dect
/
linux-2.6
Archived
13
0
Fork 0

[CRYPTO] aes-generic: Coding style cleanup

Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Sebastian Siewior 2007-11-08 20:39:26 +08:00 committed by Herbert Xu
parent 41fdab3dd3
commit be5fb27012
1 changed files with 172 additions and 145 deletions

View File

@ -63,8 +63,7 @@
/* /*
* #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
*/ */
static inline u8 static inline u8 byte(const u32 x, const unsigned n)
byte(const u32 x, const unsigned n)
{ {
return x >> (n << 3); return x >> (n << 3);
} }
@ -88,55 +87,25 @@ static u32 it_tab[4][256];
static u32 fl_tab[4][256]; static u32 fl_tab[4][256];
static u32 il_tab[4][256]; static u32 il_tab[4][256];
static inline u8 __init static inline u8 __init f_mult(u8 a, u8 b)
f_mult (u8 a, u8 b)
{ {
u8 aa = log_tab[a], cc = aa + log_tab[b]; u8 aa = log_tab[a], cc = aa + log_tab[b];
return pow_tab[cc + (cc < aa ? 1 : 0)]; return pow_tab[cc + (cc < aa ? 1 : 0)];
} }
#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) #define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
#define f_rn(bo, bi, n, k) \ static void __init gen_tabs(void)
bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rn(bo, bi, n, k) \
bo[n] = it_tab[0][byte(bi[n],0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
#define ls_box(x) \
( fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)] )
#define f_rl(bo, bi, n, k) \
bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = il_tab[0][byte(bi[n],0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
static void __init
gen_tabs (void)
{ {
u32 i, t; u32 i, t;
u8 p, q; u8 p, q;
/* log and power tables for GF(2**8) finite field with /*
0x011b as modular polynomial - the simplest primitive * log and power tables for GF(2**8) finite field with
root is 0x03, used here to generate the tables */ * 0x011b as modular polynomial - the simplest primitive
* root is 0x03, used here to generate the tables
*/
for (i = 0, p = 1; i < 256; ++i) { for (i = 0, p = 1; i < 256; ++i) {
pow_tab[i] = (u8) p; pow_tab[i] = (u8) p;
@ -170,9 +139,9 @@ gen_tabs (void)
fl_tab[2][i] = rol32(t, 16); fl_tab[2][i] = rol32(t, 16);
fl_tab[3][i] = rol32(t, 24); fl_tab[3][i] = rol32(t, 24);
t = ((u32) ff_mult (2, p)) | t = ((u32) ff_mult(2, p)) |
((u32) p << 8) | ((u32) p << 8) |
((u32) p << 16) | ((u32) ff_mult (3, p) << 24); ((u32) p << 16) | ((u32) ff_mult(3, p) << 24);
ft_tab[0][i] = t; ft_tab[0][i] = t;
ft_tab[1][i] = rol32(t, 8); ft_tab[1][i] = rol32(t, 8);
@ -187,10 +156,10 @@ gen_tabs (void)
il_tab[2][i] = rol32(t, 16); il_tab[2][i] = rol32(t, 16);
il_tab[3][i] = rol32(t, 24); il_tab[3][i] = rol32(t, 24);
t = ((u32) ff_mult (14, p)) | t = ((u32) ff_mult(14, p)) |
((u32) ff_mult (9, p) << 8) | ((u32) ff_mult(9, p) << 8) |
((u32) ff_mult (13, p) << 16) | ((u32) ff_mult(13, p) << 16) |
((u32) ff_mult (11, p) << 24); ((u32) ff_mult(11, p) << 24);
it_tab[0][i] = t; it_tab[0][i] = t;
it_tab[1][i] = rol32(t, 8); it_tab[1][i] = rol32(t, 8);
@ -199,53 +168,80 @@ gen_tabs (void)
} }
} }
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define imix_col(y,x) \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= ror32(u ^ t, 8) ^ \
ror32(v ^ t, 16) ^ \
ror32(t,24)
/* initialise the key schedule from the user supplied key */ /* initialise the key schedule from the user supplied key */
#define loop4(i) \ #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
}
#define loop6(i) \ #define imix_col(y,x) do { \
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ u = star_x(x); \
t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ v = star_x(u); \
t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ w = star_x(v); \
