dect
/
linux-2.6
Archived
13
0
Fork 0

Staging: add cpc-usb driver to the staging tree

This is a CPC CAN USB driver.

Just some comments:
cpcusb.h and cpc-usb_drv.c: Essential driver source code
sja2m16c_2.c: Helper for converting bitrate timings
cpc.h: Structures and definition needed to communicate with the device

From: Sebastian Haas <haas@ems-wuensche.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Sebastian Haas 2009-05-14 20:46:12 -07:00 committed by Greg Kroah-Hartman
parent 6456f0b768
commit e0ce8a7265
6 changed files with 2336 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,440 @@
/*
* CPC CAN Interface Definitions
*
* Copyright (C) 2000-2008 EMS Dr. Thomas Wuensche
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef CPC_HEADER
#define CPC_HEADER
// the maximum length of the union members within a CPC_MSG
// this value can be defined by the customer, but has to be
// >= 64 bytes
// however, if not defined before, we set a length of 64 byte
#if !defined(CPC_MSG_LEN) || (CPC_MSG_LEN < 64)
#undef CPC_MSG_LEN
#define CPC_MSG_LEN 64
#endif
// check the operating system used
#ifdef _WIN32 // running a Windows OS
// define basic types on Windows platforms
#ifdef _MSC_VER // Visual Studio
typedef unsigned __int8 u8;
typedef unsigned __int16 u16;
typedef unsigned __int32 u32;
#else // Borland Compiler
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#endif
// on Windows OS we use a byte alignment of 1
#pragma pack(push, 1)
// set the calling conventions for the library function calls
#define CALL_CONV __stdcall
#else
// Kernel headers already define this types
#ifndef __KERNEL__
// define basic types
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#endif
// Linux does not use this calling convention
#define CALL_CONV
#endif
// Transmission of events from CPC interfaces to PC can be individually
// controlled per event type. Default state is: don't transmit
// Control values are constructed by bit-or of Subject and Action
// and passed to CPC_Control()
// Control-Values for CPC_Control() Command Subject Selection
#define CONTR_CAN_Message 0x04
#define CONTR_Busload 0x08
#define CONTR_CAN_State 0x0C
#define CONTR_SendAck 0x10
#define CONTR_Filter 0x14
#define CONTR_CmdQueue 0x18 // reserved, do not use
#define CONTR_BusError 0x1C
// Control Command Actions
#define CONTR_CONT_OFF 0
#define CONTR_CONT_ON 1
#define CONTR_SING_ON 2
// CONTR_SING_ON doesn't change CONTR_CONT_ON state, so it should be
// read as: transmit at least once
// defines for confirmed request
#define DO_NOT_CONFIRM 0
#define DO_CONFIRM 1
// event flags
#define EVENT_READ 0x01
#define EVENT_WRITE 0x02
// Messages from CPC to PC contain a message object type field.
// The following message types are sent by CPC and can be used in
// handlers, others should be ignored.
#define CPC_MSG_T_RESYNC 0 // Normally to be ignored
#define CPC_MSG_T_CAN 1 // CAN data frame
#define CPC_MSG_T_BUSLOAD 2 // Busload message
#define CPC_MSG_T_STRING 3 // Normally to be ignored
#define CPC_MSG_T_CONTI 4 // Normally to be ignored
#define CPC_MSG_T_MEM 7 // Normally not to be handled
#define CPC_MSG_T_RTR 8 // CAN remote frame
#define CPC_MSG_T_TXACK 9 // Send acknowledge
#define CPC_MSG_T_POWERUP 10 // Power-up message
#define CPC_MSG_T_CMD_NO 11 // Normally to be ignored
#define CPC_MSG_T_CAN_PRMS 12 // Actual CAN parameters
#define CPC_MSG_T_ABORTED 13 // Command aborted message
#define CPC_MSG_T_CANSTATE 14 // CAN state message
#define CPC_MSG_T_RESET 15 // used to reset CAN-Controller
#define CPC_MSG_T_XCAN 16 // XCAN data frame
#define CPC_MSG_T_XRTR 17 // XCAN remote frame
#define CPC_MSG_T_INFO 18 // information strings
#define CPC_MSG_T_CONTROL 19 // used for control of interface/driver behaviour
#define CPC_MSG_T_CONFIRM 20 // response type for confirmed requests
#define CPC_MSG_T_OVERRUN 21 // response type for overrun conditions
#define CPC_MSG_T_KEEPALIVE 22 // response type for keep alive conditions
#define CPC_MSG_T_CANERROR 23 // response type for bus error conditions
#define CPC_MSG_T_DISCONNECTED 24 // response type for a disconnected interface
#define CPC_MSG_T_ERR_COUNTER 25 // RX/TX error counter of CAN controller
#define CPC_MSG_T_FIRMWARE 100 // response type for USB firmware download
// Messages from the PC to the CPC interface contain a command field
// Most of the command types are wrapped by the library functions and have therefore
// normally not to be used.
