dect
/
linux-2.6
Archived
13
0
Fork 0

Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  x86, earlyprintk: Move mrst early console to platform/ and fix a typo
  x86, apbt: Setup affinity for apb timers acting as per-cpu timer
  ce4100: Add errata fixes for UART on CE4100
  x86: platform: Move iris to x86/platform where it belongs
  x86, mrst: Check platform_device_register() return code
  x86/platform: Add Eurobraille/Iris power off support
  x86, mrst: Add explanation for using 1960 as the year offset for vrtc
  x86, mrst: Fix dependencies of "select INTEL_SCU_IPC"
  x86, mrst: The shutdown for MRST requires the SCU IPC mechanism
  x86: Ce4100: Add reboot_fixup() for CE4100
  ce4100: Add PCI register emulation for CE4100
  x86: Add CE4100 platform support
  x86: mrst: Set vRTC's IRQ to level trigger type
  x86: mrst: Add audio driver bindings
  rtc: Add drivers/rtc/rtc-mrst.c
  x86: mrst: Add vrtc driver which serves as a wall clock device
  x86: mrst: Add Moorestown specific reboot/shutdown support
  x86: mrst: Parse SFI timer table for all timer configs
  x86/mrst: Add SFI platform device parsing code
This commit is contained in:
Linus Torvalds 2011-01-06 11:06:31 -08:00
commit b4c6e2ea5e
28 changed files with 1934 additions and 18 deletions

View File

@ -600,6 +600,7 @@ Protocol: 2.07+
0x00000001 lguest
0x00000002 Xen
0x00000003 Moorestown MID
0x00000004 CE4100 TV Platform
Field name: hardware_subarch_data
Type: write (subarch-dependent)

View File

@ -377,6 +377,18 @@ config X86_ELAN
If unsure, choose "PC-compatible" instead.
config X86_INTEL_CE
bool "CE4100 TV platform"
depends on PCI
depends on PCI_GODIRECT
depends on X86_32
depends on X86_EXTENDED_PLATFORM
select X86_REBOOTFIXUPS
---help---
Select for the Intel CE media processor (CE4100) SOC.
This option compiles in support for the CE4100 SOC for settop
boxes and media devices.
config X86_MRST
bool "Moorestown MID platform"
depends on PCI
@ -385,6 +397,10 @@ config X86_MRST
depends on X86_EXTENDED_PLATFORM
depends on X86_IO_APIC
select APB_TIMER
select I2C
select SPI
select INTEL_SCU_IPC
select X86_PLATFORM_DEVICES
---help---
Moorestown is Intel's Low Power Intel Architecture (LPIA) based Moblin
Internet Device(MID) platform. Moorestown consists of two chips:
@ -466,6 +482,19 @@ config X86_ES7000
Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
supposed to run on an IA32-based Unisys ES7000 system.
config X86_32_IRIS
tristate "Eurobraille/Iris poweroff module"
depends on X86_32
---help---
The Iris machines from EuroBraille do not have APM or ACPI support
to shut themselves down properly. A special I/O sequence is
needed to do so, which is what this module does at
kernel shutdown.
This is only for Iris machines from EuroBraille.
If unused, say N.
config SCHED_OMIT_FRAME_POINTER
def_bool y
prompt "Single-depth WCHAN output"

View File

@ -124,6 +124,7 @@ enum {
X86_SUBARCH_LGUEST,
X86_SUBARCH_XEN,
X86_SUBARCH_MRST,
X86_SUBARCH_CE4100,
X86_NR_SUBARCHS,
};

View File

@ -117,6 +117,10 @@ enum fixed_addresses {
FIX_TEXT_POKE1, /* reserve 2 pages for text_poke() */
FIX_TEXT_POKE0, /* first page is last, because allocation is backward */
__end_of_permanent_fixed_addresses,
#ifdef CONFIG_X86_MRST
FIX_LNW_VRTC,
#endif
/*
* 256 temporary boot-time mappings, used by early_ioremap(),
* before ioremap() is functional.

View File

@ -0,0 +1,9 @@
#ifndef _MRST_VRTC_H
#define _MRST_VRTC_H
extern unsigned char vrtc_cmos_read(unsigned char reg);
extern void vrtc_cmos_write(unsigned char val, unsigned char reg);
extern unsigned long vrtc_get_time(void);
extern int vrtc_set_mmss(unsigned long nowtime);
#endif

View File

@ -14,7 +14,9 @@
#include <linux/sfi.h>
extern int pci_mrst_init(void);
int __init sfi_parse_mrtc(struct sfi_table_header *table);
extern int __init sfi_parse_mrtc(struct sfi_table_header *table);
extern int sfi_mrtc_num;
extern struct sfi_rtc_table_entry sfi_mrtc_array[];
/*
* Medfield is the follow-up of Moorestown, it combines two chip solution into
@ -50,4 +52,14 @@ extern void mrst_early_console_init(void);
extern struct console early_hsu_console;
extern void hsu_early_console_init(void);
extern void intel_scu_devices_create(void);
extern void intel_scu_devices_destroy(void);
/* VRTC timer */
#define MRST_VRTC_MAP_SZ (1024)
/*#define MRST_VRTC_PGOFFSET (0xc00) */
extern void mrst_rtc_init(void);
#endif /* _ASM_X86_MRST_H */

View File

@ -53,6 +53,12 @@ extern void x86_mrst_early_setup(void);
static inline void x86_mrst_early_setup(void) { }
#endif
#ifdef CONFIG_X86_INTEL_CE
extern void x86_ce4100_early_setup(void);
#else
static inline void x86_ce4100_early_setup(void) { }
#endif
#ifndef _SETUP
/*

View File

@ -85,7 +85,6 @@ obj-$(CONFIG_DOUBLEFAULT) += doublefault_32.o
obj-$(CONFIG_KGDB) += kgdb.o
obj-$(CONFIG_VM86) += vm86_32.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_EARLY_PRINTK_MRST) += early_printk_mrst.o
obj-$(CONFIG_HPET_TIMER) += hpet.o
obj-$(CONFIG_APB_TIMER) += apb_timer.o

View File

@ -315,6 +315,7 @@ static void apbt_setup_irq(struct apbt_dev *adev)
if (system_state == SYSTEM_BOOTING) {
irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
/* APB timer irqs are set up as mp_irqs, timer is edge type */
__set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");
if (request_irq(adev->irq, apbt_interrupt_handler,

View File

@ -240,7 +240,7 @@ static int __init setup_early_printk(char *buf)
if (!strncmp(buf, "xen", 3))
early_console_register(&xenboot_console, keep);
#endif
#ifdef CONFIG_X86_MRST_EARLY_PRINTK
#ifdef CONFIG_EARLY_PRINTK_MRST
if (!strncmp(buf, "mrst", 4)) {
mrst_early_console_init();
early_console_register(&early_mrst_console, keep);
@ -250,7 +250,6 @@ static int __init setup_early_printk(char *buf)
hsu_early_console_init();
early_console_register(&early_hsu_console, keep);
}
#endif
buf++;
}

View File

@ -61,6 +61,9 @@ void __init i386_start_kernel(void)
case X86_SUBARCH_MRST:
x86_mrst_early_setup();
break;
case X86_SUBARCH_CE4100:
x86_ce4100_early_setup();
break;
default:
i386_default_early_setup();
break;

View File

@ -43,17 +43,33 @@ static void rdc321x_reset(struct pci_dev *dev)
outb(1, 0x92);
}
static void ce4100_reset(struct pci_dev *dev)
{
int i;
for (i = 0; i < 10; i++) {
outb(0x2, 0xcf9);
udelay(50);
}
}
struct device_fixup {
unsigned int vendor;
unsigned int device;
void (*reboot_fixup)(struct pci_dev *);
};
/*
* PCI ids solely used for fixups_table go here
*/
#define PCI_DEVICE_ID_INTEL_CE4100 0x0708
static const struct device_fixup fixups_table[] = {
{ PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5530_LEGACY, cs5530a_warm_reset },
{ PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CS5536_ISA, cs5536_warm_reset },
{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SC1100_BRIDGE, cs5530a_warm_reset },
{ PCI_VENDOR_ID_RDC, PCI_DEVICE_ID_RDC_R6030, rdc321x_reset },
{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CE4100, ce4100_reset },
};
/*

