->index + NVRAM_HEADER_LEN == data_index)
return (part->header.length - 1) * NVRAM_BLOCK_LEN;
}
return 0;
return -1;
}
static int __init nvram_scan_partitions(void)
/**
* nvram_find_partition - Find an nvram partition by signature and name
* @name: Name of the partition or NULL for any name
* @sig: Signature to test against
* @out_size: if non-NULL, returns the size of the data part of the partition
*/
loff_t nvram_find_partition(const char *name, int sig, int *out_size)
{
struct nvram_partition *p;
list_for_each_entry(p, &nvram_partitions, partition) {
if (p->header.signature == sig &&
(!name || !strncmp(p->header.name, name, 12))) {
if (out_size)
*out_size = (p->header.length - 1) *
NVRAM_BLOCK_LEN;
return p->index + NVRAM_HEADER_LEN;
}
}
return 0;
}
int __init nvram_scan_partitions(void)
{
loff_t cur_index = 0;
struct nvram_header phead;
@ -465,7 +451,7 @@ static int __init nvram_scan_partitions(void)
int total_size;
int err;
if (ppc_md.nvram_size == NULL)
if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
return -ENODEV;
total_size = ppc_md.nvram_size();
@ -512,12 +498,16 @@ static int __init nvram_scan_partitions(void)
memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
tmp_part->index = cur_index;
list_add_tail(&tmp_part->partition, &nvram_part->partition);
list_add_tail(&tmp_part->partition, &nvram_partitions);
cur_index += phead.length * NVRAM_BLOCK_LEN;
}
err = 0;
#ifdef DEBUG_NVRAM
nvram_print_partitions("NVRAM Partitions");
#endif
out:
kfree(header);
return err;
@ -525,9 +515,10 @@ static int __init nvram_scan_partitions(void)
static int __init nvram_init(void)
{
int error;
int rc;
BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
return -ENODEV;
@ -537,29 +528,6 @@ static int __init nvram_init(void)
return rc;
}
/* initialize our anchor for the nvram partition list */
nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
if (!nvram_part) {
printk(KERN_ERR "nvram_init: Failed kmalloc\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&nvram_part->partition);
/* Get all the NVRAM partitions */
error = nvram_scan_partitions();
if (error) {
printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
return error;
}
if(nvram_setup_partition())
printk(KERN_WARNING "nvram_init: Could not find nvram partition"
" for nvram buffered error logging.\n");
#ifdef DEBUG_NVRAM
nvram_print_partitions("NVRAM Partitions");
#endif
return rc;
}
@ -568,135 +536,6 @@ void __exit nvram_cleanup(void)
misc_deregister( &nvram_dev );
}
#ifdef CONFIG_PPC_PSERIES
/* nvram_write_error_log
*
* We need to buffer the error logs into nvram to ensure that we have
* the failure information to decode. If we have a severe error there
* is no way to guarantee that the OS or the machine is in a state to
* get back to user land and write the error to disk. For example if
* the SCSI device driver causes a Machine Check by writing to a bad
* IO address, there is no way of guaranteeing that the device driver
* is in any state that is would also be able to write the error data
* captured to disk, thus we buffer it in NVRAM for analysis on the
* next boot.
*
* In NVRAM the partition containing the error log buffer will looks like:
* Header (in bytes):
* +-----------+----------+--------+------------+------------------+
* | signature | checksum | length | name | data |
* |0 |1 |2 3|4 15|16 length-1|
* +-----------+----------+--------+------------+------------------+
*
* The 'data' section would look like (in bytes):
* +--------------+------------+-----------------------------------+
* | event_logged | sequence # | error log |
* |0 3|4 7|8 nvram_error_log_size-1|
* +--------------+------------+-----------------------------------+
*
* event_logged: 0 if event has not been logged to syslog, 1 if it has
* sequence #: The unique sequence # for each event. (until it wraps)
* error log: The error log from event_scan
*/
int nvram_write_error_log(char * buff, int length,
unsigned int err_type, unsigned int error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (nvram_error_log_index == -1) {
return -ESPIPE;
}
if (length > nvram_error_log_size) {
length = nvram_error_log_size;
}
info.error_type = err_type;
info.seq_num = error_log_cnt;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
rc = ppc_md.nvram_write(buff, length, &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
return 0;
}
/* nvram_read_error_log
*
* Reads nvram for error log for at most 'length'
*/
int nvram_read_error_log(char * buff, int length,
unsigned int * err_type, unsigned int * error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (nvram_error_log_index == -1)
return -1;
if (length > nvram_error_log_size)
length = nvram_error_log_size;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
return rc;
}
rc = ppc_md.nvram_read(buff, length, &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
return rc;
}
*error_log_cnt = info.seq_num;
*err_type = info.error_type;
return 0;
}
/* This doesn't actually zero anything, but it sets the event_logged
* word to tell that this event is safely in syslog.
*/
int nvram_clear_error_log(void)
{
loff_t tmp_index;
int clear_word = ERR_FLAG_ALREADY_LOGGED;
int rc;
if (nvram_error_log_index == -1)
return -1;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
return 0;
}
#endif /* CONFIG_PPC_PSERIES */
module_init(nvram_init);
module_exit(nvram_cleanup);
MODULE_LICENSE("GPL");

View File

@ -92,7 +92,7 @@ static void pte_free_rcu_callback(struct rcu_head *head)
static void pte_free_submit(struct pte_freelist_batch *batch)
{
call_rcu(&batch->rcu, pte_free_rcu_callback);
call_rcu_sched(&batch->rcu, pte_free_rcu_callback);
}
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, unsigned shift)