// However, programmers who wish to circumvent the library and talk directly
// to the drivers (mainly Linux programmers) can use the following
// command types:
#define CPC_CMD_T_CAN 1 // CAN data frame
#define CPC_CMD_T_CONTROL 3 // used for control of interface/driver behaviour
#define CPC_CMD_T_CAN_PRMS 6 // set CAN parameters
#define CPC_CMD_T_CLEARBUF 8 // clears input queue; this is depricated, use CPC_CMD_T_CLEAR_MSG_QUEUE instead
#define CPC_CMD_T_INQ_CAN_PARMS 11 // inquire actual CAN parameters
#define CPC_CMD_T_FILTER_PRMS 12 // set filter parameter
#define CPC_CMD_T_RTR 13 // CAN remote frame
#define CPC_CMD_T_CANSTATE 14 // CAN state message
#define CPC_CMD_T_XCAN 15 // XCAN data frame
#define CPC_CMD_T_XRTR 16 // XCAN remote frame
#define CPC_CMD_T_RESET 17 // used to reset CAN-Controller
#define CPC_CMD_T_INQ_INFO 18 // miscellanous information strings
#define CPC_CMD_T_OPEN_CHAN 19 // open a channel
#define CPC_CMD_T_CLOSE_CHAN 20 // close a channel
#define CPC_CMD_T_CNTBUF 21 // this is depricated, use CPC_CMD_T_INQ_MSG_QUEUE_CNT instead
#define CPC_CMD_T_CAN_EXIT 200 // exit the CAN (disable interrupts; reset bootrate; reset output_cntr; mode = 1)
#define CPC_CMD_T_INQ_MSG_QUEUE_CNT CPC_CMD_T_CNTBUF // inquires the count of elements in the message queue
#define CPC_CMD_T_INQ_ERR_COUNTER 25 // request the CAN controllers error counter
#define CPC_CMD_T_CLEAR_MSG_QUEUE CPC_CMD_T_CLEARBUF // clear CPC_MSG queue
#define CPC_CMD_T_CLEAR_CMD_QUEUE 28 // clear CPC_CMD queue
#define CPC_CMD_T_FIRMWARE 100 // reserved, must not be used
#define CPC_CMD_T_USB_RESET 101 // reserved, must not be used
#define CPC_CMD_T_WAIT_NOTIFY 102 // reserved, must not be used
#define CPC_CMD_T_WAIT_SETUP 103 // reserved, must not be used
#define CPC_CMD_T_ABORT 255 // Normally not to be used
// definitions for CPC_MSG_T_INFO
// information sources
#define CPC_INFOMSG_T_UNKNOWN_SOURCE 0
#define CPC_INFOMSG_T_INTERFACE 1
#define CPC_INFOMSG_T_DRIVER 2
#define CPC_INFOMSG_T_LIBRARY 3
// information types
#define CPC_INFOMSG_T_UNKNOWN_TYPE 0
#define CPC_INFOMSG_T_VERSION 1
#define CPC_INFOMSG_T_SERIAL 2
// definitions for controller types
#define PCA82C200 1 // Philips basic CAN controller, replaced by SJA1000
#define SJA1000 2 // Philips basic CAN controller
#define AN82527 3 // Intel full CAN controller
#define M16C_BASIC 4 // M16C controller running in basic CAN (not full CAN) mode
// channel open error codes
#define CPC_ERR_NO_FREE_CHANNEL -1 // no more free space within the channel array
#define CPC_ERR_CHANNEL_ALREADY_OPEN -2 // the channel is already open
#define CPC_ERR_CHANNEL_NOT_ACTIVE -3 // access to a channel not active failed
#define CPC_ERR_NO_DRIVER_PRESENT -4 // no driver at the location searched by the library
#define CPC_ERR_NO_INIFILE_PRESENT -5 // the library could not find the inifile
#define CPC_ERR_WRONG_PARAMETERS -6 // wrong parameters in the inifile
#define CPC_ERR_NO_INTERFACE_PRESENT -7 // 1. The specified interface is not connected
// 2. The interface (mostly CPC-USB) was disconnected upon operation
#define CPC_ERR_NO_MATCHING_CHANNEL -8 // the driver couldn't find a matching channel
#define CPC_ERR_NO_BUFFER_AVAILABLE -9 // the driver couldn't allocate buffer for messages
#define CPC_ERR_NO_INTERRUPT -10 // the requested interrupt couldn't be claimed
#define CPC_ERR_NO_MATCHING_INTERFACE -11 // no interface type related to this channel was found
#define CPC_ERR_NO_RESOURCES -12 // the requested resources could not be claimed
#define CPC_ERR_SOCKET -13 // error concerning TCP sockets
// init error codes
#define CPC_ERR_WRONG_CONTROLLER_TYPE -14 // wrong CAN controller type within initialization
#define CPC_ERR_NO_RESET_MODE -15 // the controller could not be set into reset mode
#define CPC_ERR_NO_CAN_ACCESS -16 // the CAN controller could not be accessed
// transmit error codes
#define CPC_ERR_CAN_WRONG_ID -20 // the provided CAN id is too big
#define CPC_ERR_CAN_WRONG_LENGTH -21 // the provided CAN length is too long
#define CPC_ERR_CAN_NO_TRANSMIT_BUF -22 // the transmit buffer was occupied
#define CPC_ERR_CAN_TRANSMIT_TIMEOUT -23 // The message could not be sent within a
