dect
/
linux-2.6
Archived
13
0
Fork 0

ARM: OMAP2+: gpmc: remove exported nand functions

nand driver handles gpmc-nand block fully, hence no more
users for these exported nand functions, remove it.

Signed-off-by: Afzal Mohammed <afzal@ti.com>
This commit is contained in:
Afzal Mohammed 2012-09-29 18:04:58 +05:30
parent 2ef9f3ddec
commit c46406a3f2
2 changed files with 0 additions and 463 deletions

View File

@ -143,7 +143,6 @@ static struct resource gpmc_mem_root;
static struct resource gpmc_cs_mem[GPMC_CS_NUM];
static DEFINE_SPINLOCK(gpmc_mem_lock);
static unsigned int gpmc_cs_map; /* flag for cs which are initialized */
static int gpmc_ecc_used = -EINVAL; /* cs using ecc engine */
static struct device *gpmc_dev;
static int gpmc_irq;
static resource_size_t phys_base, mem_size;
@ -164,22 +163,6 @@ static u32 gpmc_read_reg(int idx)
return __raw_readl(gpmc_base + idx);
}
static void gpmc_cs_write_byte(int cs, int idx, u8 val)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
__raw_writeb(val, reg_addr);
}
static u8 gpmc_cs_read_byte(int cs, int idx)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
return __raw_readb(reg_addr);
}
void gpmc_cs_write_reg(int cs, int idx, u32 val)
{
void __iomem *reg_addr;
@ -514,44 +497,6 @@ void gpmc_cs_free(int cs)
}
EXPORT_SYMBOL(gpmc_cs_free);
/**
* gpmc_read_status - read access request to get the different gpmc status
* @cmd: command type
* @return status
*/
int gpmc_read_status(int cmd)
{
int status = -EINVAL;
u32 regval = 0;
switch (cmd) {
case GPMC_GET_IRQ_STATUS:
status = gpmc_read_reg(GPMC_IRQSTATUS);
break;
case GPMC_PREFETCH_FIFO_CNT:
regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
status = GPMC_PREFETCH_STATUS_FIFO_CNT(regval);
break;
case GPMC_PREFETCH_COUNT:
regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
status = GPMC_PREFETCH_STATUS_COUNT(regval);
break;
case GPMC_STATUS_BUFFER:
regval = gpmc_read_reg(GPMC_STATUS);
/* 1 : buffer is available to write */
status = regval & GPMC_STATUS_BUFF_EMPTY;
break;
default:
printk(KERN_ERR "gpmc_read_status: Not supported\n");
}
return status;
}
EXPORT_SYMBOL(gpmc_read_status);
/**
* gpmc_cs_configure - write request to configure gpmc
* @cs: chip select number
@ -620,119 +565,6 @@ int gpmc_cs_configure(int cs, int cmd, int wval)
}
EXPORT_SYMBOL(gpmc_cs_configure);
/**
* gpmc_nand_read - nand specific read access request
* @cs: chip select number
* @cmd: command type
*/
int gpmc_nand_read(int cs, int cmd)
{
int rval = -EINVAL;
switch (cmd) {
case GPMC_NAND_DATA:
rval = gpmc_cs_read_byte(cs, GPMC_CS_NAND_DATA);
break;
default:
printk(KERN_ERR "gpmc_read_nand_ctrl: Not supported\n");
}
return rval;
}
EXPORT_SYMBOL(gpmc_nand_read);
/**
* gpmc_nand_write - nand specific write request
* @cs: chip select number
* @cmd: command type
* @wval: value to write
*/
int gpmc_nand_write(int cs, int cmd, int wval)
{
int err = 0;
switch (cmd) {
case GPMC_NAND_COMMAND:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_COMMAND, wval);
break;
case GPMC_NAND_ADDRESS:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_ADDRESS, wval);
break;
case GPMC_NAND_DATA:
gpmc_cs_write_byte(cs, GPMC_CS_NAND_DATA, wval);
default:
printk(KERN_ERR "gpmc_write_nand_ctrl: Not supported\n");
err = -EINVAL;
}
return err;
}
EXPORT_SYMBOL(gpmc_nand_write);
/**
* gpmc_prefetch_enable - configures and starts prefetch transfer
* @cs: cs (chip select) number
* @fifo_th: fifo threshold to be used for read/ write
* @dma_mode: dma mode enable (1) or disable (0)
* @u32_count: number of bytes to be transferred
* @is_write: prefetch read(0) or write post(1) mode
*/
int gpmc_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write)
{
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) {
pr_err("gpmc: fifo threshold is not supported\n");
return -1;
} else if (!(gpmc_read_reg(GPMC_PREFETCH_CONTROL))) {
/* Set the amount of bytes to be prefetched */
gpmc_write_reg(GPMC_PREFETCH_CONFIG2, u32_count);
/* Set dma/mpu mode, the prefetch read / post write and
* enable the engine. Set which cs is has requested for.
*/
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, ((cs << CS_NUM_SHIFT) |
PREFETCH_FIFOTHRESHOLD(fifo_th) |
ENABLE_PREFETCH |
(dma_mode << DMA_MPU_MODE) |
(0x1 & is_write)));
/* Start the prefetch engine */
gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x1);
} else {
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL(gpmc_prefetch_enable);
/**
* gpmc_prefetch_reset - disables and stops the prefetch engine
*/
int gpmc_prefetch_reset(int cs)
{
u32 config1;
/* check if the same module/cs is trying to reset */
config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
if (((config1 >> CS_NUM_SHIFT) & 0x7) != cs)
return -EINVAL;
/* Stop the PFPW engine */
gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x0);
/* Reset/disable the PFPW engine */
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, 0x0);
return 0;
}
EXPORT_SYMBOL(gpmc_prefetch_reset);
void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
{
int i;
@ -1097,267 +929,3 @@ void omap3_gpmc_restore_context(void)
}
}
#endif /* CONFIG_ARCH_OMAP3 */
/**
* gpmc_enable_hwecc - enable hardware ecc functionality
* @cs: chip select number
* @mode: read/write mode
* @dev_width: device bus width(1 for x16, 0 for x8)
* @ecc_size: bytes for which ECC will be generated
*/
int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size)
{
unsigned int val;
/* check if ecc module is in used */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
gpmc_ecc_used = cs;
/* clear ecc and enable bits */
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCREG1);
/* program ecc and result sizes */
val = ((((ecc_size >> 1) - 1) << 22) | (0x0000000F));
gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, val);
switch (mode) {
case GPMC_ECC_READ:
case GPMC_ECC_WRITE:
