dect
/
linux-2.6
Archived
13
0
Fork 0

Task Control Groups: add tasks file interface

Add the per-directory "tasks" file for cgroupfs mounts; this allows the
user to determine which tasks are members of a cgroup by reading a
cgroup's "tasks", and to move a task into a cgroup by writing its pid to
its "tasks".

Signed-off-by: Paul Menage <menage@google.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Paul Menage 2007-10-18 23:39:32 -07:00 committed by Linus Torvalds
parent ddbcc7e8e5
commit bbcb81d091
2 changed files with 368 additions and 1 deletions

View File

@ -144,6 +144,16 @@ int cgroup_is_removed(const struct cgroup *cont);
int cgroup_path(const struct cgroup *cont, char *buf, int buflen);
int __cgroup_task_count(const struct cgroup *cont);
static inline int cgroup_task_count(const struct cgroup *cont)
{
int task_count;
rcu_read_lock();
task_count = __cgroup_task_count(cont);
rcu_read_unlock();
return task_count;
}
/* Return true if the cgroup is a descendant of the current cgroup */
int cgroup_is_descendant(const struct cgroup *cont);

View File

@ -40,7 +40,7 @@
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <asm/atomic.h>
/* Generate an array of cgroup subsystem pointers */
@ -700,6 +700,127 @@ int cgroup_path(const struct cgroup *cont, char *buf, int buflen)
return 0;
}
/*
* Return the first subsystem attached to a cgroup's hierarchy, and
* its subsystem id.
*/
static void get_first_subsys(const struct cgroup *cont,
struct cgroup_subsys_state **css, int *subsys_id)
{
const struct cgroupfs_root *root = cont->root;
const struct cgroup_subsys *test_ss;
BUG_ON(list_empty(&root->subsys_list));
test_ss = list_entry(root->subsys_list.next,
struct cgroup_subsys, sibling);
if (css) {
*css = cont->subsys[test_ss->subsys_id];
BUG_ON(!*css);
}
if (subsys_id)
*subsys_id = test_ss->subsys_id;
}
/*
* Attach task 'tsk' to cgroup 'cont'
*
* Call holding cgroup_mutex. May take task_lock of
* the task 'pid' during call.
*/
static int attach_task(struct cgroup *cont, struct task_struct *tsk)
{
int retval = 0;
struct cgroup_subsys *ss;
struct cgroup *oldcont;
struct css_set *cg = &tsk->cgroups;
struct cgroupfs_root *root = cont->root;
int i;
int subsys_id;
get_first_subsys(cont, NULL, &subsys_id);
/* Nothing to do if the task is already in that cgroup */
oldcont = task_cgroup(tsk, subsys_id);
if (cont == oldcont)
return 0;
for_each_subsys(root, ss) {
if (ss->can_attach) {
retval = ss->can_attach(ss, cont, tsk);
if (retval) {
return retval;
}
}
}
task_lock(tsk);
if (tsk->flags & PF_EXITING) {
task_unlock(tsk);
return -ESRCH;
}
/* Update the css_set pointers for the subsystems in this
* hierarchy */
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
if (root->subsys_bits & (1ull << i)) {
/* Subsystem is in this hierarchy. So we want
* the subsystem state from the new
* cgroup. Transfer the refcount from the
* old to the new */
atomic_inc(&cont->count);
atomic_dec(&cg->subsys[i]->cgroup->count);
rcu_assign_pointer(cg->subsys[i], cont->subsys[i]);
}
}
task_unlock(tsk);
for_each_subsys(root, ss) {
if (ss->attach) {
ss->attach(ss, cont, oldcont, tsk);
}
}
synchronize_rcu();
return 0;
}
/*
* Attach task with pid 'pid' to cgroup 'cont'. Call with
* cgroup_mutex, may take task_lock of task
*/
static int attach_task_by_pid(struct cgroup *cont, char *pidbuf)
{
pid_t pid;
struct task_struct *tsk;
int ret;
if (sscanf(pidbuf, "%d", &pid) != 1)
return -EIO;
if (pid) {
rcu_read_lock();
tsk = find_task_by_pid(pid);
if (!tsk || tsk->flags & PF_EXITING) {
rcu_read_unlock();
return -ESRCH;
}
get_task_struct(tsk);
rcu_read_unlock();
if ((current->euid) && (current->euid != tsk->uid)
&& (current->euid != tsk->suid)) {
put_task_struct(tsk);
return -EACCES;
}
} else {
tsk = current;
get_task_struct(tsk);
}
ret = attach_task(cont, tsk);
put_task_struct(tsk);
return ret;
}
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
@ -708,6 +829,55 @@ enum cgroup_filetype {
FILE_TASKLIST,
};
static ssize_t cgroup_common_file_write(struct cgroup *cont,
struct cftype *cft,
struct file *file,
const char __user *userbuf,
size_t nbytes, loff_t *unused_ppos)
{
enum cgroup_filetype type = cft->private;
char *buffer;
int retval = 0;
if (nbytes >= PATH_MAX)
return -E2BIG;
/* +1 for nul-terminator */
buffer = kmalloc(nbytes + 1, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
if (copy_from_user(buffer, userbuf, nbytes)) {
retval = -EFAULT;
goto out1;
}
buffer[nbytes] = 0; /* nul-terminate */
mutex_lock(&cgroup_mutex);
if (cgroup_is_removed(cont)) {
retval = -ENODEV;
goto out2;
}
switch (type) {
case FILE_TASKLIST:
retval = attach_task_by_pid(cont, buffer);
break;
default:
retval = -EINVAL;