// specified time
// other error codes
#define CPC_ERR_SERVICE_NOT_SUPPORTED -30 // the requested service is not supported by the interface
#define CPC_ERR_IO_TRANSFER -31 // a transmission error down to the driver occurred
#define CPC_ERR_TRANSMISSION_FAILED -32 // a transmission error down to the interface occurred
#define CPC_ERR_TRANSMISSION_TIMEOUT -33 // a timeout occurred within transmission to the interface
#define CPC_ERR_OP_SYS_NOT_SUPPORTED -35 // the operating system is not supported
#define CPC_ERR_UNKNOWN -40 // an unknown error ocurred (mostly IOCTL errors)
#define CPC_ERR_LOADING_DLL -50 // the library 'cpcwin.dll' could not be loaded
#define CPC_ERR_ASSIGNING_FUNCTION -51 // the specified function could not be assigned
#define CPC_ERR_DLL_INITIALIZATION -52 // the DLL was not initialized correctly
#define CPC_ERR_MISSING_LICFILE -55 // the file containing the licenses does not exist
#define CPC_ERR_MISSING_LICENSE -56 // a required license was not found
// CAN state bit values. Ignore any bits not listed
#define CPC_CAN_STATE_BUSOFF 0x80
#define CPC_CAN_STATE_ERROR 0x40
// Mask to help ignore undefined bits
#define CPC_CAN_STATE_MASK 0xc0
// CAN-Message representation in a CPC_MSG
// Message object type is CPC_MSG_T_CAN or CPC_MSG_T_RTR
// or CPC_MSG_T_XCAN or CPC_MSG_T_XRTR
typedef struct CPC_CAN_MSG {
u32 id;
u8 length;
u8 msg[8];
} CPC_CAN_MSG_T;
// representation of the CAN parameters for the PCA82C200 controller
typedef struct CPC_PCA82C200_PARAMS {
u8 acc_code; // Acceptance-code for receive, Standard: 0
u8 acc_mask; // Acceptance-mask for receive, Standard: 0xff (everything)
u8 btr0; // Bus-timing register 0
u8 btr1; // Bus-timing register 1
u8 outp_contr; // Output-control register
} CPC_PCA82C200_PARAMS_T;
// representation of the CAN parameters for the SJA1000 controller
typedef struct CPC_SJA1000_PARAMS {
u8 mode; // enables single or dual acceptance filtering
u8 acc_code0; // Acceptance-code for receive, Standard: 0
u8 acc_code1;
u8 acc_code2;
u8 acc_code3;
u8 acc_mask0; // Acceptance-mask for receive, Standard: 0xff (everything)
u8 acc_mask1;
u8 acc_mask2;
u8 acc_mask3;
u8 btr0; // Bus-timing register 0
u8 btr1; // Bus-timing register 1
u8 outp_contr; // Output-control register
} CPC_SJA1000_PARAMS_T;
// representation of the CAN parameters for the M16C controller
// in basic CAN mode (means no full CAN)
typedef struct CPC_M16C_BASIC_PARAMS {
u8 con0;
u8 con1;
u8 ctlr0;
u8 ctlr1;
u8 clk;
u8 acc_std_code0;
u8 acc_std_code1;
u8 acc_ext_code0;
u8 acc_ext_code1;
u8 acc_ext_code2;
u8 acc_ext_code3;
u8 acc_std_mask0;
u8 acc_std_mask1;
u8 acc_ext_mask0;
u8 acc_ext_mask1;
u8 acc_ext_mask2;
u8 acc_ext_mask3;
} CPC_M16C_BASIC_PARAMS_T;
// CAN params message representation
typedef struct CPC_CAN_PARAMS {
u8 cc_type; // represents the controller type
union {
CPC_M16C_BASIC_PARAMS_T m16c_basic;
CPC_SJA1000_PARAMS_T sja1000;
CPC_PCA82C200_PARAMS_T pca82c200;
} cc_params;
} CPC_CAN_PARAMS_T;
// the following structures are slightly different for Windows and Linux
// To be able to use the 'Select' mechanism with Linux the application
// needs to know the devices file desciptor.
// This mechanism is not implemented within Windows and the file descriptor
// is therefore not needed
#ifdef _WIN32
// CAN init params message representation
typedef struct CPC_INIT_PARAMS {
CPC_CAN_PARAMS_T canparams;
} CPC_INIT_PARAMS_T;
#else// Linux
// CHAN init params representation
typedef struct CPC_CHAN_PARAMS {
int fd;
} CPC_CHAN_PARAMS_T;
// CAN init params message representation
typedef struct CPC_INIT_PARAMS {
CPC_CHAN_PARAMS_T chanparams;
CPC_CAN_PARAMS_T canparams;
} CPC_INIT_PARAMS_T;
#endif
// structure for confirmed message handling
typedef struct CPC_CONFIRM {
u8 result; // error code
} CPC_CONFIRM_T;
// structure for information requests
typedef struct CPC_INFO {
u8 source; // interface, driver or library
u8 type; // version or serial number
char msg[CPC_MSG_LEN - 2]; // string holding the requested information
} CPC_INFO_T;
// OVERRUN ///////////////////////////////////////
// In general two types of overrun may occur.
