dect
/
linux-2.6
Archived
13
0
Fork 0

Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6

This commit is contained in:
David Woodhouse 2007-01-18 10:34:51 +11:00
commit 9cdf083f98
5553 changed files with 242555 additions and 122148 deletions

3
.gitignore vendored
View File

@ -42,3 +42,6 @@ patches-*
# quilt's files
patches
series
# cscope files
cscope.*

18
CREDITS
View File

@ -516,9 +516,10 @@ S: Orlando, Florida
S: USA
N: Lennert Buytenhek
E: buytenh@gnu.org
D: Rewrite of the ethernet bridging code
S: Ravenhorst 58B
E: kernel@wantstofly.org
D: Original (2.4) rewrite of the ethernet bridging code
D: Various ARM bits and pieces
S: Ravenhorst 58
S: 2317 AK Leiden
S: The Netherlands
@ -1808,6 +1809,14 @@ S: Kruislaan 419
S: 1098 VA Amsterdam
S: The Netherlands
N: Jiri Kosina
E: jikos@jikos.cz
E: jkosina@suse.cz
D: Generic HID layer - original code split, fixes
D: Various ACPI fixes, keeping correct battery state through suspend
D: various lockdep annotations, autofs and other random bugfixes
S: Prague, Czech Republic
N: Gene Kozin
E: 74604.152@compuserve.com
W: http://www.sangoma.com
@ -2598,6 +2607,9 @@ S: Ucitelska 1576
S: Prague 8
S: 182 00 Czech Republic
N: Rick Payne
D: RFC2385 Support for TCP
N: Barak A. Pearlmutter
E: bap@cs.unm.edu
W: http://www.cs.unm.edu/~bap/

View File

@ -104,8 +104,6 @@ firmware_class/
- request_firmware() hotplug interface info.
floppy.txt
- notes and driver options for the floppy disk driver.
ftape.txt
- notes about the floppy tape device driver.
hayes-esp.txt
- info on using the Hayes ESP serial driver.
highuid.txt

View File

@ -0,0 +1,20 @@
What: /debug/pktcdvd/pktcdvd[0-7]
Date: Oct. 2006
KernelVersion: 2.6.19
Contact: Thomas Maier <balagi@justmail.de>
Description:
debugfs interface
-----------------
The pktcdvd module (packet writing driver) creates
these files in debugfs:
/debug/pktcdvd/pktcdvd[0-7]/
info (0444) Lots of human readable driver
statistics and infos. Multiple lines!
Example:
-------
cat /debug/pktcdvd/pktcdvd0/info

View File

@ -0,0 +1,72 @@
What: /sys/class/pktcdvd/
Date: Oct. 2006
KernelVersion: 2.6.19
Contact: Thomas Maier <balagi@justmail.de>
Description:
sysfs interface
---------------
The pktcdvd module (packet writing driver) creates
these files in the sysfs:
(<devid> is in format major:minor )
/sys/class/pktcdvd/
add (0200) Write a block device id (major:minor)
to create a new pktcdvd device and map
it to the block device.
remove (0200) Write the pktcdvd device id (major:minor)
to it to remove the pktcdvd device.
device_map (0444) Shows the device mapping in format:
pktcdvd[0-7] <pktdevid> <blkdevid>
/sys/class/pktcdvd/pktcdvd[0-7]/
dev (0444) Device id
uevent (0200) To send an uevent.
/sys/class/pktcdvd/pktcdvd[0-7]/stat/
packets_started (0444) Number of started packets.
packets_finished (0444) Number of finished packets.
kb_written (0444) kBytes written.
kb_read (0444) kBytes read.
kb_read_gather (0444) kBytes read to fill write packets.
reset (0200) Write any value to it to reset
pktcdvd device statistic values, like
bytes read/written.
/sys/class/pktcdvd/pktcdvd[0-7]/write_queue/
size (0444) Contains the size of the bio write
queue.
congestion_off (0644) If bio write queue size is below
this mark, accept new bio requests
from the block layer.
congestion_on (0644) If bio write queue size is higher
as this mark, do no longer accept
bio write requests from the block
layer and wait till the pktcdvd
device has processed enough bio's
so that bio write queue size is
below congestion off mark.
A value of <= 0 disables congestion
control.
Example:
--------
To use the pktcdvd sysfs interface directly, you can do:
# create a new pktcdvd device mapped to /dev/hdc
echo "22:0" >/sys/class/pktcdvd/add
cat /sys/class/pktcdvd/device_map
# assuming device pktcdvd0 was created, look at stat's
cat /sys/class/pktcdvd/pktcdvd0/stat/kb_written
# print the device id of the mapped block device
fgrep pktcdvd0 /sys/class/pktcdvd/device_map
# remove device, using pktcdvd0 device id 253:0
echo "253:0" >/sys/class/pktcdvd/remove

View File

@ -201,7 +201,7 @@ udev
----
udev is a userspace application for populating /dev dynamically with
only entries for devices actually present. udev replaces the basic
functionality of devfs, while allowing persistant device naming for
functionality of devfs, while allowing persistent device naming for
devices.
FUSE