View File

@ -7,6 +7,7 @@ obj-$(CONFIG_PCI_OLPC) += olpc.o
obj-$(CONFIG_PCI_XEN) += xen.o
obj-y += fixup.o
obj-$(CONFIG_X86_INTEL_CE) += ce4100.o
obj-$(CONFIG_ACPI) += acpi.o
obj-y += legacy.o irq.o

315
arch/x86/pci/ce4100.c Normal file
View File

@ -0,0 +1,315 @@
/*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2010 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Corporation
* 2200 Mission College Blvd.
* Santa Clara, CA 97052
*
* This provides access methods for PCI registers that mis-behave on
* the CE4100. Each register can be assigned a private init, read and
* write routine. The exception to this is the bridge device. The
* bridge device is the only device on bus zero (0) that requires any
* fixup so it is a special case ATM
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <asm/pci_x86.h>
struct sim_reg {
u32 value;
u32 mask;
};
struct sim_dev_reg {
int dev_func;
int reg;
void (*init)(struct sim_dev_reg *reg);
void (*read)(struct sim_dev_reg *reg, u32 *value);
void (*write)(struct sim_dev_reg *reg, u32 value);
struct sim_reg sim_reg;
};
struct sim_reg_op {
void (*init)(struct sim_dev_reg *reg);
void (*read)(struct sim_dev_reg *reg, u32 value);
void (*write)(struct sim_dev_reg *reg, u32 value);
};
#define MB (1024 * 1024)
#define KB (1024)
#define SIZE_TO_MASK(size) (~(size - 1))
#define DEFINE_REG(device, func, offset, size, init_op, read_op, write_op)\
{ PCI_DEVFN(device, func), offset, init_op, read_op, write_op,\
{0, SIZE_TO_MASK(size)} },
static void reg_init(struct sim_dev_reg *reg)
{
pci_direct_conf1.read(0, 1, reg->dev_func, reg->reg, 4,
&reg->sim_reg.value);
}
static void reg_read(struct sim_dev_reg *reg, u32 *value)
{
unsigned long flags;
raw_spin_lock_irqsave(&pci_config_lock, flags);
*value = reg->sim_reg.value;
raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}
static void reg_write(struct sim_dev_reg *reg, u32 value)
{
unsigned long flags;
raw_spin_lock_irqsave(&pci_config_lock, flags);
reg->sim_reg.value = (value & reg->sim_reg.mask) |
(reg->sim_reg.value & ~reg->sim_reg.mask);
raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}
static void sata_reg_init(struct sim_dev_reg *reg)
{
pci_direct_conf1.read(0, 1, PCI_DEVFN(14, 0), 0x10, 4,
&reg->sim_reg.value);
reg->sim_reg.value += 0x400;
}
static void ehci_reg_read(struct sim_dev_reg *reg, u32 *value)
{
reg_read(reg, value);
if (*value != reg->sim_reg.mask)
*value |= 0x100;
}
void sata_revid_init(struct sim_dev_reg *reg)
{
reg->sim_reg.value = 0x01060100;
reg->sim_reg.mask = 0;
}
static void sata_revid_read(struct sim_dev_reg *reg, u32 *value)
{
reg_read(reg, value);
}
static struct sim_dev_reg bus1_fixups[] = {
DEFINE_REG(2, 0, 0x10, (16*MB), reg_init, reg_read, reg_write)
DEFINE_REG(2, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(2, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(3, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(4, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(4, 1, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 0, 0x10, (512*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 1, 0x10, (512*KB), reg_init, reg_read, reg_write)
DEFINE_REG(6, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 0, 0x10, (1*MB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(8, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(9, 0, 0x10 , (1*MB), reg_init, reg_read, reg_write)
DEFINE_REG(9, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(10, 0, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(10, 0, 0x14, (256*MB), reg_init, reg_read, reg_write)
DEFINE_REG(11, 0, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 1, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 2, 0x18, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 3, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 3, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 4, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 5, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(11, 6, 0x10, (256), reg_init, reg_read, reg_write)
DEFINE_REG(11, 7, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(12, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(12, 0, 0x14, (256), reg_init, reg_read, reg_write)
DEFINE_REG(12, 1, 0x10, (1024), reg_init, reg_read, reg_write)
DEFINE_REG(13, 0, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
DEFINE_REG(13, 1, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
DEFINE_REG(14, 0, 0x8, 0, sata_revid_init, sata_revid_read, 0)
DEFINE_REG(14, 0, 0x10, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x14, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x18, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x1C, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x20, 0, reg_init, reg_read, reg_write)
DEFINE_REG(14, 0, 0x24, (0x200), sata_reg_init, reg_read, reg_write)
DEFINE_REG(15, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(15, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x14, (64*MB), reg_init, reg_read, reg_write)
DEFINE_REG(16, 0, 0x18, (64*MB), reg_init, reg_read, reg_write)
DEFINE_REG(17, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
DEFINE_REG(18, 0, 0x10, (1*KB), reg_init, reg_read, reg_write)
};
static void __init init_sim_regs(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].init)
bus1_fixups[i].init(&bus1_fixups[i]);
}
}
static inline void extract_bytes(u32 *value, int reg, int len)
{
uint32_t mask;
*value >>= ((reg & 3) * 8);
mask = 0xFFFFFFFF >> ((4 - len) * 8);
*value &= mask;
}
int bridge_read(unsigned int devfn, int reg, int len, u32 *value)
{
u32 av_bridge_base, av_bridge_limit;
int retval = 0;
switch (reg) {
/* Make BARs appear to not request any memory. */
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_0 + 1:
case PCI_BASE_ADDRESS_0 + 2:
case PCI_BASE_ADDRESS_0 + 3:
*value = 0;
break;
/* Since subordinate bus number register is hardwired
* to zero and read only, so do the simulation.
*/
case PCI_PRIMARY_BUS:
if (len == 4)
*value = 0x00010100;
break;
case PCI_SUBORDINATE_BUS:
*value = 1;
break;
case PCI_MEMORY_BASE:
case PCI_MEMORY_LIMIT:
/* Get the A/V bridge base address. */
pci_direct_conf1.read(0, 0, devfn,
PCI_BASE_ADDRESS_0, 4, &av_bridge_base);
av_bridge_limit = av_bridge_base + (512*MB - 1);
av_bridge_limit >>= 16;
av_bridge_limit &= 0xFFF0;
av_bridge_base >>= 16;
av_bridge_base &= 0xFFF0;
if (reg == PCI_MEMORY_LIMIT)
*value = av_bridge_limit;
else if (len == 2)
*value = av_bridge_base;
else
*value = (av_bridge_limit << 16) | av_bridge_base;
break;
/* Make prefetchable memory limit smaller than prefetchable
* memory base, so not claim prefetchable memory space.
*/
case PCI_PREF_MEMORY_BASE:
*value = 0xFFF0;
break;
case PCI_PREF_MEMORY_LIMIT:
*value = 0x0;
break;
/* Make IO limit smaller than IO base, so not claim IO space. */
case PCI_IO_BASE:
*value = 0xF0;
break;
case PCI_IO_LIMIT:
*value = 0;
break;
default:
retval = 1;
}
return retval;
}
static int ce4100_conf_read(unsigned int seg, unsigned int bus,
unsigned int devfn, int reg, int len, u32 *value)
{
int i, retval = 1;
if (bus == 1) {
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].dev_func == devfn &&
bus1_fixups[i].reg == (reg & ~3) &&
bus1_fixups[i].read) {
bus1_fixups[i].read(&(bus1_fixups[i]),
value);
extract_bytes(value, reg, len);
return 0;
}
}
}
if (bus == 0 && (PCI_DEVFN(1, 0) == devfn) &&
!bridge_read(devfn, reg, len, value))
return 0;
return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
}
static int ce4100_conf_write(unsigned int seg, unsigned int bus,
unsigned int devfn, int reg, int len, u32 value)
{
int i;
if (bus == 1) {
for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
if (bus1_fixups[i].dev_func == devfn &&
bus1_fixups[i].reg == (reg & ~3) &&
bus1_fixups[i].write) {
bus1_fixups[i].write(&(bus1_fixups[i]),
value);
return 0;
}
}
}
/* Discard writes to A/V bridge BAR. */
if (bus == 0 && PCI_DEVFN(1, 0) == devfn &&
((reg & ~3) == PCI_BASE_ADDRESS_0))
return 0;
return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
}
struct pci_raw_ops ce4100_pci_conf = {
.read = ce4100_conf_read,
.write = ce4100_conf_write,
};
static int __init ce4100_pci_init(void)
{
init_sim_regs();
raw_pci_ops = &ce4100_pci_conf;
return 0;
}
subsys_initcall(ce4100_pci_init);