// A hardware overrun, where the CAN controller
// lost a message, because the interrupt was
// not handled before the next messgae comes in.
// Or a software overrun, where i.e. a received
// message could not be stored in the CPC_MSG
// buffer.
// After a software overrun has occurred
// we wait until we have CPC_OVR_GAP slots
// free in the CPC_MSG buffer.
#define CPC_OVR_GAP 10
// Two types of software overrun may occur.
// A received CAN message or a CAN state event
// can cause an overrun.
// Note: A CPC_CMD which would normally store
// its result immediately in the CPC_MSG
// queue may fail, because the message queue is full.
// This will not generate an overrun message, but
// will halt command execution, until this command
// is able to store its message in the message queue.
#define CPC_OVR_EVENT_CAN 0x01
#define CPC_OVR_EVENT_CANSTATE 0x02
#define CPC_OVR_EVENT_BUSERROR 0x04
// If the CAN controller lost a message
// we indicate it with the highest bit
// set in the count field.
#define CPC_OVR_HW 0x80
// structure for overrun conditions
typedef struct {
u8 event;
u8 count;
} CPC_OVERRUN_T;
// CAN errors ////////////////////////////////////
// Each CAN controller type has different
// registers to record errors.
// Therefor a structure containing the specific
// errors is set up for each controller here
// SJA1000 error structure
// see the SJA1000 datasheet for detailed
// explanation of the registers
typedef struct CPC_SJA1000_CAN_ERROR {
u8 ecc; // error capture code register
u8 rxerr; // RX error counter register
u8 txerr; // TX error counter register
} CPC_SJA1000_CAN_ERROR_T;
// M16C error structure
// see the M16C datasheet for detailed
// explanation of the registers
typedef struct CPC_M16C_CAN_ERROR {
u8 tbd; // to be defined
} CPC_M16C_CAN_ERROR_T;
// structure for CAN error conditions
#define CPC_CAN_ECODE_ERRFRAME 0x01
typedef struct CPC_CAN_ERROR {
u8 ecode;
struct {
u8 cc_type; // CAN controller type
union {
CPC_SJA1000_CAN_ERROR_T sja1000;
CPC_M16C_CAN_ERROR_T m16c;
} regs;
} cc;
} CPC_CAN_ERROR_T;
// Structure containing RX/TX error counter.
// This structure is used to request the
// values of the CAN controllers TX and RX
// error counter.
typedef struct CPC_CAN_ERR_COUNTER {
u8 rx;
u8 tx;
} CPC_CAN_ERR_COUNTER_T;
// If this flag is set, transmissions from PC to CPC are protected against loss
#define CPC_SECURE_TO_CPC 0x01
// If this flag is set, transmissions from CPC to PC are protected against loss
#define CPC_SECURE_TO_PC 0x02
// If this flag is set, the CAN-transmit buffer is checked to be free before sending a message
#define CPC_SECURE_SEND 0x04
// If this flag is set, the transmission complete flag is checked
// after sending a message
// THIS IS CURRENTLY ONLY IMPLEMENTED IN THE PASSIVE INTERFACE DRIVERS
#define CPC_SECURE_TRANSMIT 0x08
// main message type used between library and application
typedef struct CPC_MSG {
u8 type; // type of message
u8 length; // length of data within union 'msg'
u8 msgid; // confirmation handle
u32 ts_sec; // timestamp in seconds
u32 ts_nsec; // timestamp in nano seconds
union {
u8 generic[CPC_MSG_LEN];
CPC_CAN_MSG_T canmsg;
CPC_CAN_PARAMS_T canparams;
CPC_CONFIRM_T confirmation;
CPC_INFO_T info;
CPC_OVERRUN_T overrun;
CPC_CAN_ERROR_T error;
CPC_CAN_ERR_COUNTER_T err_counter;
u8 busload;
u8 canstate;
} msg;
} CPC_MSG_T;
#ifdef _WIN32
#pragma pack(pop) // reset the byte alignment
#endif
#endif // CPC_HEADER

View File

@ -0,0 +1,85 @@
/*
* CPCLIB
*
* Copyright (C) 2000-2008 EMS Dr. Thomas Wuensche
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*/
#ifndef CPC_INT_H
#define CPC_INT_H
#include <linux/wait.h>
#define CPC_MSG_BUF_CNT 1500
#ifdef CONFIG_PROC_FS
# define CPC_PROC_DIR "driver/"
#endif
#undef dbg
#undef err
#undef info
/* Use our own dbg macro */
#define dbg(format, arg...) do { if (debug) printk( KERN_INFO format "\n" , ## arg); } while (0)
#define err(format, arg...) do { printk( KERN_INFO "ERROR " format "\n" , ## arg); } while (0)
#define info(format, arg...) do { printk( KERN_INFO format "\n" , ## arg); } while (0)
/* Macros help using of our buffers */
#define IsBufferFull(x) (!(x)->WnR) && ((x)->iidx == (x)->oidx)
#define IsBufferEmpty(x) ((x)->WnR) && ((x)->iidx == (x)->oidx)
#define IsBufferNotEmpty(x) (!(x)->WnR) || ((x)->iidx != (x)->oidx)
#define ResetBuffer(x) do { (x)->oidx = (x)->iidx=0; (x)->WnR = 1; } while(0);
#define CPC_BufWriteAllowed ((chan->oidx != chan->iidx) || chan->WnR)
typedef void (*chan_write_byte_t) (void *chan, unsigned int reg,
unsigned char val);
typedef unsigned char (*chan_read_byte_t) (void *chan, unsigned int reg);
typedef struct CPC_CHAN {
void __iomem * canBase; // base address of SJA1000
chan_read_byte_t read_byte; // CAN controller read access routine
chan_write_byte_t write_byte; // CAN controller write access routine