View File

@ -35,12 +35,37 @@ In short, 8-char indents make things easier to read, and have the added
benefit of warning you when you're nesting your functions too deep.
Heed that warning.
The preferred way to ease multiple indentation levels in a switch statement is
to align the "switch" and its subordinate "case" labels in the same column
instead of "double-indenting" the "case" labels. E.g.:
switch (suffix) {
case 'G':
case 'g':
mem <<= 30;
break;
case 'M':
case 'm':
mem <<= 20;
break;
case 'K':
case 'k':
mem <<= 10;
/* fall through */
default:
break;
}
Don't put multiple statements on a single line unless you have
something to hide:
if (condition) do_this;
do_something_everytime;
Don't put multiple assignments on a single line either. Kernel coding style
is super simple. Avoid tricky expressions.
Outside of comments, documentation and except in Kconfig, spaces are never
used for indentation, and the above example is deliberately broken.
@ -69,7 +94,7 @@ void fun(int a, int b, int c)
next_statement;
}
Chapter 3: Placing Braces
Chapter 3: Placing Braces and Spaces
The other issue that always comes up in C styling is the placement of
braces. Unlike the indent size, there are few technical reasons to
@ -81,6 +106,20 @@ brace last on the line, and put the closing brace first, thusly:
we do y
}
This applies to all non-function statement blocks (if, switch, for,
while, do). E.g.:
switch (action) {
case KOBJ_ADD:
return "add";
case KOBJ_REMOVE:
return "remove";
case KOBJ_CHANGE:
return "change";
default:
return NULL;
}
However, there is one special case, namely functions: they have the
opening brace at the beginning of the next line, thus:
@ -121,6 +160,49 @@ supply of new-lines on your screen is not a renewable resource (think
25-line terminal screens here), you have more empty lines to put
comments on.
3.1: Spaces
Linux kernel style for use of spaces depends (mostly) on
function-versus-keyword usage. Use a space after (most) keywords. The
notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
somewhat like functions (and are usually used with parentheses in Linux,
although they are not required in the language, as in: "sizeof info" after
"struct fileinfo info;" is declared).
So use a space after these keywords:
if, switch, case, for, do, while
but not with sizeof, typeof, alignof, or __attribute__. E.g.,
s = sizeof(struct file);
Do not add spaces around (inside) parenthesized expressions. This example is
*bad*:
s = sizeof( struct file );
When declaring pointer data or a function that returns a pointer type, the
preferred use of '*' is adjacent to the data name or function name and not
adjacent to the type name. Examples:
char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);
Use one space around (on each side of) most binary and ternary operators,
such as any of these:
= + - < > * / % | & ^ <= >= == != ? :
but no space after unary operators:
& * + - ~ ! sizeof typeof alignof __attribute__ defined
no space before the postfix increment & decrement unary operators:
++ --
no space after the prefix increment & decrement unary operators:
++ --
and no space around the '.' and "->" structure member operators.
Chapter 4: Naming
@ -152,7 +234,7 @@ variable that is used to hold a temporary value.
If you are afraid to mix up your local variable names, you have another
problem, which is called the function-growth-hormone-imbalance syndrome.
See next chapter.
See chapter 6 (Functions).
Chapter 5: Typedefs
@ -258,6 +340,20 @@ generally easily keep track of about 7 different things, anything more
and it gets confused. You know you're brilliant, but maybe you'd like
to understand what you did 2 weeks from now.
In source files, separate functions with one blank line. If the function is
exported, the EXPORT* macro for it should follow immediately after the closing
function brace line. E.g.:
int system_is_up(void)
{
return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);
In function prototypes, include parameter names with their data types.
Although this is not required by the C language, it is preferred in Linux
because it is a simple way to add valuable information for the reader.
Chapter 7: Centralized exiting of functions
@ -306,16 +402,36 @@ time to explain badly written code.
Generally, you want your comments to tell WHAT your code does, not HOW.
Also, try to avoid putting comments inside a function body: if the
function is so complex that you need to separately comment parts of it,
you should probably go back to chapter 5 for a while. You can make
you should probably go back to chapter 6 for a while. You can make
small comments to note or warn about something particularly clever (or
ugly), but try to avoid excess. Instead, put the comments at the head
of the function, telling people what it does, and possibly WHY it does
it.
When commenting the kernel API functions, please use the kerneldoc format.
When commenting the kernel API functions, please use the kernel-doc format.
See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc
for details.
Linux style for comments is the C89 "/* ... */" style.
Don't use C99-style "// ..." comments.
The preferred style for long (multi-line) comments is:
/*
* This is the preferred style for multi-line
* comments in the Linux kernel source code.
* Please use it consistently.
*
* Description: A column of asterisks on the left side,
* with beginning and ending almost-blank lines.
*/
It's also important to comment data, whether they are basic types or derived
types. To this end, use just one data declaration per line (no commas for
multiple data declarations). This leaves you room for a small comment on each
item, explaining its use.
Chapter 9: You've made a mess of it
That's OK, we all do. You've probably been told by your long-time Unix
@ -566,6 +682,24 @@ result. Typical examples would be functions that return pointers; they use
NULL or the ERR_PTR mechanism to report failure.
Chapter 17: Don't re-invent the kernel macros
The header file include/linux/kernel.h contains a number of macros that
you should use, rather than explicitly coding some variant of them yourself.
For example, if you need to calculate the length of an array, take advantage
of the macro
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
Similarly, if you need to calculate the size of some structure member, use
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
There are also min() and max() macros that do strict type checking if you
need them. Feel free to peruse that header file to see what else is already
defined that you shouldn't reproduce in your code.
Appendix I: References
@ -591,4 +725,4 @@ Kernel CodingStyle, by greg@kroah.com at OLS 2002:
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
--
Last updated on 30 April 2006.
Last updated on 2006-December-06.