t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ t = w ^ (x); \
t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ (y) = u ^ v ^ w; \
t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ (y) ^= ror32(u ^ t, 8) ^ \
t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ ror32(v ^ t, 16) ^ \
} ror32(t, 24); \
} while (0)
#define loop8(i) \ #define ls_box(x) \
{ t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ fl_tab[0][byte(x, 0)] ^ \
t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ fl_tab[1][byte(x, 1)] ^ \
t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ fl_tab[2][byte(x, 2)] ^ \
t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ fl_tab[3][byte(x, 3)]
t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
t = E_KEY[8 * i + 4] ^ ls_box(t); \ #define loop4(i) do { \
E_KEY[8 * i + 12] = t; \ t = ror32(t, 8); \
t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ t ^= E_KEY[4 * i]; \
t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ E_KEY[4 * i + 4] = t; \
} t ^= E_KEY[4 * i + 1]; \
E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; \
E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; \
E_KEY[4 * i + 7] = t; \
} while (0)
#define loop6(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[6 * i]; \
E_KEY[6 * i + 6] = t; \
t ^= E_KEY[6 * i + 1]; \
E_KEY[6 * i + 7] = t; \
t ^= E_KEY[6 * i + 2]; \
E_KEY[6 * i + 8] = t; \
t ^= E_KEY[6 * i + 3]; \
E_KEY[6 * i + 9] = t; \
t ^= E_KEY[6 * i + 4]; \
E_KEY[6 * i + 10] = t; \
t ^= E_KEY[6 * i + 5]; \
E_KEY[6 * i + 11] = t; \
} while (0)
#define loop8(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i]; \
E_KEY[8 * i + 8] = t; \
t ^= E_KEY[8 * i + 1]; \
E_KEY[8 * i + 9] = t; \
t ^= E_KEY[8 * i + 2]; \
E_KEY[8 * i + 10] = t; \
t ^= E_KEY[8 * i + 3]; \
E_KEY[8 * i + 11] = t; \
t = E_KEY[8 * i + 4] ^ ls_box(t); \
E_KEY[8 * i + 12] = t; \
t ^= E_KEY[8 * i + 5]; \
E_KEY[8 * i + 13] = t; \
t ^= E_KEY[8 * i + 6]; \
E_KEY[8 * i + 14] = t; \
t ^= E_KEY[8 * i + 7]; \
E_KEY[8 * i + 15] = t; \
} while (0)
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len) unsigned int key_len)
{ {
struct aes_ctx *ctx = crypto_tfm_ctx(tfm); struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key; const __le32 *key = (const __le32 *)in_key;
@ -268,14 +264,14 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
case 16: case 16:
t = E_KEY[3]; t = E_KEY[3];
for (i = 0; i < 10; ++i) for (i = 0; i < 10; ++i)
loop4 (i); loop4(i);
break; break;
case 24: case 24:
E_KEY[4] = le32_to_cpu(key[4]); E_KEY[4] = le32_to_cpu(key[4]);
t = E_KEY[5] = le32_to_cpu(key[5]); t = E_KEY[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i) for (i = 0; i < 8; ++i)
loop6 (i); loop6(i);
break; break;
case 32: case 32:
@ -284,7 +280,7 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
E_KEY[6] = le32_to_cpu(key[6]); E_KEY[6] = le32_to_cpu(key[6]);
t = E_KEY[7] = le32_to_cpu(key[7]); t = E_KEY[7] = le32_to_cpu(key[7]);
for (i = 0; i < 7; ++i) for (i = 0; i < 7; ++i)
loop8 (i); loop8(i);
break; break;
} }
@ -294,7 +290,7 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
D_KEY[3] = E_KEY[3]; D_KEY[3] = E_KEY[3];
for (i = 4; i < key_len + 24; ++i) { for (i = 4; i < key_len + 24; ++i) {
imix_col (D_KEY[i], E_KEY[i]); imix_col(D_KEY[i], E_KEY[i]);
} }
return 0; return 0;
@ -302,18 +298,34 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
/* encrypt a block of text */ /* encrypt a block of text */
#define f_nround(bo, bi, k) \ #define f_rn(bo, bi, n, k) do { \
f_rn(bo, bi, 0, k); \ bo[n] = ft_tab[0][byte(bi[n], 0)] ^ \
f_rn(bo, bi, 1, k); \ ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
f_rn(bo, bi, 2, k); \ ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
f_rn(bo, bi, 3, k); \ ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