View File

@ -1,5 +1,7 @@
# Platform specific code goes here
obj-y += ce4100/
obj-y += efi/
obj-y += iris/
obj-y += mrst/
obj-y += olpc/
obj-y += scx200/

View File

@ -0,0 +1 @@
obj-$(CONFIG_X86_INTEL_CE) += ce4100.o

View File

@ -0,0 +1,132 @@
/*
* Intel CE4100 platform specific setup code
*
* (C) Copyright 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/serial_reg.h>
#include <linux/serial_8250.h>
#include <asm/setup.h>
#include <asm/io.h>
static int ce4100_i8042_detect(void)
{
return 0;
}
static void __init sdv_find_smp_config(void)
{
}
#ifdef CONFIG_SERIAL_8250
static unsigned int mem_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return readl(p->membase + offset);
}
/*
* The UART Tx interrupts are not set under some conditions and therefore serial
* transmission hangs. This is a silicon issue and has not been root caused. The
* workaround for this silicon issue checks UART_LSR_THRE bit and UART_LSR_TEMT
* bit of LSR register in interrupt handler to see whether at least one of these
* two bits is set, if so then process the transmit request. If this workaround
* is not applied, then the serial transmission may hang. This workaround is for
* errata number 9 in Errata - B step.
*/
static unsigned int ce4100_mem_serial_in(struct uart_port *p, int offset)
{
unsigned int ret, ier, lsr;
if (offset == UART_IIR) {
offset = offset << p->regshift;
ret = readl(p->membase + offset);
if (ret & UART_IIR_NO_INT) {
/* see if the TX interrupt should have really set */
ier = mem_serial_in(p, UART_IER);
/* see if the UART's XMIT interrupt is enabled */
if (ier & UART_IER_THRI) {
lsr = mem_serial_in(p, UART_LSR);
/* now check to see if the UART should be
generating an interrupt (but isn't) */
if (lsr & (UART_LSR_THRE | UART_LSR_TEMT))
ret &= ~UART_IIR_NO_INT;
}
}
} else
ret = mem_serial_in(p, offset);
return ret;
}
static void ce4100_mem_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
writel(value, p->membase + offset);
}
static void ce4100_serial_fixup(int port, struct uart_port *up,
unsigned short *capabilites)
{
#ifdef CONFIG_EARLY_PRINTK
/*
* Over ride the legacy port configuration that comes from
* asm/serial.h. Using the ioport driver then switching to the
* PCI memmaped driver hangs the IOAPIC
*/
if (up->iotype != UPIO_MEM32) {
up->uartclk = 14745600;
up->mapbase = 0xdffe0200;
set_fixmap_nocache(FIX_EARLYCON_MEM_BASE,
up->mapbase & PAGE_MASK);
up->membase =
(void __iomem *)__fix_to_virt(FIX_EARLYCON_MEM_BASE);
up->membase += up->mapbase & ~PAGE_MASK;
up->iotype = UPIO_MEM32;
up->regshift = 2;
}
#endif
up->iobase = 0;
up->serial_in = ce4100_mem_serial_in;
up->serial_out = ce4100_mem_serial_out;
*capabilites |= (1 << 12);
}
static __init void sdv_serial_fixup(void)
{
serial8250_set_isa_configurator(ce4100_serial_fixup);
}
#else
static inline void sdv_serial_fixup(void);
#endif
static void __init sdv_arch_setup(void)
{
sdv_serial_fixup();
}
/*
* CE4100 specific x86_init function overrides and early setup
* calls.
*/
void __init x86_ce4100_early_setup(void)
{
x86_init.oem.arch_setup = sdv_arch_setup;
x86_platform.i8042_detect = ce4100_i8042_detect;
x86_init.resources.probe_roms = x86_init_noop;
x86_init.mpparse.get_smp_config = x86_init_uint_noop;
x86_init.mpparse.find_smp_config = sdv_find_smp_config;
}

View File

@ -0,0 +1 @@
obj-$(CONFIG_X86_32_IRIS) += iris.o

View File

@ -0,0 +1,91 @@
/*
* Eurobraille/Iris power off support.
*
* Eurobraille's Iris machine is a PC with no APM or ACPI support.
* It is shutdown by a special I/O sequence which this module provides.
*
* Copyright (C) Shérab <Sebastien.Hinderer@ens-lyon.org>
*
* This program is free software ; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the program ; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pm.h>
#include <asm/io.h>
#define IRIS_GIO_BASE 0x340
#define IRIS_GIO_INPUT IRIS_GIO_BASE
#define IRIS_GIO_OUTPUT (IRIS_GIO_BASE + 1)
#define IRIS_GIO_PULSE 0x80 /* First byte to send */
#define IRIS_GIO_REST 0x00 /* Second byte to send */
#define IRIS_GIO_NODEV 0xff /* Likely not an Iris */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sébastien Hinderer <Sebastien.Hinderer@ens-lyon.org>");
MODULE_DESCRIPTION("A power_off handler for Iris devices from EuroBraille");
MODULE_SUPPORTED_DEVICE("Eurobraille/Iris");
static int force;
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force poweroff handler installation.");
static void (*old_pm_power_off)(void);
static void iris_power_off(void)
{
outb(IRIS_GIO_PULSE, IRIS_GIO_OUTPUT);
msleep(850);
outb(IRIS_GIO_REST, IRIS_GIO_OUTPUT);
}
/*
* Before installing the power_off handler, try to make sure the OS is
* running on an Iris. Since Iris does not support DMI, this is done
* by reading its input port and seeing whether the read value is
* meaningful.
*/
static int iris_init(void)
{
unsigned char status;
if (force != 1) {
printk(KERN_ERR "The force parameter has not been set to 1 so the Iris poweroff handler will not be installed.\n");
return -ENODEV;
}
status = inb(IRIS_GIO_INPUT);
if (status == IRIS_GIO_NODEV) {
printk(KERN_ERR "This machine does not seem to be an Iris. Power_off handler not installed.\n");
return -ENODEV;
}
old_pm_power_off = pm_power_off;
pm_power_off = &iris_power_off;
printk(KERN_INFO "Iris power_off handler installed.\n");
return 0;
}
static void iris_exit(void)
{
pm_power_off = old_pm_power_off;
printk(KERN_INFO "Iris power_off handler uninstalled.\n");
}
module_init(iris_init);
module_exit(iris_exit);

View File

@ -1 +1,3 @@
obj-$(CONFIG_X86_MRST) += mrst.o
obj-$(CONFIG_X86_MRST) += vrtc.o
obj-$(CONFIG_EARLY_PRINTK_MRST) += early_printk_mrst.o