View File

@ -77,7 +77,7 @@ To get this part of the dma_ API, you must #include <linux/dmapool.h>
Many drivers need lots of small dma-coherent memory regions for DMA
descriptors or I/O buffers. Rather than allocating in units of a page
or more using dma_alloc_coherent(), you can use DMA pools. These work
much like a kmem_cache_t, except that they use the dma-coherent allocator
much like a struct kmem_cache, except that they use the dma-coherent allocator
not __get_free_pages(). Also, they understand common hardware constraints
for alignment, like queue heads needing to be aligned on N byte boundaries.
@ -94,7 +94,7 @@ The pool create() routines initialize a pool of dma-coherent buffers
for use with a given device. It must be called in a context which
can sleep.
The "name" is for diagnostics (like a kmem_cache_t name); dev and size
The "name" is for diagnostics (like a struct kmem_cache name); dev and size
are like what you'd pass to dma_alloc_coherent(). The device's hardware
alignment requirement for this type of data is "align" (which is expressed
in bytes, and must be a power of two). If your device has no boundary
@ -431,10 +431,10 @@ be identical to those passed in (and returned by
dma_alloc_noncoherent()).
int
dma_is_consistent(dma_addr_t dma_handle)
dma_is_consistent(struct device *dev, dma_addr_t dma_handle)
returns true if the memory pointed to by the dma_handle is actually
consistent.
returns true if the device dev is performing consistent DMA on the memory
area pointed to by the dma_handle.
int
dma_get_cache_alignment(void)
@ -459,7 +459,7 @@ anything like this. You must also be extra careful about accessing
memory you intend to sync partially.
void
dma_cache_sync(void *vaddr, size_t size,
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
Do a partial sync of memory that was allocated by
@ -489,7 +489,7 @@ size is the size of the area (must be multiples of PAGE_SIZE).
flags can be or'd together and are
DMA_MEMORY_MAP - request that the memory returned from
dma_alloc_coherent() be directly writeable.
dma_alloc_coherent() be directly writable.
DMA_MEMORY_IO - request that the memory returned from
dma_alloc_coherent() be addressable using read/write/memcpy_toio etc.

View File

@ -110,7 +110,7 @@ lock.
Once the DMA transfer is finished (or timed out) you should disable
the channel again. You should also check get_dma_residue() to make
sure that all data has been transfered.
sure that all data has been transferred.
Example:

View File

@ -53,8 +53,8 @@ installmandocs: mandocs
###
#External programs used
KERNELDOC = scripts/kernel-doc
DOCPROC = scripts/basic/docproc
KERNELDOC = $(srctree)/scripts/kernel-doc
DOCPROC = $(objtree)/scripts/basic/docproc
XMLTOFLAGS = -m $(srctree)/Documentation/DocBook/stylesheet.xsl
#XMLTOFLAGS += --skip-validation
@ -190,9 +190,13 @@ quiet_cmd_fig2png = FIG2PNG $@
###
# Help targets as used by the top-level makefile
dochelp:
@echo ' Linux kernel internal documentation in different formats:'
@echo ' xmldocs (XML DocBook), psdocs (Postscript), pdfdocs (PDF)'
@echo ' htmldocs (HTML), mandocs (man pages, use installmandocs to install)'
@echo ' Linux kernel internal documentation in different formats:'
@echo ' htmldocs - HTML'
@echo ' installmandocs - install man pages generated by mandocs'
@echo ' mandocs - man pages'
@echo ' pdfdocs - PDF'
@echo ' psdocs - Postscript'
@echo ' xmldocs - XML DocBook'
###
# Temporary files left by various tools

View File

@ -303,10 +303,10 @@ desc->status |= running;
do {
if (desc->status &amp; masked)
desc->chip->enable();
desc-status &amp;= ~pending;
desc->status &amp;= ~pending;
handle_IRQ_event(desc->action);
} while (status &amp; pending);
desc-status &amp;= ~running;
desc->status &amp;= ~running;
desc->chip->end();
</programlisting>
</para>

View File

@ -418,9 +418,35 @@ X!Edrivers/pnp/system.c
!Idrivers/parport/daisy.c
</chapter>
<chapter id="viddev">
<title>Video4Linux</title>
!Edrivers/media/video/videodev.c
<chapter id="message_devices">
<title>Message-based devices</title>
<sect1><title>Fusion message devices</title>
!Edrivers/message/fusion/mptbase.c
!Idrivers/message/fusion/mptbase.c
!Edrivers/message/fusion/mptscsih.c
!Idrivers/message/fusion/mptscsih.c
!Idrivers/message/fusion/mptctl.c
!Idrivers/message/fusion/mptspi.c
!Idrivers/message/fusion/mptfc.c
!Idrivers/message/fusion/mptlan.c
</sect1>
<sect1><title>I2O message devices</title>
!Iinclude/linux/i2o.h
!Idrivers/message/i2o/core.h
!Edrivers/message/i2o/iop.c
!Idrivers/message/i2o/iop.c
!Idrivers/message/i2o/config-osm.c
!Edrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/bus-osm.c
!Edrivers/message/i2o/device.c
!Idrivers/message/i2o/device.c
!Idrivers/message/i2o/driver.c
!Idrivers/message/i2o/pci.c
!Idrivers/message/i2o/i2o_block.c
!Idrivers/message/i2o/i2o_scsi.c
!Idrivers/message/i2o/i2o_proc.c
</sect1>
</chapter>
<chapter id="snddev">
@ -533,4 +559,12 @@ X!Idrivers/video/console/fonts.c
-->
</sect1>
</chapter>
<chapter id="input_subsystem">
<title>Input Subsystem</title>
!Iinclude/linux/input.h
!Edrivers/input/input.c
!Edrivers/input/ff-core.c
!Edrivers/input/ff-memless.c
</chapter>
</book>