View File

@ -29,6 +29,10 @@
extern spinlock_t rtc_lock;
#define NVRAM_AS0 0x74
#define NVRAM_AS1 0x75
#define NVRAM_DATA 0x77
static int nvram_as1 = NVRAM_AS1;
static int nvram_as0 = NVRAM_AS0;
static int nvram_data = NVRAM_DATA;

View File

@ -22,11 +22,25 @@
#include <asm/prom.h>
#include <asm/machdep.h>
/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20
static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);
static long nvram_error_log_index = -1;
static long nvram_error_log_size = 0;
struct err_log_info {
int error_type;
unsigned int seq_num;
};
#define NVRAM_MAX_REQ 2079
#define NVRAM_MIN_REQ 1055
#define NVRAM_LOG_PART_NAME "ibm,rtas-log"
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
@ -119,6 +133,197 @@ static ssize_t pSeries_nvram_get_size(void)
return nvram_size ? nvram_size : -ENODEV;
}
/* nvram_write_error_log
*
* We need to buffer the error logs into nvram to ensure that we have
* the failure information to decode. If we have a severe error there
* is no way to guarantee that the OS or the machine is in a state to
* get back to user land and write the error to disk. For example if
* the SCSI device driver causes a Machine Check by writing to a bad
* IO address, there is no way of guaranteeing that the device driver
* is in any state that is would also be able to write the error data
* captured to disk, thus we buffer it in NVRAM for analysis on the
* next boot.
*
* In NVRAM the partition containing the error log buffer will looks like:
* Header (in bytes):
* +-----------+----------+--------+------------+------------------+
* | signature | checksum | length | name | data |
* |0 |1 |2 3|4 15|16 length-1|
* +-----------+----------+--------+------------+------------------+
*
* The 'data' section would look like (in bytes):
* +--------------+------------+-----------------------------------+
* | event_logged | sequence # | error log |
* |0 3|4 7|8 nvram_error_log_size-1|
* +--------------+------------+-----------------------------------+
*
* event_logged: 0 if event has not been logged to syslog, 1 if it has
* sequence #: The unique sequence # for each event. (until it wraps)
* error log: The error log from event_scan
*/
int nvram_write_error_log(char * buff, int length,
unsigned int err_type, unsigned int error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (nvram_error_log_index == -1) {
return -ESPIPE;
}
if (length > nvram_error_log_size) {
length = nvram_error_log_size;
}
info.error_type = err_type;
info.seq_num = error_log_cnt;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
rc = ppc_md.nvram_write(buff, length, &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
return 0;
}
/* nvram_read_error_log
*
* Reads nvram for error log for at most 'length'
*/
int nvram_read_error_log(char * buff, int length,
unsigned int * err_type, unsigned int * error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (nvram_error_log_index == -1)
return -1;
if (length > nvram_error_log_size)
length = nvram_error_log_size;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
return rc;
}
rc = ppc_md.nvram_read(buff, length, &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
return rc;
}
*error_log_cnt = info.seq_num;
*err_type = info.error_type;
return 0;
}
/* This doesn't actually zero anything, but it sets the event_logged
* word to tell that this event is safely in syslog.
*/
int nvram_clear_error_log(void)
{
loff_t tmp_index;
int clear_word = ERR_FLAG_ALREADY_LOGGED;
int rc;
if (nvram_error_log_index == -1)
return -1;
tmp_index = nvram_error_log_index;
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
return 0;
}
/* pseries_nvram_init_log_partition
*
* This will setup the partition we need for buffering the
* error logs and cleanup partitions if needed.
*
* The general strategy is the following:
* 1.) If there is log partition large enough then use it.
* 2.) If there is none large enough, search
* for a free partition that is large enough.
* 3.) If there is not a free partition large enough remove
* _all_ OS partitions and consolidate the space.
* 4.) Will first try getting a chunk that will satisfy the maximum
* error log size (NVRAM_MAX_REQ).
* 5.) If the max chunk cannot be allocated then try finding a chunk
* that will satisfy the minum needed (NVRAM_MIN_REQ).
*/
static int __init pseries_nvram_init_log_partition(void)
{
loff_t p;
int size;
/* Scan nvram for partitions */
nvram_scan_partitions();
/* Lookg for ours */
p = nvram_find_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS, &size);
/* Found one but too small, remove it */
if (p && size < NVRAM_MIN_REQ) {
pr_info("nvram: Found too small "NVRAM_LOG_PART_NAME" partition"
",removing it...");
nvram_remove_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS);
p = 0;
}
/* Create one if we didn't find */
if (!p) {
p = nvram_create_partition(NVRAM_LOG_PART_NAME, NVRAM_SIG_OS,
NVRAM_MAX_REQ, NVRAM_MIN_REQ);
/* No room for it, try to get rid of any OS partition
* and try again
*/
if (p == -ENOSPC) {
pr_info("nvram: No room to create "NVRAM_LOG_PART_NAME
" partition, deleting all OS partitions...");
nvram_remove_partition(NULL, NVRAM_SIG_OS);
p = nvram_create_partition(NVRAM_LOG_PART_NAME,
NVRAM_SIG_OS, NVRAM_MAX_REQ,
NVRAM_MIN_REQ);
}
}
if (p <= 0) {
pr_err("nvram: Failed to find or create "NVRAM_LOG_PART_NAME
" partition, err %d\n", (int)p);
return 0;
}
nvram_error_log_index = p;
nvram_error_log_size = nvram_get_partition_size(p) -
sizeof(struct err_log_info);
return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partition);
int __init pSeries_nvram_init(void)
{
struct device_node *nvram;