View File

@ -9,9 +9,19 @@
* as published by the Free Software Foundation; version 2
* of the License.
*/
#define pr_fmt(fmt) "mrst: " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sfi.h>
#include <linux/intel_pmic_gpio.h>
#include <linux/spi/spi.h>
#include <linux/i2c.h>
#include <linux/i2c/pca953x.h>
#include <linux/gpio_keys.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/module.h>
@ -23,7 +33,9 @@
#include <asm/mrst.h>
#include <asm/io.h>
#include <asm/i8259.h>
#include <asm/intel_scu_ipc.h>
#include <asm/apb_timer.h>
#include <asm/reboot.h>
/*
* the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock,
@ -102,10 +114,10 @@ static int __init sfi_parse_mtmr(struct sfi_table_header *table)
memcpy(sfi_mtimer_array, pentry, totallen);
}
printk(KERN_INFO "SFI: MTIMER info (num = %d):\n", sfi_mtimer_num);
pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
pentry = sfi_mtimer_array;
for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
printk(KERN_INFO "timer[%d]: paddr = 0x%08x, freq = %dHz,"
pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz,"
" irq = %d\n", totallen, (u32)pentry->phys_addr,
pentry->freq_hz, pentry->irq);
if (!pentry->irq)
@ -176,14 +188,14 @@ int __init sfi_parse_mrtc(struct sfi_table_header *table)
memcpy(sfi_mrtc_array, pentry, totallen);
}
printk(KERN_INFO "SFI: RTC info (num = %d):\n", sfi_mrtc_num);
pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
pentry = sfi_mrtc_array;
for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
printk(KERN_INFO "RTC[%d]: paddr = 0x%08x, irq = %d\n",
pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
totallen, (u32)pentry->phys_addr, pentry->irq);
mp_irq.type = MP_IOAPIC;
mp_irq.irqtype = mp_INT;
mp_irq.irqflag = 0;
mp_irq.irqflag = 0xf; /* level trigger and active low */
mp_irq.srcbus = 0;
mp_irq.srcbusirq = pentry->irq; /* IRQ */
mp_irq.dstapic = MP_APIC_ALL;
@ -209,6 +221,7 @@ static unsigned long __init mrst_calibrate_tsc(void)
void __init mrst_time_init(void)
{
sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
switch (mrst_timer_options) {
case MRST_TIMER_APBT_ONLY:
break;
@ -224,16 +237,10 @@ void __init mrst_time_init(void)
return;
}
/* we need at least one APB timer */
sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr);
pre_init_apic_IRQ0();
apbt_time_init();
}
void __init mrst_rtc_init(void)
{
sfi_table_parse(SFI_SIG_MRTC, NULL, NULL, sfi_parse_mrtc);
}
void __cpuinit mrst_arch_setup(void)
{
if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27)
@ -256,6 +263,17 @@ static int mrst_i8042_detect(void)
return 0;
}
/* Reboot and power off are handled by the SCU on a MID device */
static void mrst_power_off(void)
{
intel_scu_ipc_simple_command(0xf1, 1);
}
static void mrst_reboot(void)
{
intel_scu_ipc_simple_command(0xf1, 0);
}
/*
* Moorestown specific x86_init function overrides and early setup
* calls.
@ -281,6 +299,10 @@ void __init x86_mrst_early_setup(void)
legacy_pic = &null_legacy_pic;
/* Moorestown specific power_off/restart method */
pm_power_off = mrst_power_off;
machine_ops.emergency_restart = mrst_reboot;
/* Avoid searching for BIOS MP tables */
x86_init.mpparse.find_smp_config = x86_init_noop;
x86_init.mpparse.get_smp_config = x86_init_uint_noop;
@ -309,3 +331,505 @@ static inline int __init setup_x86_mrst_timer(char *arg)
return 0;
}
__setup("x86_mrst_timer=", setup_x86_mrst_timer);
/*
* Parsing GPIO table first, since the DEVS table will need this table
* to map the pin name to the actual pin.
*/
static struct sfi_gpio_table_entry *gpio_table;
static int gpio_num_entry;
static int __init sfi_parse_gpio(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_gpio_table_entry *pentry;
int num, i;
if (gpio_table)
return 0;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
pentry = (struct sfi_gpio_table_entry *)sb->pentry;
gpio_table = (struct sfi_gpio_table_entry *)
kmalloc(num * sizeof(*pentry), GFP_KERNEL);
if (!gpio_table)
return -1;
memcpy(gpio_table, pentry, num * sizeof(*pentry));
gpio_num_entry = num;
pr_debug("GPIO pin info:\n");
for (i = 0; i < num; i++, pentry++)
pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
" pin = %d\n", i,
pentry->controller_name,
pentry->pin_name,
pentry->pin_no);
return 0;
}
static int get_gpio_by_name(const char *name)
{
struct sfi_gpio_table_entry *pentry = gpio_table;
int i;
if (!pentry)
return -1;
for (i = 0; i < gpio_num_entry; i++, pentry++) {
if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
return pentry->pin_no;
}
return -1;
}
/*
* Here defines the array of devices platform data that IAFW would export
* through SFI "DEVS" table, we use name and type to match the device and
* its platform data.
*/
struct devs_id {
char name[SFI_NAME_LEN + 1];
u8 type;
u8 delay;
void *(*get_platform_data)(void *info);
};
/* the offset for the mapping of global gpio pin to irq */
#define MRST_IRQ_OFFSET 0x100
static void __init *pmic_gpio_platform_data(void *info)
{
static struct intel_pmic_gpio_platform_data pmic_gpio_pdata;
int gpio_base = get_gpio_by_name("pmic_gpio_base");
if (gpio_base == -1)
gpio_base = 64;
pmic_gpio_pdata.gpio_base = gpio_base;
pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET;
pmic_gpio_pdata.gpiointr = 0xffffeff8;
return &pmic_gpio_pdata;
}
static void __init *max3111_platform_data(void *info)
{
struct spi_board_info *spi_info = info;
int intr = get_gpio_by_name("max3111_int");
if (intr == -1)
return NULL;
spi_info->irq = intr + MRST_IRQ_OFFSET;
return NULL;
}
/* we have multiple max7315 on the board ... */
#define MAX7315_NUM 2
static void __init *max7315_platform_data(void *info)
{
static struct pca953x_platform_data max7315_pdata[MAX7315_NUM];
static int nr;
struct pca953x_platform_data *max7315 = &max7315_pdata[nr];
struct i2c_board_info *i2c_info = info;
int gpio_base, intr;
char base_pin_name[SFI_NAME_LEN + 1];
char intr_pin_name[SFI_NAME_LEN + 1];
if (nr == MAX7315_NUM) {
pr_err("too many max7315s, we only support %d\n",
MAX7315_NUM);
return NULL;
}
/* we have several max7315 on the board, we only need load several
* instances of the same pca953x driver to cover them
*/
strcpy(i2c_info->type, "max7315");
if (nr++) {
sprintf(base_pin_name, "max7315_%d_base", nr);
sprintf(intr_pin_name, "max7315_%d_int", nr);
} else {
strcpy(base_pin_name, "max7315_base");
strcpy(intr_pin_name, "max7315_int");
}
gpio_base = get_gpio_by_name(base_pin_name);
intr = get_gpio_by_name(intr_pin_name);
if (gpio_base == -1)
return NULL;
max7315->gpio_base = gpio_base;
if (intr != -1) {
i2c_info->irq = intr + MRST_IRQ_OFFSET;
max7315->irq_base = gpio_base + MRST_IRQ_OFFSET;
} else {
i2c_info->irq = -1;
max7315->irq_base = -1;
}
return max7315;
}
static void __init *emc1403_platform_data(void *info)
{
static short intr2nd_pdata;
struct i2c_board_info *i2c_info = info;
int intr = get_gpio_by_name("thermal_int");
int intr2nd = get_gpio_by_name("thermal_alert");
if (intr == -1 || intr2nd == -1)
return NULL;
i2c_info->irq = intr + MRST_IRQ_OFFSET;
intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
return &intr2nd_pdata;
}
static void __init *lis331dl_platform_data(void *info)
{
static short intr2nd_pdata;
struct i2c_board_info *i2c_info = info;
int intr = get_gpio_by_name("accel_int");
int intr2nd = get_gpio_by_name("accel_2");
if (intr == -1 || intr2nd == -1)
return NULL;
i2c_info->irq = intr + MRST_IRQ_OFFSET;
intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET;
return &intr2nd_pdata;
}
static void __init *no_platform_data(void *info)
{
return NULL;
}
static const struct devs_id __initconst device_ids[] = {
{"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data},
{"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data},
{"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