View File

@ -345,8 +345,7 @@ static inline void skel_delete (struct usb_skel *dev)
usb_buffer_free (dev->udev, dev->bulk_out_size,
dev->bulk_out_buffer,
dev->write_urb->transfer_dma);
if (dev->write_urb != NULL)
usb_free_urb (dev->write_urb);
usb_free_urb (dev->write_urb);
kfree (dev);
}
</programlisting>

View File

@ -365,6 +365,7 @@ You can change this at module load time (for a module) with:
regshifts=<shift1>,<shift2>,...
slave_addrs=<addr1>,<addr2>,...
force_kipmid=<enable1>,<enable2>,...
unload_when_empty=[0|1]
Each of these except si_trydefaults is a list, the first item for the
first interface, second item for the second interface, etc.
@ -416,6 +417,11 @@ by the driver, but systems with broken interrupts might need an enable,
or users that don't want the daemon (don't need the performance, don't
want the CPU hit) can disable it.
If unload_when_empty is set to 1, the driver will be unloaded if it
doesn't find any interfaces or all the interfaces fail to work. The
default is one. Setting to 0 is useful with the hotmod, but is
obviously only useful for modules.
When compiled into the kernel, the parameters can be specified on the
kernel command line as:
@ -441,6 +447,25 @@ have high-res timers enabled in the kernel and you don't have
interrupts enabled, the driver will run VERY slowly. Don't blame me,
these interfaces suck.
The driver supports a hot add and remove of interfaces. This way,
interfaces can be added or removed after the kernel is up and running.
This is done using /sys/modules/ipmi_si/hotmod, which is a write-only
parameter. You write a string to this interface. The string has the
format:
<op1>[:op2[:op3...]]
The "op"s are:
add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
You can specify more than one interface on the line. The "opt"s are:
rsp=<regspacing>
rsi=<regsize>
rsh=<regshift>
irq=<irq>
ipmb=<ipmb slave addr>
and these have the same meanings as discussed above. Note that you
can also use this on the kernel command line for a more compact format
for specifying an interface. Note that when removing an interface,
only the first three parameters (si type, address type, and address)
are used for the comparison. Any options are ignored for removing.
The SMBus Driver
----------------
@ -502,7 +527,10 @@ used to control it:
modprobe ipmi_watchdog timeout=<t> pretimeout=<t> action=<action type>
preaction=<preaction type> preop=<preop type> start_now=x
nowayout=x
nowayout=x ifnum_to_use=n
ifnum_to_use specifies which interface the watchdog timer should use.
The default is -1, which means to pick the first one registered.
The timeout is the number of seconds to the action, and the pretimeout
is the amount of seconds before the reset that the pre-timeout panic will
@ -624,5 +652,9 @@ command line. The parameter is also available via the proc filesystem
in /proc/sys/dev/ipmi/poweroff_powercycle. Note that if the system
does not support power cycling, it will always do the power off.
The "ifnum_to_use" parameter specifies which interface the poweroff
code should use. The default is -1, which means to pick the first one
registered.
Note that if you have ACPI enabled, the system will prefer using ACPI to
power off.

View File

@ -219,7 +219,7 @@ into the field vector of each element contained in a second argument.
Note that the pre-assigned IOAPIC dev->irq is valid only if the device
operates in PIN-IRQ assertion mode. In MSI-X mode, any attempt at
using dev->irq by the device driver to request for interrupt service
may result unpredictabe behavior.
may result in unpredictable behavior.
For each MSI-X vector granted, a device driver is responsible for calling
other functions like request_irq(), enable_irq(), etc. to enable

View File

@ -66,3 +66,9 @@ kernel patches.
See Documentation/ABI/README for more information.
20: Check that it all passes `make headers_check'.
21: Has been checked with injection of at least slab and page-allocation
fauilures. See Documentation/fault-injection/.
If the new code is substantial, addition of subsystem-specific fault
injection might be appropriate.

