dect
/
linux-2.6
Archived
13
0
Fork 0

[CRYPTO] aes-generic: Coding style cleanup

Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Sebastian Siewior 2007-11-08 20:39:26 +08:00 committed by Herbert Xu
parent 41fdab3dd3
commit be5fb27012
1 changed files with 172 additions and 145 deletions

View File

@ -63,8 +63,7 @@
/*
* #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
*/
static inline u8
byte(const u32 x, const unsigned n)
static inline u8 byte(const u32 x, const unsigned n)
{
return x >> (n << 3);
}
@ -88,8 +87,7 @@ static u32 it_tab[4][256];
static u32 fl_tab[4][256];
static u32 il_tab[4][256];
static inline u8 __init
f_mult (u8 a, u8 b)
static inline u8 __init f_mult(u8 a, u8 b)
{
u8 aa = log_tab[a], cc = aa + log_tab[b];
@ -98,45 +96,16 @@ f_mult (u8 a, u8 b)
#define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
#define f_rn(bo, bi, n, k) \
bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rn(bo, bi, n, k) \
bo[n] = it_tab[0][byte(bi[n],0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
#define ls_box(x) \
( fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)] )
#define f_rl(bo, bi, n, k) \
bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = il_tab[0][byte(bi[n],0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
static void __init
gen_tabs (void)
static void __init gen_tabs(void)
{
u32 i, t;
u8 p, q;
/* log and power tables for GF(2**8) finite field with
0x011b as modular polynomial - the simplest primitive
root is 0x03, used here to generate the tables */
/*
* log and power tables for GF(2**8) finite field with
* 0x011b as modular polynomial - the simplest primitive
* root is 0x03, used here to generate the tables
*/
for (i = 0, p = 1; i < 256; ++i) {
pow_tab[i] = (u8) p;
@ -199,9 +168,11 @@ gen_tabs (void)
}
}
/* initialise the key schedule from the user supplied key */
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define imix_col(y,x) \
#define imix_col(y,x) do { \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
@ -209,40 +180,65 @@ gen_tabs (void)
(y) = u ^ v ^ w; \
(y) ^= ror32(u ^ t, 8) ^ \
ror32(v ^ t, 16) ^ \
ror32(t,24)
ror32(t, 24); \
} while (0)
/* initialise the key schedule from the user supplied key */
#define ls_box(x) \
fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)]
#define loop4(i) \
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
}
#define loop4(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[4 * i]; \
E_KEY[4 * i + 4] = t; \
t ^= E_KEY[4 * i + 1]; \
E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; \
E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; \
E_KEY[4 * i + 7] = t; \
} while (0)
#define loop6(i) \
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
}
#define loop6(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[6 * i]; \
E_KEY[6 * i + 6] = t; \
t ^= E_KEY[6 * i + 1]; \
E_KEY[6 * i + 7] = t; \
t ^= E_KEY[6 * i + 2]; \
E_KEY[6 * i + 8] = t; \
t ^= E_KEY[6 * i + 3]; \
E_KEY[6 * i + 9] = t; \
t ^= E_KEY[6 * i + 4]; \
E_KEY[6 * i + 10] = t; \
t ^= E_KEY[6 * i + 5]; \
E_KEY[6 * i + 11] = t; \
} while (0)
#define loop8(i) \
{ t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
#define loop8(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i]; \
E_KEY[8 * i + 8] = t; \
t ^= E_KEY[8 * i + 1]; \
E_KEY[8 * i + 9] = t; \
t ^= E_KEY[8 * i + 2]; \
E_KEY[8 * i + 10] = t; \
t ^= E_KEY[8 * i + 3]; \
E_KEY[8 * i + 11] = t; \
t = E_KEY[8 * i + 4] ^ ls_box(t); \
E_KEY[8 * i + 12] = t; \
t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
}
t ^= E_KEY[8 * i + 5]; \
E_KEY[8 * i + 13] = t; \
t ^= E_KEY[8 * i + 6]; \
E_KEY[8 * i + 14] = t; \
t ^= E_KEY[8 * i + 7]; \
E_KEY[8 * i + 15] = t; \
} while (0)
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
@ -302,18 +298,34 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
/* encrypt a block of text */
#define f_nround(bo, bi, k) \
#define f_rn(bo, bi, n, k) do { \
bo[n] = ft_tab[0][byte(bi[n], 0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
} while (0)
#define f_nround(bo, bi, k) do {\
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4
k += 4; \
} while (0)
#define f_lround(bo, bi, k) \
#define f_rl(bo, bi, n, k) do { \
bo[n] = fl_tab[0][byte(bi[n], 0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
} while (0)
#define f_lround(bo, bi, k) do {\
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k)
f_rl(bo, bi, 3, k); \
} while (0)
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
@ -357,18 +369,34 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
/* decrypt a block of text */
#define i_nround(bo, bi, k) \
#define i_rn(bo, bi, n, k) do { \
bo[n] = it_tab[0][byte(bi[n], 0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
} while (0)
#define i_nround(bo, bi, k) do {\
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4
k -= 4; \
} while (0)
#define i_lround(bo, bi, k) \
#define i_rl(bo, bi, n, k) do { \
bo[n] = il_tab[0][byte(bi[n], 0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
} while (0)
#define i_lround(bo, bi, k) do {\
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k)
i_rl(bo, bi, 3, k); \
} while (0)
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
@ -411,7 +439,6 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
dst[3] = cpu_to_le32(b0[3]);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-generic",