CPC_MSG_T *buf; // buffer for CPC msg
unsigned int iidx;
unsigned int oidx;
unsigned int WnR;
unsigned int minor;
unsigned int locked;
unsigned int irqDisabled;
unsigned char cpcCtrlCANMessage;
unsigned char cpcCtrlCANState;
unsigned char cpcCtrlBUSState;
unsigned char controllerType;
unsigned long ovrTimeSec;
unsigned long ovrTimeNSec;
unsigned long ovrLockedBuffer;
CPC_OVERRUN_T ovr;
/* for debugging only */
unsigned int handledIrqs;
unsigned int lostMessages;
unsigned int sentStdCan;
unsigned int sentExtCan;
unsigned int sentStdRtr;
unsigned int sentExtRtr;
unsigned int recvStdCan;
unsigned int recvExtCan;
unsigned int recvStdRtr;
unsigned int recvExtRtr;
wait_queue_head_t *CPCWait_q;
void *private;
} CPC_CHAN_T;
#endif

View File

@ -0,0 +1,86 @@
/* Header for CPC-USB Driver ********************
* Copyright 1999, 2000, 2001
*
* Company: EMS Dr. Thomas Wuensche
* Sonnenhang 3
* 85304 Ilmmuenster
* Phone: +49-8441-490260
* Fax: +49-8441-81860
* email: support@ems-wuensche.com
* WWW: www.ems-wuensche.com
*/
#ifndef CPCUSB_H
#define CPCUSB_H
#undef err
#undef dbg
#undef info
/* Use our own dbg macro */
#define dbg(format, arg...) do { if (debug) printk(KERN_INFO "CPC-USB: " format "\n" , ## arg); } while (0)
#define info(format, arg...) do { printk(KERN_INFO "CPC-USB: " format "\n" , ## arg); } while (0)
#define err(format, arg...) do { printk(KERN_INFO "CPC-USB(ERROR): " format "\n" , ## arg); } while (0)
#define CPC_USB_CARD_CNT 4
typedef struct CPC_USB_READ_URB {
unsigned char *buffer; /* the buffer to send data */
size_t size; /* the size of the send buffer */
struct urb *urb; /* the urb used to send data */
} CPC_USB_READ_URB_T;
typedef struct CPC_USB_WRITE_URB {
unsigned char *buffer; /* the buffer to send data */
size_t size; /* the size of the send buffer */
struct urb *urb; /* the urb used to send data */
atomic_t busy; /* true if write urb is busy */
struct completion finished; /* wait for the write to finish */
} CPC_USB_WRITE_URB_T;
#define CPC_USB_URB_CNT 10
typedef struct CPC_USB {
struct usb_device *udev; /* save off the usb device pointer */
struct usb_interface *interface; /* the interface for this device */
unsigned char minor; /* the starting minor number for this device */
unsigned char num_ports; /* the number of ports this device has */
int num_intr_in; /* number of interrupt in endpoints we have */
int num_bulk_in; /* number of bulk in endpoints we have */
int num_bulk_out; /* number of bulk out endpoints we have */
CPC_USB_READ_URB_T urbs[CPC_USB_URB_CNT];
unsigned char intr_in_buffer[4]; /* interrupt transfer buffer */
struct urb *intr_in_urb; /* interrupt transfer urb */
CPC_USB_WRITE_URB_T wrUrbs[CPC_USB_URB_CNT];
int open; /* if the port is open or not */
int present; /* if the device is not disconnected */
struct semaphore sem; /* locks this structure */
int free_slots; /* free send slots of CPC-USB */
int idx;
spinlock_t slock;
char serialNumber[128]; /* serial number */
int productId; /* product id to differ between M16C and LPC2119 */
CPC_CHAN_T *chan;
} CPC_USB_T;
#define CPCTable CPCUSB_Table
#define CPC_DRIVER_VERSION "0.724"
#define CPC_DRIVER_SERIAL "not applicable"
#define OBUF_SIZE 255 // 4096
/* read timeouts -- RD_NAK_TIMEOUT * RD_EXPIRE = Number of seconds */
#define RD_NAK_TIMEOUT (10*HZ) /* Default number of X seconds to wait */
#define RD_EXPIRE 12 /* Number of attempts to wait X seconds */
#define CPC_USB_BASE_MNR 0 /* CPC-USB start at minor 0 */
#endif

View File

@ -0,0 +1,41 @@
#ifndef SJA2M16C_H
#define SJA2M16C_H
#include "cpc.h"
#define BAUDRATE_TOLERANCE_PERCENT 1
#define SAMPLEPOINT_TOLERANCE_PERCENT 5
#define SAMPLEPOINT_UPPER_LIMIT 88
// M16C parameters
typedef struct FIELD_C0CONR {
unsigned int brp:4;
unsigned int sam:1;
unsigned int pr:3;
unsigned int dummy:8;
} FIELD_C0CONR_T;
typedef struct FIELD_C1CONR {
unsigned int ph1:3;
unsigned int ph2:3;
unsigned int sjw:2;
unsigned int dummy:8;
} FIELD_C1CONR_T;
typedef union C0CONR {
unsigned char c0con;
FIELD_C0CONR_T bc0con;
} C0CONR_T;
typedef union C1CONR {
unsigned char c1con;
FIELD_C1CONR_T bc1con;
} C1CONR_T;
#define SJA_TSEG1 ((pParams->btr1 & 0x0f)+1)
#define SJA_TSEG2 (((pParams->btr1 & 0x70)>>4)+1)
#define SJA_BRP ((pParams->btr0 & 0x3f)+1)
#define SJA_SJW ((pParams->btr0 & 0xc0)>>6)
#define SJA_SAM ((pParams->btr1 & 0x80)>>7)
int baudrate_m16c(int clk, int brp, int pr, int ph1, int ph2);
int samplepoint_m16c(int brp, int pr, int ph1, int ph2);
int SJA1000_TO_M16C_BASIC_Params(CPC_MSG_T * pMsg);
#endif /* */

View File

@ -0,0 +1,452 @@
/****************************************************************************
*
* Copyright (c) 2003,2004 by EMS Dr. Thomas Wuensche
*
* - All rights reserved -
*
* This code is provided "as is" without warranty of any kind, either
* expressed or implied, including but not limited to the liability