View File

@ -7,6 +7,8 @@
* Copyright (C) Balbir Singh, IBM Corp. 2006
* Copyright (c) Jay Lan, SGI. 2006
*
* Compile with
* gcc -I/usr/src/linux/include getdelays.c -o getdelays
*/
#include <stdio.h>
@ -35,13 +37,20 @@
#define NLA_DATA(na) ((void *)((char*)(na) + NLA_HDRLEN))
#define NLA_PAYLOAD(len) (len - NLA_HDRLEN)
#define err(code, fmt, arg...) do { printf(fmt, ##arg); exit(code); } while (0)
int done = 0;
int rcvbufsz=0;
#define err(code, fmt, arg...) \
do { \
fprintf(stderr, fmt, ##arg); \
exit(code); \
} while (0)
char name[100];
int dbg=0, print_delays=0;
int done;
int rcvbufsz;
char name[100];
int dbg;
int print_delays;
int print_io_accounting;
__u64 stime, utime;
#define PRINTF(fmt, arg...) { \
if (dbg) { \
printf(fmt, ##arg); \
@ -78,8 +87,9 @@ static int create_nl_socket(int protocol)
if (rcvbufsz)
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF,
&rcvbufsz, sizeof(rcvbufsz)) < 0) {
printf("Unable to set socket rcv buf size to %d\n",
rcvbufsz);
fprintf(stderr, "Unable to set socket rcv buf size "
"to %d\n",
rcvbufsz);
return -1;
}
@ -186,6 +196,15 @@ void print_delayacct(struct taskstats *t)
"count", "delay total", t->swapin_count, t->swapin_delay_total);
}
void print_ioacct(struct taskstats *t)
{
printf("%s: read=%llu, write=%llu, cancelled_write=%llu\n",
t->ac_comm,
(unsigned long long)t->read_bytes,
(unsigned long long)t->write_bytes,
(unsigned long long)t->cancelled_write_bytes);
}
int main(int argc, char *argv[])
{
int c, rc, rep_len, aggr_len, len2, cmd_type;
@ -208,7 +227,7 @@ int main(int argc, char *argv[])
struct msgtemplate msg;
while (1) {
c = getopt(argc, argv, "dw:r:m:t:p:v:l");
c = getopt(argc, argv, "diw:r:m:t:p:v:l");
if (c < 0)
break;
@ -217,6 +236,10 @@ int main(int argc, char *argv[])
printf("print delayacct stats ON\n");
print_delays = 1;
break;
case 'i':
printf("printing IO accounting\n");
print_io_accounting = 1;
break;
case 'w':
strncpy(logfile, optarg, MAX_FILENAME);
printf("write to file %s\n", logfile);
@ -238,14 +261,12 @@ int main(int argc, char *argv[])
if (!tid)
err(1, "Invalid tgid\n");
cmd_type = TASKSTATS_CMD_ATTR_TGID;
print_delays = 1;
break;
case 'p':
tid = atoi(optarg);
if (!tid)
err(1, "Invalid pid\n");
cmd_type = TASKSTATS_CMD_ATTR_PID;
print_delays = 1;
break;
case 'v':
printf("debug on\n");
@ -277,7 +298,7 @@ int main(int argc, char *argv[])
mypid = getpid();
id = get_family_id(nl_sd);
if (!id) {
printf("Error getting family id, errno %d", errno);
fprintf(stderr, "Error getting family id, errno %d\n", errno);
goto err;
}
PRINTF("family id %d\n", id);
@ -288,7 +309,7 @@ int main(int argc, char *argv[])
&cpumask, strlen(cpumask) + 1);
PRINTF("Sent register cpumask, retval %d\n", rc);
if (rc < 0) {
printf("error sending register cpumask\n");
fprintf(stderr, "error sending register cpumask\n");
goto err;
}
}
@ -298,7 +319,7 @@ int main(int argc, char *argv[])
cmd_type, &tid, sizeof(__u32));
PRINTF("Sent pid/tgid, retval %d\n", rc);
if (rc < 0) {
printf("error sending tid/tgid cmd\n");
fprintf(stderr, "error sending tid/tgid cmd\n");
goto done;
}
}
@ -310,13 +331,15 @@ int main(int argc, char *argv[])
PRINTF("received %d bytes\n", rep_len);
if (rep_len < 0) {
printf("nonfatal reply error: errno %d\n", errno);
fprintf(stderr, "nonfatal reply error: errno %d\n",
errno);
continue;
}
if (msg.n.nlmsg_type == NLMSG_ERROR ||
!NLMSG_OK((&msg.n), rep_len)) {
struct nlmsgerr *err = NLMSG_DATA(&msg);
printf("fatal reply error, errno %d\n", err->error);
fprintf(stderr, "fatal reply error, errno %d\n",
err->error);
goto done;
}
@ -356,6 +379,8 @@ int main(int argc, char *argv[])
count++;
if (print_delays)
print_delayacct((struct taskstats *) NLA_DATA(na));
if (print_io_accounting)
print_ioacct((struct taskstats *) NLA_DATA(na));
if (fd) {
if (write(fd, NLA_DATA(na), na->nla_len) < 0) {
err(1,"write error\n");
@ -365,7 +390,9 @@ int main(int argc, char *argv[])
goto done;
break;
default:
printf("Unknown nested nla_type %d\n", na->nla_type);
fprintf(stderr, "Unknown nested"
" nla_type %d\n",
na->nla_type);
break;
}
len2 += NLA_ALIGN(na->nla_len);
@ -374,7 +401,8 @@ int main(int argc, char *argv[])
break;
default:
printf("Unknown nla_type %d\n", na->nla_type);
fprintf(stderr, "Unknown nla_type %d\n",
na->nla_type);
break;
}
na = (struct nlattr *) (GENLMSG_DATA(&msg) + len);

View File

@ -96,9 +96,9 @@ a) TASKSTATS_TYPE_AGGR_PID/TGID : attribute containing no payload but indicates
a pid/tgid will be followed by some stats.
b) TASKSTATS_TYPE_PID/TGID: attribute whose payload is the pid/tgid whose stats
is being returned.
are being returned.
c) TASKSTATS_TYPE_STATS: attribute with a struct taskstsats as payload. The
c) TASKSTATS_TYPE_STATS: attribute with a struct taskstats as payload. The
same structure is used for both per-pid and per-tgid stats.
3. New message sent by kernel whenever a task exits. The payload consists of a
@ -122,12 +122,12 @@ of atomicity).
However, maintaining per-process, in addition to per-task stats, within the
kernel has space and time overheads. To address this, the taskstats code
accumalates each exiting task's statistics into a process-wide data structure.
When the last task of a process exits, the process level data accumalated also
accumulates each exiting task's statistics into a process-wide data structure.
When the last task of a process exits, the process level data accumulated also
gets sent to userspace (along with the per-task data).
When a user queries to get per-tgid data, the sum of all other live threads in
the group is added up and added to the accumalated total for previously exited
the group is added up and added to the accumulated total for previously exited
threads of the same thread group.
Extending taskstats