{"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data},
{"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data},
{"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data},
{"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
{"msic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data},
{},
};
#define MAX_IPCDEVS 24
static struct platform_device *ipc_devs[MAX_IPCDEVS];
static int ipc_next_dev;
#define MAX_SCU_SPI 24
static struct spi_board_info *spi_devs[MAX_SCU_SPI];
static int spi_next_dev;
#define MAX_SCU_I2C 24
static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
static int i2c_bus[MAX_SCU_I2C];
static int i2c_next_dev;
static void __init intel_scu_device_register(struct platform_device *pdev)
{
if(ipc_next_dev == MAX_IPCDEVS)
pr_err("too many SCU IPC devices");
else
ipc_devs[ipc_next_dev++] = pdev;
}
static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
{
struct spi_board_info *new_dev;
if (spi_next_dev == MAX_SCU_SPI) {
pr_err("too many SCU SPI devices");
return;
}
new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed spi dev %s\n",
sdev->modalias);
return;
}
memcpy(new_dev, sdev, sizeof(*sdev));
spi_devs[spi_next_dev++] = new_dev;
}
static void __init intel_scu_i2c_device_register(int bus,
struct i2c_board_info *idev)
{
struct i2c_board_info *new_dev;
if (i2c_next_dev == MAX_SCU_I2C) {
pr_err("too many SCU I2C devices");
return;
}
new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed i2c dev %s\n",
idev->type);
return;
}
memcpy(new_dev, idev, sizeof(*idev));
i2c_bus[i2c_next_dev] = bus;
i2c_devs[i2c_next_dev++] = new_dev;
}
/* Called by IPC driver */
void intel_scu_devices_create(void)
{
int i;
for (i = 0; i < ipc_next_dev; i++)
platform_device_add(ipc_devs[i]);
for (i = 0; i < spi_next_dev; i++)
spi_register_board_info(spi_devs[i], 1);
for (i = 0; i < i2c_next_dev; i++) {
struct i2c_adapter *adapter;
struct i2c_client *client;
adapter = i2c_get_adapter(i2c_bus[i]);
if (adapter) {
client = i2c_new_device(adapter, i2c_devs[i]);
if (!client)
pr_err("can't create i2c device %s\n",
i2c_devs[i]->type);
} else
i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
}
}
EXPORT_SYMBOL_GPL(intel_scu_devices_create);
/* Called by IPC driver */
void intel_scu_devices_destroy(void)
{
int i;
for (i = 0; i < ipc_next_dev; i++)
platform_device_del(ipc_devs[i]);
}
EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
static void __init install_irq_resource(struct platform_device *pdev, int irq)
{
/* Single threaded */
static struct resource __initdata res = {
.name = "IRQ",
.flags = IORESOURCE_IRQ,
};
res.start = irq;
platform_device_add_resources(pdev, &res, 1);
}
static void __init sfi_handle_ipc_dev(struct platform_device *pdev)
{
const struct devs_id *dev = device_ids;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_IPC &&
!strncmp(dev->name, pdev->name, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(pdev);
break;
}
dev++;
}
pdev->dev.platform_data = pdata;
intel_scu_device_register(pdev);
}
static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info)
{
const struct devs_id *dev = device_ids;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_SPI &&
!strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(spi_info);
break;
}
dev++;
}
spi_info->platform_data = pdata;
if (dev->delay)
intel_scu_spi_device_register(spi_info);
else
spi_register_board_info(spi_info, 1);
}
static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info)
{
const struct devs_id *dev = device_ids;
void *pdata = NULL;
while (dev->name[0]) {
if (dev->type == SFI_DEV_TYPE_I2C &&
!strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) {
pdata = dev->get_platform_data(i2c_info);
break;
}
dev++;
}
i2c_info->platform_data = pdata;
if (dev->delay)
intel_scu_i2c_device_register(bus, i2c_info);
else
i2c_register_board_info(bus, i2c_info, 1);
}
static int __init sfi_parse_devs(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_device_table_entry *pentry;
struct spi_board_info spi_info;
struct i2c_board_info i2c_info;
struct platform_device *pdev;
int num, i, bus;
int ioapic;
struct io_apic_irq_attr irq_attr;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
pentry = (struct sfi_device_table_entry *)sb->pentry;
for (i = 0; i < num; i++, pentry++) {
if (pentry->irq != (u8)0xff) { /* native RTE case */
/* these SPI2 devices are not exposed to system as PCI
* devices, but they have separate RTE entry in IOAPIC
* so we have to enable them one by one here
*/
ioapic = mp_find_ioapic(pentry->irq);
irq_attr.ioapic = ioapic;
irq_attr.ioapic_pin = pentry->irq;
irq_attr.trigger = 1;
irq_attr.polarity = 1;
io_apic_set_pci_routing(NULL, pentry->irq, &irq_attr);
}
switch (pentry->type) {
case SFI_DEV_TYPE_IPC:
/* ID as IRQ is a hack that will go away */
pdev = platform_device_alloc(pentry->name, pentry->irq);
if (pdev == NULL) {
pr_err("out of memory for SFI platform device '%s'.\n",
pentry->name);
continue;
}
install_irq_resource(pdev, pentry->irq);
pr_debug("info[%2d]: IPC bus, name = %16.16s, "
"irq = 0x%2x\n", i, pentry->name, pentry->irq);
sfi_handle_ipc_dev(pdev);
break;
case SFI_DEV_TYPE_SPI:
memset(&spi_info, 0, sizeof(spi_info));
strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
spi_info.irq = pentry->irq;
spi_info.bus_num = pentry->host_num;
spi_info.chip_select = pentry->addr;
spi_info.max_speed_hz = pentry->max_freq;
pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, "
"irq = 0x%2x, max_freq = %d, cs = %d\n", i,
spi_info.bus_num,
spi_info.modalias,
spi_info.irq,
spi_info.max_speed_hz,
spi_info.chip_select);
sfi_handle_spi_dev(&spi_info);
break;
case SFI_DEV_TYPE_I2C:
memset(&i2c_info, 0, sizeof(i2c_info));
bus = pentry->host_num;
strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
i2c_info.irq = pentry->irq;
i2c_info.addr = pentry->addr;
pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, "
"irq = 0x%2x, addr = 0x%x\n", i, bus,
i2c_info.type,
i2c_info.irq,
i2c_info.addr);
sfi_handle_i2c_dev(bus, &i2c_info);
break;
case SFI_DEV_TYPE_UART:
case SFI_DEV_TYPE_HSI:
default:
;
}
}
return 0;
}
static int __init mrst_platform_init(void)
{
sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
return 0;
}
arch_initcall(mrst_platform_init);
/*
* we will search these buttons in SFI GPIO table (by name)
* and register them dynamically. Please add all possible
* buttons here, we will shrink them if no GPIO found.
*/
static struct gpio_keys_button gpio_button[] = {
{KEY_POWER, -1, 1, "power_btn", EV_KEY, 0, 3000},
{KEY_PROG1, -1, 1, "prog_btn1", EV_KEY, 0, 20},
{KEY_PROG2, -1, 1, "prog_btn2", EV_KEY, 0, 20},
{SW_LID, -1, 1, "lid_switch", EV_SW, 0, 20},
{KEY_VOLUMEUP, -1, 1, "vol_up", EV_KEY, 0, 20},
{KEY_VOLUMEDOWN, -1, 1, "vol_down", EV_KEY, 0, 20},
{KEY_CAMERA, -1, 1, "camera_full", EV_KEY, 0, 20},
{KEY_CAMERA_FOCUS, -1, 1, "camera_half", EV_KEY, 0, 20},
{SW_KEYPAD_SLIDE, -1, 1, "MagSw1", EV_SW, 0, 20},
{SW_KEYPAD_SLIDE, -1, 1, "MagSw2", EV_SW, 0, 20},
};
static struct gpio_keys_platform_data mrst_gpio_keys = {
.buttons = gpio_button,
.rep = 1,
.nbuttons = -1, /* will fill it after search */
};
static struct platform_device pb_device = {
.name = "gpio-keys",
.id = -1,
.dev = {
.platform_data = &mrst_gpio_keys,
},
};
/*
* Shrink the non-existent buttons, register the gpio button
* device if there is some
*/
static int __init pb_keys_init(void)
{
struct gpio_keys_button *gb = gpio_button;
int i, num, good = 0;
num = sizeof(gpio_button) / sizeof(struct gpio_keys_button);
for (i = 0; i < num; i++) {
gb[i].gpio = get_gpio_by_name(gb[i].desc);
if (gb[i].gpio == -1)
continue;
if (i != good)
gb[good] = gb[i];
good++;
}
if (good) {
mrst_gpio_keys.nbuttons = good;
return platform_device_register(&pb_device);
}
return 0;
}
late_initcall(pb_keys_init);