k += 4 } while (0)
#define f_lround(bo, bi, k) \ #define f_nround(bo, bi, k) do {\
f_rl(bo, bi, 0, k); \ f_rn(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \ f_rn(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \ f_rn(bo, bi, 2, k); \
f_rl(bo, bi, 3, k) f_rn(bo, bi, 3, k); \
k += 4; \
} while (0)
#define f_rl(bo, bi, n, k) do { \
bo[n] = fl_tab[0][byte(bi[n], 0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
} while (0)
#define f_lround(bo, bi, k) do {\
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k); \
} while (0)
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{ {
@ -329,25 +341,25 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3]; b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
if (ctx->key_length > 24) { if (ctx->key_length > 24) {
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
} }
if (ctx->key_length > 16) { if (ctx->key_length > 16) {
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
} }
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_nround (b0, b1, kp); f_nround(b0, b1, kp);
f_nround (b1, b0, kp); f_nround(b1, b0, kp);
f_lround (b0, b1, kp); f_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]); dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]); dst[1] = cpu_to_le32(b0[1]);
@ -357,18 +369,34 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
/* decrypt a block of text */ /* decrypt a block of text */
#define i_nround(bo, bi, k) \ #define i_rn(bo, bi, n, k) do { \
i_rn(bo, bi, 0, k); \ bo[n] = it_tab[0][byte(bi[n], 0)] ^ \
i_rn(bo, bi, 1, k); \ it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
i_rn(bo, bi, 2, k); \ it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
i_rn(bo, bi, 3, k); \ it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
k -= 4 } while (0)
#define i_lround(bo, bi, k) \ #define i_nround(bo, bi, k) do {\
i_rl(bo, bi, 0, k); \ i_rn(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \ i_rn(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \ i_rn(bo, bi, 2, k); \
i_rl(bo, bi, 3, k) i_rn(bo, bi, 3, k); \
k -= 4; \
} while (0)
#define i_rl(bo, bi, n, k) do { \
bo[n] = il_tab[0][byte(bi[n], 0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
} while (0)
#define i_lround(bo, bi, k) do {\
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k); \
} while (0)
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{ {
@ -385,25 +413,25 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27]; b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
if (key_len > 24) { if (key_len > 24) {
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
} }
if (key_len > 16) { if (key_len > 16) {
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
} }
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_nround (b0, b1, kp); i_nround(b0, b1, kp);
i_nround (b1, b0, kp); i_nround(b1, b0, kp);
i_lround (b0, b1, kp); i_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]); dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]); dst[1] = cpu_to_le32(b0[1]);
@ -411,7 +439,6 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
dst[3] = cpu_to_le32(b0[3]); dst[3] = cpu_to_le32(b0[3]);
} }
static struct crypto_alg aes_alg = { static struct crypto_alg aes_alg = {
.cra_name = "aes", .cra_name = "aes",
.cra_driver_name = "aes-generic", .cra_driver_name = "aes-generic",
@ -426,9 +453,9 @@ static struct crypto_alg aes_alg = {
.cipher = { .cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE, .cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key, .cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt, .cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt .cia_decrypt = aes_decrypt
} }
} }
}; };