View File

@ -76,6 +76,15 @@ Machines
A S3C2410 based PDA from Acer. There is a Wiki page at
http://handhelds.org/moin/moin.cgi/AcerN30Documentation .
AML M5900
American Microsystems' M5900
Nex Vision Nexcoder
Nex Vision Otom
Two machines by Nex Vision
Adding New Machines
-------------------
@ -115,6 +124,10 @@ RTC
Support for the onboard RTC unit, including alarm function.
This has recently been upgraded to use the new RTC core,
and the module has been renamed to rtc-s3c to fit in with
the new rtc naming scheme.
Watchdog
--------
@ -128,7 +141,7 @@ NAND
The current kernels now have support for the s3c2410 NAND
controller. If there are any problems the latest linux-mtd
CVS can be found from http://www.linux-mtd.infradead.org/
code can be found from http://www.linux-mtd.infradead.org/
Serial
@ -168,6 +181,21 @@ Suspend to RAM
See Suspend.txt for more information.
SPI
---
SPI drivers are available for both the in-built hardware
(although there is no DMA support yet) and a generic
GPIO based solution.
LEDs
----
There is support for GPIO based LEDs via a platform driver
in the LED subsystem.
Platform Data
-------------

View File

@ -24,8 +24,10 @@ very similar behavior to the deadline IO scheduler.
Selecting IO schedulers
-----------------------
To choose IO schedulers at boot time, use the argument 'elevator=deadline'.
'noop' and 'as' (the default) are also available. IO schedulers are assigned
globally at boot time only presently.
'noop', 'as' and 'cfq' (the default) are also available. IO schedulers are
assigned globally at boot time only presently. It's also possible to change
the IO scheduler for a determined device on the fly, as described in
Documentation/block/switching-sched.txt.
Anticipatory IO scheduler Policies

View File

@ -183,7 +183,7 @@ it, the pci dma mapping routines and associated data structures have now been
modified to accomplish a direct page -> bus translation, without requiring
a virtual address mapping (unlike the earlier scheme of virtual address
-> bus translation). So this works uniformly for high-memory pages (which
do not have a correponding kernel virtual address space mapping) and
do not have a corresponding kernel virtual address space mapping) and
low-memory pages.
Note: Please refer to DMA-mapping.txt for a discussion on PCI high mem DMA
@ -391,7 +391,7 @@ forced such requests to be broken up into small chunks before being passed
on to the generic block layer, only to be merged by the i/o scheduler
when the underlying device was capable of handling the i/o in one shot.
Also, using the buffer head as an i/o structure for i/os that didn't originate
from the buffer cache unecessarily added to the weight of the descriptors
from the buffer cache unnecessarily added to the weight of the descriptors
which were generated for each such chunk.
The following were some of the goals and expectations considered in the
@ -403,14 +403,14 @@ i. Should be appropriate as a descriptor for both raw and buffered i/o -
for raw i/o.
ii. Ability to represent high-memory buffers (which do not have a virtual
address mapping in kernel address space).
iii.Ability to represent large i/os w/o unecessarily breaking them up (i.e
iii.Ability to represent large i/os w/o unnecessarily breaking them up (i.e
greater than PAGE_SIZE chunks in one shot)
iv. At the same time, ability to retain independent identity of i/os from
different sources or i/o units requiring individual completion (e.g. for
latency reasons)
v. Ability to represent an i/o involving multiple physical memory segments
(including non-page aligned page fragments, as specified via readv/writev)
without unecessarily breaking it up, if the underlying device is capable of
without unnecessarily breaking it up, if the underlying device is capable of
handling it.
vi. Preferably should be based on a memory descriptor structure that can be
passed around different types of subsystems or layers, maybe even
@ -946,6 +946,13 @@ elevator_merged_fn called when a request in the scheduler has been
scheduler for example, to reposition the request
if its sorting order has changed.
elevator_allow_merge_fn called whenever the block layer determines
that a bio can be merged into an existing
request safely. The io scheduler may still
want to stop a merge at this point if it
results in some sort of conflict internally,
this hook allows it to do that.
elevator_dispatch_fn fills the dispatch queue with ready requests.
I/O schedulers are free to postpone requests by
not filling the dispatch queue unless @force
@ -1013,7 +1020,7 @@ Characteristics:
i. Binary tree
AS and deadline i/o schedulers use red black binary trees for disk position
sorting and searching, and a fifo linked list for time-based searching. This
gives good scalability and good availablility of information. Requests are
gives good scalability and good availability of information. Requests are
almost always dispatched in disk sort order, so a cache is kept of the next
request in sort order to prevent binary tree lookups.