* concerning the freedom from material defects, the fitness for parti-
* cular purposes or the freedom of proprietary rights of third parties.
*
*****************************************************************************
* Module name.: cpcusb
*****************************************************************************
* Include file: cpc.h
*****************************************************************************
* Project.....: Windows Driver Development Kit
* Filename....: sja2m16c.cpp
* Authors.....: (GU) Gerhard Uttenthaler
* (CS) Christian Schoett
*****************************************************************************
* Short descr.: converts baudrate between SJA1000 and M16C
*****************************************************************************
* Description.: handles the baudrate conversion from SJA1000 parameters to
* M16C parameters
*****************************************************************************
* Address : EMS Dr. Thomas Wuensche
* Sonnenhang 3
* D-85304 Ilmmuenster
* Tel. : +49-8441-490260
* Fax. : +49-8441-81860
* email: support@ems-wuensche.com
*****************************************************************************
* History
*****************************************************************************
* Version Date Auth Remark
*
* 01.00 ?? GU - initial release
* 01.10 ?????????? CS - adapted to fit into the USB Windows driver
* 02.00 18.08.2004 GU - improved the baudrate calculating algorithm
* - implemented acceptance filtering
* 02.10 10.09.2004 CS - adapted to fit into the USB Windows driver
*****************************************************************************
* ToDo's
*****************************************************************************
*/
/****************************************************************************/
/* I N C L U D E S
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/completion.h>
#include <asm/uaccess.h>
#include <linux/usb.h>
#include "cpc.h"
#include "cpc_int.h"
#include "cpcusb.h"
#include "sja2m16c.h"
/*********************************************************************/
int baudrate_m16c(int clk, int brp, int pr, int ph1, int ph2)
{
return (16000000 / (1 << clk)) / 2 / (brp + 1) / (1 + pr + 1 +
ph1 + 1 + ph2 +
1);
}
/*********************************************************************/
int samplepoint_m16c(int brp, int pr, int ph1, int ph2)
{
return (100 * (1 + pr + 1 + ph1 + 1)) / (1 + pr + 1 + ph1 + 1 +
ph2 + 1);
}
/****************************************************************************
* Function.....: SJA1000_TO_M16C_BASIC_Params
*
* Task.........: This routine converts SJA1000 CAN btr parameters into M16C
* parameters based on the sample point and the error. In
* addition it converts the acceptance filter parameters to
* suit the M16C parameters
*
* Parameters...: None
*
* Return values: None
*
* Comments.....:
*****************************************************************************
* History
*****************************************************************************
* 19.01.2005 CS - modifed the conversion of SJA1000 filter params into
* M16C params. Due to compatibility reasons with the
* older 82C200 CAN controller the SJA1000
****************************************************************************/
int SJA1000_TO_M16C_BASIC_Params(CPC_MSG_T * in)
{
int sjaBaudrate;
int sjaSamplepoint;
int *baudrate_error; // BRP[0..15], PR[0..7], PH1[0..7], PH2[0..7]
int *samplepoint_error; // BRP[0..15], PR[0..7], PH1[0..7], PH2[0..7]
int baudrate_error_merk;
int clk, brp, pr, ph1, ph2;
int clk_merk, brp_merk, pr_merk, ph1_merk, ph2_merk;
int index;
unsigned char acc_code0, acc_code1, acc_code2, acc_code3;
unsigned char acc_mask0, acc_mask1, acc_mask2, acc_mask3;
CPC_MSG_T * out;
C0CONR_T c0con;
C1CONR_T c1con;
int tmpAccCode;
int tmpAccMask;
// we have to convert the parameters into M16C parameters
CPC_SJA1000_PARAMS_T * pParams;
// check if the type is CAN parameters and if we have to convert the given params
if (in->type != CPC_CMD_T_CAN_PRMS
|| in->msg.canparams.cc_type != SJA1000)
return 0;
pParams =
(CPC_SJA1000_PARAMS_T *) & in->msg.canparams.cc_params.sja1000;
acc_code0 = pParams->acc_code0;
acc_code1 = pParams->acc_code1;
acc_code2 = pParams->acc_code2;
acc_code3 = pParams->acc_code3;
acc_mask0 = pParams->acc_mask0;
acc_mask1 = pParams->acc_mask1;
acc_mask2 = pParams->acc_mask2;
acc_mask3 = pParams->acc_mask3;
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("acc_code0: %2.2Xh\n", acc_code0);
info("acc_code1: %2.2Xh\n", acc_code1);
info("acc_code2: %2.2Xh\n", acc_code2);
info("acc_code3: %2.2Xh\n", acc_code3);
info("acc_mask0: %2.2Xh\n", acc_mask0);
info("acc_mask1: %2.2Xh\n", acc_mask1);
info("acc_mask2: %2.2Xh\n", acc_mask2);
info("acc_mask3: %2.2Xh\n", acc_mask3);
#endif /* */
if (!