View File

@ -0,0 +1,165 @@
/*
* vrtc.c: Driver for virtual RTC device on Intel MID platform
*
* (C) Copyright 2009 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*
* Note:
* VRTC is emulated by system controller firmware, the real HW
* RTC is located in the PMIC device. SCU FW shadows PMIC RTC
* in a memory mapped IO space that is visible to the host IA
* processor.
*
* This driver is based on RTC CMOS driver.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sfi.h>
#include <linux/platform_device.h>
#include <asm/mrst.h>
#include <asm/mrst-vrtc.h>
#include <asm/time.h>
#include <asm/fixmap.h>
static unsigned char __iomem *vrtc_virt_base;
unsigned char vrtc_cmos_read(unsigned char reg)
{
unsigned char retval;
/* vRTC's registers range from 0x0 to 0xD */
if (reg > 0xd || !vrtc_virt_base)
return 0xff;
lock_cmos_prefix(reg);
retval = __raw_readb(vrtc_virt_base + (reg << 2));
lock_cmos_suffix(reg);
return retval;
}
EXPORT_SYMBOL_GPL(vrtc_cmos_read);
void vrtc_cmos_write(unsigned char val, unsigned char reg)
{
if (reg > 0xd || !vrtc_virt_base)
return;
lock_cmos_prefix(reg);
__raw_writeb(val, vrtc_virt_base + (reg << 2));
lock_cmos_suffix(reg);
}
EXPORT_SYMBOL_GPL(vrtc_cmos_write);
unsigned long vrtc_get_time(void)
{
u8 sec, min, hour, mday, mon;
u32 year;
while ((vrtc_cmos_read(RTC_FREQ_SELECT) & RTC_UIP))
cpu_relax();
sec = vrtc_cmos_read(RTC_SECONDS);
min = vrtc_cmos_read(RTC_MINUTES);
hour = vrtc_cmos_read(RTC_HOURS);
mday = vrtc_cmos_read(RTC_DAY_OF_MONTH);
mon = vrtc_cmos_read(RTC_MONTH);
year = vrtc_cmos_read(RTC_YEAR);
/* vRTC YEAR reg contains the offset to 1960 */
year += 1960;
printk(KERN_INFO "vRTC: sec: %d min: %d hour: %d day: %d "
"mon: %d year: %d\n", sec, min, hour, mday, mon, year);
return mktime(year, mon, mday, hour, min, sec);
}
/* Only care about the minutes and seconds */
int vrtc_set_mmss(unsigned long nowtime)
{
int real_sec, real_min;
int vrtc_min;
vrtc_min = vrtc_cmos_read(RTC_MINUTES);
real_sec = nowtime % 60;
real_min = nowtime / 60;
if (((abs(real_min - vrtc_min) + 15)/30) & 1)
real_min += 30;
real_min %= 60;
vrtc_cmos_write(real_sec, RTC_SECONDS);
vrtc_cmos_write(real_min, RTC_MINUTES);
return 0;
}
void __init mrst_rtc_init(void)
{
unsigned long rtc_paddr;
void __iomem *virt_base;
sfi_table_parse(SFI_SIG_MRTC, NULL, NULL, sfi_parse_mrtc);
if (!sfi_mrtc_num)
return;
rtc_paddr = sfi_mrtc_array[0].phys_addr;
/* vRTC's register address may not be page aligned */
set_fixmap_nocache(FIX_LNW_VRTC, rtc_paddr);
virt_base = (void __iomem *)__fix_to_virt(FIX_LNW_VRTC);
virt_base += rtc_paddr & ~PAGE_MASK;
vrtc_virt_base = virt_base;
x86_platform.get_wallclock = vrtc_get_time;
x86_platform.set_wallclock = vrtc_set_mmss;
}
/*
* The Moorestown platform has a memory mapped virtual RTC device that emulates
* the programming interface of the RTC.
*/
static struct resource vrtc_resources[] = {
[0] = {
.flags = IORESOURCE_MEM,
},
[1] = {
.flags = IORESOURCE_IRQ,
}
};
static struct platform_device vrtc_device = {
.name = "rtc_mrst",
.id = -1,
.resource = vrtc_resources,
.num_resources = ARRAY_SIZE(vrtc_resources),
};
/* Register the RTC device if appropriate */
static int __init mrst_device_create(void)
{
/* No Moorestown, no device */
if (!mrst_identify_cpu())
return -ENODEV;
/* No timer, no device */
if (!sfi_mrtc_num)
return -ENODEV;
/* iomem resource */
vrtc_resources[0].start = sfi_mrtc_array[0].phys_addr;
vrtc_resources[0].end = sfi_mrtc_array[0].phys_addr +
MRST_VRTC_MAP_SZ;
/* irq resource */
vrtc_resources[1].start = sfi_mrtc_array[0].irq;
vrtc_resources[1].end = sfi_mrtc_array[0].irq;
return platform_device_register(&vrtc_device);
}
module_init(mrst_device_create);

View File

@ -26,6 +26,7 @@
#include <linux/sfi.h>
#include <asm/mrst.h>
#include <asm/intel_scu_ipc.h>
#include <asm/mrst.h>
/* IPC defines the following message types */
#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
@ -699,6 +700,9 @@ static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
iounmap(ipcdev.ipc_base);
return -ENOMEM;
}
intel_scu_devices_create();
return 0;
}
@ -720,6 +724,7 @@ static void ipc_remove(struct pci_dev *pdev)
iounmap(ipcdev.ipc_base);
iounmap(ipcdev.i2c_base);
ipcdev.pdev = NULL;
intel_scu_devices_destroy();
}
static const struct pci_device_id pci_ids[] = {

View File

@ -463,6 +463,18 @@ config RTC_DRV_CMOS
This driver can also be built as a module. If so, the module
will be called rtc-cmos.
config RTC_DRV_VRTC
tristate "Virtual RTC for Moorestown platforms"
depends on X86_MRST
default y if X86_MRST
help
Say "yes" here to get direct support for the real time clock
found on Moorestown platforms. The VRTC is a emulated RTC that
derives its clock source from a real RTC in the PMIC. The MC146818
style programming interface is mostly conserved, but any
updates are done via IPC calls to the system controller FW.
config RTC_DRV_DS1216
tristate "Dallas DS1216"
depends on SNI_RM

View File

@ -30,6 +30,7 @@ obj-$(CONFIG_RTC_DRV_CMOS) += rtc-cmos.o
obj-$(CONFIG_RTC_DRV_COH901331) += rtc-coh901331.o
obj-$(CONFIG_RTC_DRV_DAVINCI) += rtc-davinci.o
obj-$(CONFIG_RTC_DRV_DM355EVM) += rtc-dm355evm.o
obj-$(CONFIG_RTC_DRV_VRTC) += rtc-mrst.o
obj-$(CONFIG_RTC_DRV_DS1216) += rtc-ds1216.o
obj-$(CONFIG_RTC_DRV_DS1286) += rtc-ds1286.o
obj-$(CONFIG_RTC_DRV_DS1302) += rtc-ds1302.o