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCREG1);
break;
case GPMC_ECC_READSYN:
gpmc_write_reg(GPMC_ECC_CONTROL,
GPMC_ECC_CTRL_ECCCLEAR |
GPMC_ECC_CTRL_ECCDISABLE);
break;
default:
printk(KERN_INFO "Error: Unrecognized Mode[%d]!\n", mode);
break;
}
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (cs << 1) | (0x1);
gpmc_write_reg(GPMC_ECC_CONFIG, val);
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_enable_hwecc);
/**
* gpmc_calculate_ecc - generate non-inverted ecc bytes
* @cs: chip select number
* @dat: data pointer over which ecc is computed
* @ecc_code: ecc code buffer
*
* Using non-inverted ECC is considered ugly since writing a blank
* page (padding) will clear the ECC bytes. This is not a problem as long
* no one is trying to write data on the seemingly unused page. Reading
* an erased page will produce an ECC mismatch between generated and read
* ECC bytes that has to be dealt with separately.
*/
int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code)
{
unsigned int val = 0x0;
if (gpmc_ecc_used != cs)
return -EINVAL;
/* read ecc result */
val = gpmc_read_reg(GPMC_ECC1_RESULT);
*ecc_code++ = val; /* P128e, ..., P1e */
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc);
#ifdef CONFIG_ARCH_OMAP3
/**
* gpmc_init_hwecc_bch - initialize hardware BCH ecc functionality
* @cs: chip select number
* @nsectors: how many 512-byte sectors to process
* @nerrors: how many errors to correct per sector (4 or 8)
*
* This function must be executed before any call to gpmc_enable_hwecc_bch.
*/
int gpmc_init_hwecc_bch(int cs, int nsectors, int nerrors)
{
/* check if ecc module is in use */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
/* support only OMAP3 class */
if (!cpu_is_omap34xx()) {
printk(KERN_ERR "BCH ecc is not supported on this CPU\n");
return -EINVAL;
}
/*
* For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1.
* Other chips may be added if confirmed to work.
*/
if ((nerrors == 4) &&
(!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0))) {
printk(KERN_ERR "BCH 4-bit mode is not supported on this CPU\n");
return -EINVAL;
}
/* sanity check */
if (nsectors > 8) {
printk(KERN_ERR "BCH cannot process %d sectors (max is 8)\n",
nsectors);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_init_hwecc_bch);
/**
* gpmc_enable_hwecc_bch - enable hardware BCH ecc functionality
* @cs: chip select number
* @mode: read/write mode
* @dev_width: device bus width(1 for x16, 0 for x8)
* @nsectors: how many 512-byte sectors to process
* @nerrors: how many errors to correct per sector (4 or 8)
*/
int gpmc_enable_hwecc_bch(int cs, int mode, int dev_width, int nsectors,
int nerrors)
{
unsigned int val;
/* check if ecc module is in use */
if (gpmc_ecc_used != -EINVAL)
return -EINVAL;
gpmc_ecc_used = cs;
/* clear ecc and enable bits */
gpmc_write_reg(GPMC_ECC_CONTROL, 0x1);
/*
* When using BCH, sector size is hardcoded to 512 bytes.
* Here we are using wrapping mode 6 both for reading and writing, with:
* size0 = 0 (no additional protected byte in spare area)
* size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, (32 << 22) | (0 << 12));
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
(0x06 << 8) | /* wrap mode = 6 */
(dev_width << 7) | /* bus width */
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
(cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
gpmc_write_reg(GPMC_ECC_CONFIG, val);
gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_enable_hwecc_bch);
/**
* gpmc_calculate_ecc_bch4 - Generate 7 ecc bytes per sector of 512 data bytes
* @cs: chip select number
* @dat: The pointer to data on which ecc is computed
* @ecc: The ecc output buffer
*/
int gpmc_calculate_ecc_bch4(int cs, const u_char *dat, u_char *ecc)
{
int i;
unsigned long nsectors, reg, val1, val2;
if (gpmc_ecc_used != cs)
return -EINVAL;
nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
/* Read hw-computed remainder */
val1 = gpmc_read_reg(reg + 0);
val2 = gpmc_read_reg(reg + 4);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs; and
* left-justify the resulting polynomial.
*/
*ecc++ = 0x28 ^ ((val2 >> 12) & 0xFF);
*ecc++ = 0x13 ^ ((val2 >> 4) & 0xFF);
*ecc++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
*ecc++ = 0x39 ^ ((val1 >> 20) & 0xFF);
*ecc++ = 0x96 ^ ((val1 >> 12) & 0xFF);
*ecc++ = 0xac ^ ((val1 >> 4) & 0xFF);
*ecc++ = 0x7f ^ ((val1 & 0xF) << 4);
}
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch4);
/**
* gpmc_calculate_ecc_bch8 - Generate 13 ecc bytes per block of 512 data bytes
* @cs: chip select number
* @dat: The pointer to data on which ecc is computed
* @ecc: The ecc output buffer
*/
int gpmc_calculate_ecc_bch8(int cs, const u_char *dat, u_char *ecc)
{
int i;
unsigned long nsectors, reg, val1, val2, val3, val4;
if (gpmc_ecc_used != cs)
return -EINVAL;
nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
/* Read hw-computed remainder */
val1 = gpmc_read_reg(reg + 0);
val2 = gpmc_read_reg(reg + 4);
val3 = gpmc_read_reg(reg + 8);
val4 = gpmc_read_reg(reg + 12);
/*
* Add constant polynomial to remainder, in order to get an ecc
* sequence of 0xFFs for a buffer filled with 0xFFs.
*/
*ecc++ = 0xef ^ (val4 & 0xFF);
*ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
*ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
*ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
*ecc++ = 0xed ^ (val3 & 0xFF);
*ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
*ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
*ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
*ecc++ = 0x97 ^ (val2 & 0xFF);
*ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
*ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
*ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
*ecc++ = 0xb5 ^ (val1 & 0xFF);
}
gpmc_ecc_used = -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch8);
#endif /* CONFIG_ARCH_OMAP3 */