View File

@ -179,10 +179,21 @@ Here are the routines, one by one:
lines associated with 'mm'.
This interface is used to handle whole address space
page table operations such as what happens during
fork, exit, and exec.
page table operations such as what happens during exit and exec.
2) void flush_cache_range(struct vm_area_struct *vma,
2) void flush_cache_dup_mm(struct mm_struct *mm)
This interface flushes an entire user address space from
the caches. That is, after running, there will be no cache
lines associated with 'mm'.
This interface is used to handle whole address space
page table operations such as what happens during fork.
This option is separate from flush_cache_mm to allow some
optimizations for VIPT caches.
3) void flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
Here we are flushing a specific range of (user) virtual
@ -199,7 +210,7 @@ Here are the routines, one by one:
call flush_cache_page (see below) for each entry which may be
modified.
3) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
4) void flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
This time we need to remove a PAGE_SIZE sized range
from the cache. The 'vma' is the backing structure used by
@ -220,7 +231,7 @@ Here are the routines, one by one:
This is used primarily during fault processing.
4) void flush_cache_kmaps(void)
5) void flush_cache_kmaps(void)
This routine need only be implemented if the platform utilizes
highmem. It will be called right before all of the kmaps
@ -232,7 +243,7 @@ Here are the routines, one by one:
This routing should be implemented in asm/highmem.h
5) void flush_cache_vmap(unsigned long start, unsigned long end)
6) void flush_cache_vmap(unsigned long start, unsigned long end)
void flush_cache_vunmap(unsigned long start, unsigned long end)
Here in these two interfaces we are flushing a specific range
@ -362,14 +373,15 @@ maps this page at its virtual address.
likely that you will need to flush the instruction cache
for copy_to_user_page().
void flush_anon_page(struct page *page, unsigned long vmaddr)
void flush_anon_page(struct vm_area_struct *vma, struct page *page,
unsigned long vmaddr)
When the kernel needs to access the contents of an anonymous
page, it calls this function (currently only
get_user_pages()). Note: flush_dcache_page() deliberately
doesn't work for an anonymous page. The default
implementation is a nop (and should remain so for all coherent
architectures). For incoherent architectures, it should flush
the cache of the page at vmaddr in the current user process.
the cache of the page at vmaddr.
void flush_kernel_dcache_page(struct page *page)
When the kernel needs to modify a user page is has obtained

View File

@ -90,6 +90,41 @@ Notes
to create an ext2 filesystem on the disc.
Using the pktcdvd sysfs interface
---------------------------------
Since Linux 2.6.19, the pktcdvd module has a sysfs interface
and can be controlled by it. For example the "pktcdvd" tool uses
this interface. (see http://people.freenet.de/BalaGi#pktcdvd )
"pktcdvd" works similar to "pktsetup", e.g.:
# pktcdvd -a dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
# mount -t udf -o rw,noatime /dev/pktcdvd/dev_name /dvdram
# cp files /dvdram
# umount /dvdram
# pktcdvd -r dev_name
For a description of the sysfs interface look into the file:
Documentation/ABI/testing/sysfs-block-pktcdvd
Using the pktcdvd debugfs interface
-----------------------------------
To read pktcdvd device infos in human readable form, do:
# cat /debug/pktcdvd/pktcdvd[0-7]/info
For a description of the debugfs interface look into the file:
Documentation/ABI/testing/debugfs-pktcdvd
Links
-----

View File

@ -24,7 +24,7 @@ Contents:
1. General Information
=======================
The CPUFreq core code is located in linux/kernel/cpufreq.c. This
The CPUFreq core code is located in drivers/cpufreq/cpufreq.c. This
cpufreq code offers a standardized interface for the CPUFreq
architecture drivers (those pieces of code that do actual
frequency transitions), as well as to "notifiers". These are device

View File

@ -1,7 +1,7 @@
The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 plattforms.
The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
This works better than on other plattforms, because the FSB of the CPU
This works better than on other platforms, because the FSB of the CPU
can be controlled independently from the PCI/AGP clock.
The module has two options:

View File

@ -54,8 +54,8 @@ additional_cpus=n (*) Use this to limit hotpluggable cpus. This option sets
ia64 and x86_64 use the number of disabled local apics in ACPI tables MADT
to determine the number of potentially hot-pluggable cpus. The implementation
should only rely on this to count the #of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesnt
should only rely on this to count the # of cpus, but *MUST* not rely on the
apicid values in those tables for disabled apics. In the event BIOS doesn't
mark such hot-pluggable cpus as disabled entries, one could use this
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.