goto out2;
}
if (retval == 0)
retval = nbytes;
out2:
mutex_unlock(&cgroup_mutex);
out1:
kfree(buffer);
return retval;
}
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
@ -914,6 +1084,189 @@ int cgroup_add_files(struct cgroup *cont,
return 0;
}
/* Count the number of tasks in a cgroup. Could be made more
* time-efficient but less space-efficient with more linked lists
* running through each cgroup and the css_set structures that
* referenced it. Must be called with tasklist_lock held for read or
* write or in an rcu critical section.
*/
int __cgroup_task_count(const struct cgroup *cont)
{
int count = 0;
struct task_struct *g, *p;
struct cgroup_subsys_state *css;
int subsys_id;
get_first_subsys(cont, &css, &subsys_id);
do_each_thread(g, p) {
if (task_subsys_state(p, subsys_id) == css)
count ++;
} while_each_thread(g, p);
return count;
}
/*
* Stuff for reading the 'tasks' file.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
* Upon tasks file open(), a struct ctr_struct is allocated, that
* will have a pointer to an array (also allocated here). The struct
* ctr_struct * is stored in file->private_data. Its resources will
* be freed by release() when the file is closed. The array is used
* to sprintf the PIDs and then used by read().
*/
struct ctr_struct {
char *buf;
int bufsz;
};
/*
* Load into 'pidarray' up to 'npids' of the tasks using cgroup
* 'cont'. Return actual number of pids loaded. No need to
* task_lock(p) when reading out p->cgroup, since we're in an RCU
* read section, so the css_set can't go away, and is
* immutable after creation.
*/
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cont)
{
int n = 0;
struct task_struct *g, *p;
struct cgroup_subsys_state *css;
int subsys_id;
get_first_subsys(cont, &css, &subsys_id);
rcu_read_lock();
do_each_thread(g, p) {
if (task_subsys_state(p, subsys_id) == css) {
pidarray[n++] = pid_nr(task_pid(p));
if (unlikely(n == npids))
goto array_full;
}
} while_each_thread(g, p);
array_full:
rcu_read_unlock();
return n;
}
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
/*
* Convert array 'a' of 'npids' pid_t's to a string of newline separated
* decimal pids in 'buf'. Don't write more than 'sz' chars, but return
* count 'cnt' of how many chars would be written if buf were large enough.
*/
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
int cnt = 0;
int i;
for (i = 0; i < npids; i++)
cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
return cnt;
}
/*
* Handle an open on 'tasks' file. Prepare a buffer listing the
* process id's of tasks currently attached to the cgroup being opened.
*
* Does not require any specific cgroup mutexes, and does not take any.
*/
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
struct ctr_struct *ctr;
pid_t *pidarray;
int npids;
char c;
if (!(file->f_mode & FMODE_READ))
return 0;
ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
if (!ctr)
goto err0;
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
npids = cgroup_task_count(cont);
if (npids) {
pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
if (!pidarray)
goto err1;
npids = pid_array_load(pidarray, npids, cont);
sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
/* Call pid_array_to_buf() twice, first just to get bufsz */
ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
if (!ctr->buf)
goto err2;
ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
kfree(pidarray);
} else {
ctr->buf = 0;
ctr->bufsz = 0;
}
file->private_data = ctr;
return 0;
err2:
kfree(pidarray);
err1:
kfree(ctr);
err0:
return -ENOMEM;
}
static ssize_t cgroup_tasks_read(struct cgroup *cont,
struct cftype *cft,
struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct ctr_struct *ctr = file->private_data;
return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}
static int cgroup_tasks_release(struct inode *unused_inode,
struct file *file)
{
struct ctr_struct *ctr;
if (file->f_mode & FMODE_READ) {
ctr = file->private_data;
kfree(ctr->buf);
kfree(ctr);
}
return 0;
}
/*
* for the common functions, 'private' gives the type of file
*/
static struct cftype cft_tasks = {
.name = "tasks",
.open = cgroup_tasks_open,
.read = cgroup_tasks_read,
.write = cgroup_common_file_write,
.release = cgroup_tasks_release,
.private = FILE_TASKLIST,
};
static int cgroup_populate_dir(struct cgroup *cont)
{
int err;
@ -922,6 +1275,10 @@ static int cgroup_populate_dir(struct cgroup *cont)
/* First clear out any existing files */
cgroup_clear_directory(cont->dentry);
err = cgroup_add_file(cont, NULL, &cft_tasks);
if (err < 0)
return err;
for_each_subsys(cont->root, ss) {
if (ss->populate && (err = ss->populate(ss, cont)) < 0)
return err;