582
drivers/rtc/rtc-mrst.c Normal file
View File

@ -0,0 +1,582 @@
/*
* rtc-mrst.c: Driver for Moorestown virtual RTC
*
* (C) Copyright 2009 Intel Corporation
* Author: Jacob Pan (jacob.jun.pan@intel.com)
* Feng Tang (feng.tang@intel.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*
* Note:
* VRTC is emulated by system controller firmware, the real HW
* RTC is located in the PMIC device. SCU FW shadows PMIC RTC
* in a memory mapped IO space that is visible to the host IA
* processor.
*
* This driver is based upon drivers/rtc/rtc-cmos.c
*/
/*
* Note:
* * vRTC only supports binary mode and 24H mode
* * vRTC only support PIE and AIE, no UIE, and its PIE only happens
* at 23:59:59pm everyday, no support for adjustable frequency
* * Alarm function is also limited to hr/min/sec.
*/
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sfi.h>
#include <asm-generic/rtc.h>
#include <asm/intel_scu_ipc.h>
#include <asm/mrst.h>
#include <asm/mrst-vrtc.h>
struct mrst_rtc {
struct rtc_device *rtc;
struct device *dev;
int irq;
struct resource *iomem;
u8 enabled_wake;
u8 suspend_ctrl;
};
static const char driver_name[] = "rtc_mrst";
#define RTC_IRQMASK (RTC_PF | RTC_AF)
static inline int is_intr(u8 rtc_intr)
{
if (!(rtc_intr & RTC_IRQF))
return 0;
return rtc_intr & RTC_IRQMASK;
}
/*
* rtc_time's year contains the increment over 1900, but vRTC's YEAR
* register can't be programmed to value larger than 0x64, so vRTC
* driver chose to use 1960 (1970 is UNIX time start point) as the base,
* and does the translation at read/write time.
*
* Why not just use 1970 as the offset? it's because using 1960 will
* make it consistent in leap year setting for both vrtc and low-level
* physical rtc devices.
*/
static int mrst_read_time(struct device *dev, struct rtc_time *time)
{
unsigned long flags;
if (rtc_is_updating())
mdelay(20);
spin_lock_irqsave(&rtc_lock, flags);
time->tm_sec = vrtc_cmos_read(RTC_SECONDS);
time->tm_min = vrtc_cmos_read(RTC_MINUTES);
time->tm_hour = vrtc_cmos_read(RTC_HOURS);
time->tm_mday = vrtc_cmos_read(RTC_DAY_OF_MONTH);
time->tm_mon = vrtc_cmos_read(RTC_MONTH);
time->tm_year = vrtc_cmos_read(RTC_YEAR);
spin_unlock_irqrestore(&rtc_lock, flags);
/* Adjust for the 1960/1900 */
time->tm_year += 60;
time->tm_mon--;
return RTC_24H;
}
static int mrst_set_time(struct device *dev, struct rtc_time *time)
{
int ret;
unsigned long flags;
unsigned char mon, day, hrs, min, sec;
unsigned int yrs;
yrs = time->tm_year;
mon = time->tm_mon + 1; /* tm_mon starts at zero */
day = time->tm_mday;
hrs = time->tm_hour;
min = time->tm_min;
sec = time->tm_sec;
if (yrs < 70 || yrs > 138)
return -EINVAL;
yrs -= 60;
spin_lock_irqsave(&rtc_lock, flags);
vrtc_cmos_write(yrs, RTC_YEAR);
vrtc_cmos_write(mon, RTC_MONTH);
vrtc_cmos_write(day, RTC_DAY_OF_MONTH);
vrtc_cmos_write(hrs, RTC_HOURS);
vrtc_cmos_write(min, RTC_MINUTES);
vrtc_cmos_write(sec, RTC_SECONDS);
spin_unlock_irqrestore(&rtc_lock, flags);
ret = intel_scu_ipc_simple_command(IPCMSG_VRTC, IPC_CMD_VRTC_SETTIME);
return ret;
}
static int mrst_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned char rtc_control;
if (mrst->irq <= 0)
return -EIO;
/* Basic alarms only support hour, minute, and seconds fields.
* Some also support day and month, for alarms up to a year in
* the future.
*/
t->time.tm_mday = -1;
t->time.tm_mon = -1;
t->time.tm_year = -1;
/* vRTC only supports binary mode */
spin_lock_irq(&rtc_lock);
t->time.tm_sec = vrtc_cmos_read(RTC_SECONDS_ALARM);
t->time.tm_min = vrtc_cmos_read(RTC_MINUTES_ALARM);
t->time.tm_hour = vrtc_cmos_read(RTC_HOURS_ALARM);
rtc_control = vrtc_cmos_read(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
t->enabled = !!(rtc_control & RTC_AIE);
t->pending = 0;
return 0;
}
static void mrst_checkintr(struct mrst_rtc *mrst, unsigned char rtc_control)
{
unsigned char rtc_intr;
/*
* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
* allegedly some older rtcs need that to handle irqs properly
*/
rtc_intr = vrtc_cmos_read(RTC_INTR_FLAGS);
rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
if (is_intr(rtc_intr))
rtc_update_irq(mrst->rtc, 1, rtc_intr);
}
static void mrst_irq_enable(struct mrst_rtc *mrst, unsigned char mask)
{
unsigned char rtc_control;
/*
* Flush any pending IRQ status, notably for update irqs,
* before we enable new IRQs
*/
rtc_control = vrtc_cmos_read(RTC_CONTROL);
mrst_checkintr(mrst, rtc_control);
rtc_control |= mask;
vrtc_cmos_write(rtc_control, RTC_CONTROL);
mrst_checkintr(mrst, rtc_control);
}
static void mrst_irq_disable(struct mrst_rtc *mrst, unsigned char mask)
{
unsigned char rtc_control;
rtc_control = vrtc_cmos_read(RTC_CONTROL);
rtc_control &= ~mask;
vrtc_cmos_write(rtc_control, RTC_CONTROL);
mrst_checkintr(mrst, rtc_control);
}
static int mrst_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned char hrs, min, sec;
int ret = 0;
if (!mrst->irq)
return -EIO;
hrs = t->time.tm_hour;
min = t->time.tm_min;
sec = t->time.tm_sec;
spin_lock_irq(&rtc_lock);
/* Next rtc irq must not be from previous alarm setting */
mrst_irq_disable(mrst, RTC_AIE);
/* Update alarm */
vrtc_cmos_write(hrs, RTC_HOURS_ALARM);
vrtc_cmos_write(min, RTC_MINUTES_ALARM);
vrtc_cmos_write(sec, RTC_SECONDS_ALARM);
spin_unlock_irq(&rtc_lock);
ret = intel_scu_ipc_simple_command(IPCMSG_VRTC, IPC_CMD_VRTC_SETALARM);
if (ret)
return ret;
spin_lock_irq(&rtc_lock);
if (t->enabled)
mrst_irq_enable(mrst, RTC_AIE);
spin_unlock_irq(&rtc_lock);
return 0;
}
static int mrst_irq_set_state(struct device *dev, int enabled)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned long flags;
if (!mrst->irq)
return -ENXIO;
spin_lock_irqsave(&rtc_lock, flags);
if (enabled)
mrst_irq_enable(mrst, RTC_PIE);
else
mrst_irq_disable(mrst, RTC_PIE);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
/* Currently, the vRTC doesn't support UIE ON/OFF */
static int
mrst_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned long flags;
switch (cmd) {
case RTC_AIE_OFF:
case RTC_AIE_ON:
if (!mrst->irq)
return -EINVAL;
break;
default:
/* PIE ON/OFF is handled by mrst_irq_set_state() */
return -ENOIOCTLCMD;
}
spin_lock_irqsave(&rtc_lock, flags);
switch (cmd) {
case RTC_AIE_OFF: /* alarm off */
mrst_irq_disable(mrst, RTC_AIE);
break;
case RTC_AIE_ON: /* alarm on */
mrst_irq_enable(mrst, RTC_AIE);
break;
}
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#else
#define mrst_rtc_ioctl NULL
#endif
#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
static int mrst_procfs(struct device *dev, struct seq_file *seq)
{
unsigned char rtc_control, valid;