(baudrate_error =
(int *) vmalloc(sizeof(int) * 16 * 8 * 8 * 8 * 5))) {
err("Could not allocate memory\n");
return -3;
}
if (!
(samplepoint_error =
(int *) vmalloc(sizeof(int) * 16 * 8 * 8 * 8 * 5))) {
err("Could not allocate memory\n");
vfree(baudrate_error);
return -3;
}
memset(baudrate_error, 0xff, sizeof(baudrate_error));
memset(samplepoint_error, 0xff, sizeof(baudrate_error));
sjaBaudrate =
16000000 / 2 / SJA_BRP / (1 + SJA_TSEG1 + SJA_TSEG2);
sjaSamplepoint =
100 * (1 + SJA_TSEG1) / (1 + SJA_TSEG1 + SJA_TSEG2);
if (sjaBaudrate == 0) {
vfree(baudrate_error);
vfree(samplepoint_error);
return -2;
}
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("\nStarting SJA CAN params\n");
info("-------------------------\n");
info("TS1 : %2.2Xh TS2 : %2.2Xh\n", SJA_TSEG1, SJA_TSEG2);
info("BTR0 : %2.2Xh BTR1: %2.2Xh\n", pParams->btr0,
pParams->btr1);
info("Baudrate: %d.%dkBaud\n", sjaBaudrate / 1000,
sjaBaudrate % 1000);
info("Sample P: 0.%d\n", sjaSamplepoint);
info("\n");
#endif /* */
c0con.bc0con.sam = SJA_SAM;
c1con.bc1con.sjw = SJA_SJW;
// calculate errors for all baudrates
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
baudrate_error[index] =
100 *
abs(baudrate_m16c
(clk, brp, pr, ph1,
ph2) -
sjaBaudrate) /
sjaBaudrate;
samplepoint_error[index] =
abs(samplepoint_m16c
(brp, pr, ph1,
ph2) -
sjaSamplepoint);
#if 0
info
("Baudrate : %d kBaud\n",
baudrate_m16c(clk,
brp, pr,
ph1,
ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
info
("clk : %d\n",
clk);
#endif /* */
index++;
}
}
}
}
}
// mark all baudrate_error entries which are outer limits
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
if ((baudrate_error[index]
>
BAUDRATE_TOLERANCE_PERCENT)
||
(samplepoint_error
[index] >
SAMPLEPOINT_TOLERANCE_PERCENT)
||
(samplepoint_m16c
(brp, pr, ph1,
ph2) >
SAMPLEPOINT_UPPER_LIMIT))
{
baudrate_error
[index] = -1;
} else
if (((1 + pr + 1 +
ph1 + 1 + ph2 +
1) < 8)
||
((1 + pr + 1 +
ph1 + 1 + ph2 +
1) > 25)) {
baudrate_error
[index] = -1;
}
#if 0
else {
info
("Baudrate : %d kBaud\n",
baudrate_m16c
(clk, brp, pr,
ph1, ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
}
#endif /* */
index++;
}
}
}
}
}
// find list of minimum of baudrate_error within unmarked entries
clk_merk = brp_merk = pr_merk = ph1_merk = ph2_merk = 0;
baudrate_error_merk = 100;
index = 0;
for (clk = 0; clk < 5; clk++) {
for (brp = 0; brp < 16; brp++) {
for (pr = 0; pr < 8; pr++) {
for (ph1 = 0; ph1 < 8; ph1++) {
for (ph2 = 0; ph2 < 8; ph2++) {
if (baudrate_error[index]
!= -1) {
if (baudrate_error
[index] <
baudrate_error_merk)
{
baudrate_error_merk
=
baudrate_error
[index];
brp_merk =
brp;
pr_merk =
pr;
ph1_merk =
ph1;
ph2_merk =
ph2;
clk_merk =
clk;
#if 0
info
("brp: %2.2Xh pr: %2.2Xh ph1: %2.2Xh ph2: %2.2Xh\n",
brp,
pr,
ph1,
ph2);
info
("Baudrate : %d kBaud\n",
baudrate_m16c
(clk,
brp,
pr,
ph1,
ph2));
info
("Baudrate Error: %d\n",
baudrate_error
[index]);
info
("Sample P Error: %d\n",
samplepoint_error
[index]);
#endif /* */
}
}
index++;
}
}
}
}
}
if (baudrate_error_merk == 100) {
info("ERROR: Could not convert CAN init parameter\n");
vfree(baudrate_error);
vfree(samplepoint_error);
return -1;
}
// setting m16c CAN parameter
c0con.bc0con.brp = brp_merk;
c0con.bc0con.pr = pr_merk;
c1con.bc1con.ph1 = ph1_merk;