View File

@ -34,15 +34,6 @@
#define GPMC_SET_IRQ_STATUS 0x00000004
#define GPMC_CONFIG_WP 0x00000005
#define GPMC_GET_IRQ_STATUS 0x00000006
#define GPMC_PREFETCH_FIFO_CNT 0x00000007 /* bytes available in FIFO for r/w */
#define GPMC_PREFETCH_COUNT 0x00000008 /* remaining bytes to be read/write*/
#define GPMC_STATUS_BUFFER 0x00000009 /* 1: buffer is available to write */
#define GPMC_NAND_COMMAND 0x0000000a
#define GPMC_NAND_ADDRESS 0x0000000b
#define GPMC_NAND_DATA 0x0000000c
#define GPMC_ENABLE_IRQ 0x0000000d
/* ECC commands */
@ -78,15 +69,10 @@
#define GPMC_DEVICETYPE_NOR 0
#define GPMC_DEVICETYPE_NAND 2
#define GPMC_CONFIG_WRITEPROTECT 0x00000010
#define GPMC_STATUS_BUFF_EMPTY 0x00000001
#define WR_RD_PIN_MONITORING 0x00600000
#define GPMC_PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
#define GPMC_PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
#define GPMC_IRQ_FIFOEVENTENABLE 0x01
#define GPMC_IRQ_COUNT_EVENT 0x02
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
/*
* Note that all values in this struct are in nanoseconds except sync_clk
@ -142,25 +128,8 @@ extern int gpmc_cs_request(int cs, unsigned long size, unsigned long *base);
extern void gpmc_cs_free(int cs);
extern int gpmc_cs_set_reserved(int cs, int reserved);
extern int gpmc_cs_reserved(int cs);
extern int gpmc_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write);
extern int gpmc_prefetch_reset(int cs);
extern void omap3_gpmc_save_context(void);
extern void omap3_gpmc_restore_context(void);
extern int gpmc_read_status(int cmd);
extern int gpmc_cs_configure(int cs, int cmd, int wval);
extern int gpmc_nand_read(int cs, int cmd);
extern int gpmc_nand_write(int cs, int cmd, int wval);
int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size);
int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code);
#ifdef CONFIG_ARCH_OMAP3
int gpmc_init_hwecc_bch(int cs, int nsectors, int nerrors);
int gpmc_enable_hwecc_bch(int cs, int mode, int dev_width, int nsectors,
int nerrors);
int gpmc_calculate_ecc_bch4(int cs, const u_char *dat, u_char *ecc);
int gpmc_calculate_ecc_bch8(int cs, const u_char *dat, u_char *ecc);
#endif /* CONFIG_ARCH_OMAP3 */
#endif