spin_lock_irq(&rtc_lock);
rtc_control = vrtc_cmos_read(RTC_CONTROL);
valid = vrtc_cmos_read(RTC_VALID);
spin_unlock_irq(&rtc_lock);
return seq_printf(seq,
"periodic_IRQ\t: %s\n"
"alarm\t\t: %s\n"
"BCD\t\t: no\n"
"periodic_freq\t: daily (not adjustable)\n",
(rtc_control & RTC_PIE) ? "on" : "off",
(rtc_control & RTC_AIE) ? "on" : "off");
}
#else
#define mrst_procfs NULL
#endif
static const struct rtc_class_ops mrst_rtc_ops = {
.ioctl = mrst_rtc_ioctl,
.read_time = mrst_read_time,
.set_time = mrst_set_time,
.read_alarm = mrst_read_alarm,
.set_alarm = mrst_set_alarm,
.proc = mrst_procfs,
.irq_set_state = mrst_irq_set_state,
};
static struct mrst_rtc mrst_rtc;
/*
* When vRTC IRQ is captured by SCU FW, FW will clear the AIE bit in
* Reg B, so no need for this driver to clear it
*/
static irqreturn_t mrst_rtc_irq(int irq, void *p)
{
u8 irqstat;
spin_lock(&rtc_lock);
/* This read will clear all IRQ flags inside Reg C */
irqstat = vrtc_cmos_read(RTC_INTR_FLAGS);
spin_unlock(&rtc_lock);
irqstat &= RTC_IRQMASK | RTC_IRQF;
if (is_intr(irqstat)) {
rtc_update_irq(p, 1, irqstat);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int __init
vrtc_mrst_do_probe(struct device *dev, struct resource *iomem, int rtc_irq)
{
int retval = 0;
unsigned char rtc_control;
/* There can be only one ... */
if (mrst_rtc.dev)
return -EBUSY;
if (!iomem)
return -ENODEV;
iomem = request_mem_region(iomem->start,
iomem->end + 1 - iomem->start,
driver_name);
if (!iomem) {
dev_dbg(dev, "i/o mem already in use.\n");
return -EBUSY;
}
mrst_rtc.irq = rtc_irq;
mrst_rtc.iomem = iomem;
mrst_rtc.rtc = rtc_device_register(driver_name, dev,
&mrst_rtc_ops, THIS_MODULE);
if (IS_ERR(mrst_rtc.rtc)) {
retval = PTR_ERR(mrst_rtc.rtc);
goto cleanup0;
}
mrst_rtc.dev = dev;
dev_set_drvdata(dev, &mrst_rtc);
rename_region(iomem, dev_name(&mrst_rtc.rtc->dev));
spin_lock_irq(&rtc_lock);
mrst_irq_disable(&mrst_rtc, RTC_PIE | RTC_AIE);
rtc_control = vrtc_cmos_read(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))
dev_dbg(dev, "TODO: support more than 24-hr BCD mode\n");
if (rtc_irq) {
retval = request_irq(rtc_irq, mrst_rtc_irq,
IRQF_DISABLED, dev_name(&mrst_rtc.rtc->dev),
mrst_rtc.rtc);
if (retval < 0) {
dev_dbg(dev, "IRQ %d is already in use, err %d\n",
rtc_irq, retval);
goto cleanup1;
}
}
dev_dbg(dev, "initialised\n");
return 0;
cleanup1:
mrst_rtc.dev = NULL;
rtc_device_unregister(mrst_rtc.rtc);
cleanup0:
release_region(iomem->start, iomem->end + 1 - iomem->start);
dev_err(dev, "rtc-mrst: unable to initialise\n");
return retval;
}
static void rtc_mrst_do_shutdown(void)
{
spin_lock_irq(&rtc_lock);
mrst_irq_disable(&mrst_rtc, RTC_IRQMASK);
spin_unlock_irq(&rtc_lock);
}
static void __exit rtc_mrst_do_remove(struct device *dev)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
struct resource *iomem;
rtc_mrst_do_shutdown();
if (mrst->irq)
free_irq(mrst->irq, mrst->rtc);
rtc_device_unregister(mrst->rtc);
mrst->rtc = NULL;
iomem = mrst->iomem;
release_region(iomem->start, iomem->end + 1 - iomem->start);
mrst->iomem = NULL;
mrst->dev = NULL;
dev_set_drvdata(dev, NULL);
}
#ifdef CONFIG_PM
static int mrst_suspend(struct device *dev, pm_message_t mesg)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned char tmp;
/* Only the alarm might be a wakeup event source */
spin_lock_irq(&rtc_lock);
mrst->suspend_ctrl = tmp = vrtc_cmos_read(RTC_CONTROL);
if (tmp & (RTC_PIE | RTC_AIE)) {
unsigned char mask;
if (device_may_wakeup(dev))
mask = RTC_IRQMASK & ~RTC_AIE;
else
mask = RTC_IRQMASK;
tmp &= ~mask;
vrtc_cmos_write(tmp, RTC_CONTROL);
mrst_checkintr(mrst, tmp);
}
spin_unlock_irq(&rtc_lock);
if (tmp & RTC_AIE) {
mrst->enabled_wake = 1;
enable_irq_wake(mrst->irq);
}
dev_dbg(&mrst_rtc.rtc->dev, "suspend%s, ctrl %02x\n",
(tmp & RTC_AIE) ? ", alarm may wake" : "",
tmp);
return 0;
}
/*
* We want RTC alarms to wake us from the deep power saving state
*/
static inline int mrst_poweroff(struct device *dev)
{
return mrst_suspend(dev, PMSG_HIBERNATE);
}
static int mrst_resume(struct device *dev)
{
struct mrst_rtc *mrst = dev_get_drvdata(dev);
unsigned char tmp = mrst->suspend_ctrl;
/* Re-enable any irqs previously active */
if (tmp & RTC_IRQMASK) {
unsigned char mask;
if (mrst->enabled_wake) {
disable_irq_wake(mrst->irq);
mrst->enabled_wake = 0;
}
spin_lock_irq(&rtc_lock);
do {
vrtc_cmos_write(tmp, RTC_CONTROL);
mask = vrtc_cmos_read(RTC_INTR_FLAGS);
mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
if (!is_intr(mask))
break;
rtc_update_irq(mrst->rtc, 1, mask);
tmp &= ~RTC_AIE;
} while (mask & RTC_AIE);
spin_unlock_irq(&rtc_lock);
}
dev_dbg(&mrst_rtc.rtc->dev, "resume, ctrl %02x\n", tmp);
return 0;
}
#else
#define mrst_suspend NULL
#define mrst_resume NULL
static inline int mrst_poweroff(struct device *dev)
{
return -ENOSYS;
}
#endif
static int __init vrtc_mrst_platform_probe(struct platform_device *pdev)
{
return vrtc_mrst_do_probe(&pdev->dev,
platform_get_resource(pdev, IORESOURCE_MEM, 0),
platform_get_irq(pdev, 0));
}
static int __exit vrtc_mrst_platform_remove(struct platform_device *pdev)
{
rtc_mrst_do_remove(&pdev->dev);
return 0;
}
static void vrtc_mrst_platform_shutdown(struct platform_device *pdev)
{
if (system_state == SYSTEM_POWER_OFF && !mrst_poweroff(&pdev->dev))
return;
rtc_mrst_do_shutdown();
}
MODULE_ALIAS("platform:vrtc_mrst");
static struct platform_driver vrtc_mrst_platform_driver = {
.probe = vrtc_mrst_platform_probe,
.remove = __exit_p(vrtc_mrst_platform_remove),
.shutdown = vrtc_mrst_platform_shutdown,
.driver = {
.name = (char *) driver_name,
.suspend = mrst_suspend,
.resume = mrst_resume,
}
};
static int __init vrtc_mrst_init(void)
{
return platform_driver_register(&vrtc_mrst_platform_driver);
}
static void __exit vrtc_mrst_exit(void)
{
platform_driver_unregister(&vrtc_mrst_platform_driver);
}
module_init(vrtc_mrst_init);
module_exit(vrtc_mrst_exit);
MODULE_AUTHOR("Jacob Pan; Feng Tang");
MODULE_DESCRIPTION("Driver for Moorestown virtual RTC");
MODULE_LICENSE("GPL");

View File

@ -77,6 +77,8 @@
#define SFI_OEM_ID_SIZE 6
#define SFI_OEM_TABLE_ID_SIZE 8
#define SFI_NAME_LEN 16
#define SFI_SYST_SEARCH_BEGIN 0x000E0000
#define SFI_SYST_SEARCH_END 0x000FFFFF
@ -156,13 +158,13 @@ struct sfi_device_table_entry {
u16 addr;
u8 irq;
u32 max_freq;
char name[16];
char name[SFI_NAME_LEN];
} __packed;
struct sfi_gpio_table_entry {
char controller_name[16];
char controller_name[SFI_NAME_LEN];
u16 pin_no;
char pin_name[16];
char pin_name[SFI_NAME_LEN];
} __packed;
typedef int (*sfi_table_handler) (struct sfi_table_header *table);