c1con.bc1con.ph2 = ph2_merk;
#ifdef _DEBUG_OUTPUT_CAN_PARAMS
info("\nResulting M16C CAN params\n");
info("-------------------------\n");
info("clk : %2.2Xh\n", clk_merk);
info("ph1 : %2.2Xh ph2: %2.2Xh\n", c1con.bc1con.ph1 + 1,
c1con.bc1con.ph2 + 1);
info("pr : %2.2Xh brp: %2.2Xh\n", c0con.bc0con.pr + 1,
c0con.bc0con.brp + 1);
info("sjw : %2.2Xh sam: %2.2Xh\n", c1con.bc1con.sjw,
c0con.bc0con.sam);
info("co1 : %2.2Xh co0: %2.2Xh\n", c1con.c1con, c0con.c0con);
info("Baudrate: %d.%dBaud\n",
baudrate_m16c(clk_merk, c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2) / 1000,
baudrate_m16c(clk_merk, c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2) % 1000);
info("Sample P: 0.%d\n",
samplepoint_m16c(c0con.bc0con.brp, c0con.bc0con.pr,
c1con.bc1con.ph1, c1con.bc1con.ph2));
info("\n");
#endif /* */
out = in;
out->type = 6;
out->length = sizeof(CPC_M16C_BASIC_PARAMS_T) + 1;
out->msg.canparams.cc_type = M16C_BASIC;
out->msg.canparams.cc_params.m16c_basic.con0 = c0con.c0con;
out->msg.canparams.cc_params.m16c_basic.con1 = c1con.c1con;
out->msg.canparams.cc_params.m16c_basic.ctlr0 = 0x4C;
out->msg.canparams.cc_params.m16c_basic.ctlr1 = 0x00;
out->msg.canparams.cc_params.m16c_basic.clk = clk_merk;
out->msg.canparams.cc_params.m16c_basic.acc_std_code0 =
acc_code0;
out->msg.canparams.cc_params.m16c_basic.acc_std_code1 = acc_code1;
// info("code0: 0x%2.2X, code1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_code0, out->msg.canparams.cc_params.m16c_basic.acc_std_code1);
tmpAccCode = (acc_code1 >> 5) + (acc_code0 << 3);
out->msg.canparams.cc_params.m16c_basic.acc_std_code0 =
(unsigned char) tmpAccCode;
out->msg.canparams.cc_params.m16c_basic.acc_std_code1 =
(unsigned char) (tmpAccCode >> 8);
// info("code0: 0x%2.2X, code1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_code0, out->msg.canparams.cc_params.m16c_basic.acc_std_code1);
out->msg.canparams.cc_params.m16c_basic.acc_std_mask0 =
~acc_mask0;
out->msg.canparams.cc_params.m16c_basic.acc_std_mask1 =
~acc_mask1;
// info("mask0: 0x%2.2X, mask1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_mask0, out->msg.canparams.cc_params.m16c_basic.acc_std_mask1);
tmpAccMask = ((acc_mask1) >> 5) + ((acc_mask0) << 3);
// info("tmpAccMask: 0x%4.4X\n", tmpAccMask);
out->msg.canparams.cc_params.m16c_basic.acc_std_mask0 =
(unsigned char) ~tmpAccMask;
out->msg.canparams.cc_params.m16c_basic.acc_std_mask1 =
(unsigned char) ~(tmpAccMask >> 8);
// info("mask0: 0x%2.2X, mask1: 0x%2.2X\n", out->msg.canparams.cc_params.m16c_basic.acc_std_mask0, out->msg.canparams.cc_params.m16c_basic.acc_std_mask1);
out->msg.canparams.cc_params.m16c_basic.acc_ext_code0 =
(unsigned char) tmpAccCode;
out->msg.canparams.cc_params.m16c_basic.acc_ext_code1 =
(unsigned char) (tmpAccCode >> 8);
out->msg.canparams.cc_params.m16c_basic.acc_ext_code2 = acc_code2;
out->msg.canparams.cc_params.m16c_basic.acc_ext_code3 = acc_code3;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask0 =
(unsigned char) ~tmpAccMask;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask1 =
(unsigned char) ~(tmpAccMask >> 8);
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask2 =
~acc_mask2;
out->msg.canparams.cc_params.m16c_basic.acc_ext_mask3 =
~acc_mask3;
vfree(baudrate_error);
vfree(samplepoint_error);
return 0;
}