View File

@ -3,7 +3,7 @@
Maintained by Torben Mathiasen <device@lanana.org>
Last revised: 15 May 2006
Last revised: 29 November 2006
This list is the Linux Device List, the official registry of allocated
device numbers and /dev directory nodes for the Linux operating
@ -92,8 +92,9 @@ Your cooperation is appreciated.
7 = /dev/full Returns ENOSPC on write
8 = /dev/random Nondeterministic random number gen.
9 = /dev/urandom Faster, less secure random number gen.
10 = /dev/aio Asyncronous I/O notification interface
10 = /dev/aio Asynchronous I/O notification interface
11 = /dev/kmsg Writes to this come out as printk's
1 block RAM disk
0 = /dev/ram0 First RAM disk
1 = /dev/ram1 Second RAM disk
@ -122,7 +123,7 @@ Your cooperation is appreciated.
devices are on major 128 and above and use the PTY
master multiplex (/dev/ptmx) to acquire a PTY on
demand.
2 block Floppy disks
0 = /dev/fd0 Controller 0, drive 0, autodetect
1 = /dev/fd1 Controller 0, drive 1, autodetect
@ -257,7 +258,7 @@ Your cooperation is appreciated.
129 = /dev/vcsa1 tty1 text/attribute contents
...
191 = /dev/vcsa63 tty63 text/attribute contents
NOTE: These devices permit both read and write access.
7 block Loopback devices
@ -411,7 +412,7 @@ Your cooperation is appreciated.
207 = /dev/video/em8300_sp EM8300 DVD decoder subpicture
208 = /dev/compaq/cpqphpc Compaq PCI Hot Plug Controller
209 = /dev/compaq/cpqrid Compaq Remote Insight Driver
210 = /dev/impi/bt IMPI coprocessor block transfer
210 = /dev/impi/bt IMPI coprocessor block transfer
211 = /dev/impi/smic IMPI coprocessor stream interface
212 = /dev/watchdogs/0 First watchdog device
213 = /dev/watchdogs/1 Second watchdog device
@ -506,6 +507,7 @@ Your cooperation is appreciated.
33 = /dev/patmgr1 Sequencer patch manager
34 = /dev/midi02 Third MIDI port
50 = /dev/midi03 Fourth MIDI port
14 block BIOS harddrive callback support {2.6}
0 = /dev/dos_hda First BIOS harddrive whole disk
64 = /dev/dos_hdb Second BIOS harddrive whole disk
@ -527,6 +529,7 @@ Your cooperation is appreciated.
16 char Non-SCSI scanners
0 = /dev/gs4500 Genius 4500 handheld scanner
16 block GoldStar CD-ROM
0 = /dev/gscd GoldStar CD-ROM
@ -548,6 +551,7 @@ Your cooperation is appreciated.
0 = /dev/ttyC0 First Cyclades port
...
31 = /dev/ttyC31 32nd Cyclades port
19 block "Double" compressed disk
0 = /dev/double0 First compressed disk
...
@ -563,6 +567,7 @@ Your cooperation is appreciated.
0 = /dev/cub0 Callout device for ttyC0
...
31 = /dev/cub31 Callout device for ttyC31
20 block Hitachi CD-ROM (under development)
0 = /dev/hitcd Hitachi CD-ROM
@ -582,7 +587,7 @@ Your cooperation is appreciated.
This device is used on the ARM-based Acorn RiscPC.
Partitions are handled the same way as for IDE disks
(see major number 3).
(see major number 3).
22 char Digiboard serial card
0 = /dev/ttyD0 First Digiboard port
@ -591,7 +596,7 @@ Your cooperation is appreciated.
22 block Second IDE hard disk/CD-ROM interface
0 = /dev/hdc Master: whole disk (or CD-ROM)
64 = /dev/hdd Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
@ -639,6 +644,7 @@ Your cooperation is appreciated.
26 char Quanta WinVision frame grabber {2.6}
0 = /dev/wvisfgrab Quanta WinVision frame grabber
26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0
1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
@ -670,6 +676,7 @@ Your cooperation is appreciated.
37 = /dev/nrawqft1 Unit 1, no rewind-on-close, no file marks
38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks
27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
@ -681,6 +688,7 @@ Your cooperation is appreciated.
1 = /dev/staliomem1 Second Stallion card I/O memory
2 = /dev/staliomem2 Third Stallion card I/O memory
3 = /dev/staliomem3 Fourth Stallion card I/O memory
28 char Atari SLM ACSI laser printer (68k/Atari)
0 = /dev/slm0 First SLM laser printer
1 = /dev/slm1 Second SLM laser printer
@ -690,6 +698,7 @@ Your cooperation is appreciated.
1 = /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1
2 = /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2
3 = /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3
28 block ACSI disk (68k/Atari)
0 = /dev/ada First ACSI disk whole disk
16 = /dev/adb Second ACSI disk whole disk
@ -750,6 +759,7 @@ Your cooperation is appreciated.
31 char MPU-401 MIDI
0 = /dev/mpu401data MPU-401 data port
1 = /dev/mpu401stat MPU-401 status port
31 block ROM/flash memory card
0 = /dev/rom0 First ROM card (rw)
...
@ -801,7 +811,7 @@ Your cooperation is appreciated.
34 block Fourth IDE hard disk/CD-ROM interface
0 = /dev/hdg Master: whole disk (or CD-ROM)
64 = /dev/hdh Slave: whole disk (or CD-ROM)
Partitions are handled the same way as for the first
interface (see major number 3).
@ -818,6 +828,7 @@ Your cooperation is appreciated.
129 = /dev/smpte1 Second MIDI port, SMPTE timed
130 = /dev/smpte2 Third MIDI port, SMPTE timed
131 = /dev/smpte3 Fourth MIDI port, SMPTE timed
35 block Slow memory ramdisk
0 = /dev/slram Slow memory ramdisk
@ -828,6 +839,7 @@ Your cooperation is appreciated.
16 = /dev/tap0 First Ethertap device
...
31 = /dev/tap15 16th Ethertap device
36 block MCA ESDI hard disk
0 = /dev/eda First ESDI disk whole disk
64 = /dev/edb Second ESDI disk whole disk
@ -882,6 +894,7 @@ Your cooperation is appreciated.
40 char Matrox Meteor frame grabber {2.6}
0 = /dev/mmetfgrab Matrox Meteor frame grabber
40 block Syquest EZ135 parallel port removable drive
0 = /dev/eza Parallel EZ135 drive, whole disk
@ -893,6 +906,7 @@ Your cooperation is appreciated.
41 char Yet Another Micro Monitor
0 = /dev/yamm Yet Another Micro Monitor
41 block MicroSolutions BackPack parallel port CD-ROM
0 = /dev/bpcd BackPack CD-ROM
@ -901,6 +915,7 @@ Your cooperation is appreciated.
the parallel port ATAPI CD-ROM driver at major number 46.
42 char Demo/sample use
42 block Demo/sample use
This number is intended for use in sample code, as
@ -918,6 +933,7 @@ Your cooperation is appreciated.
0 = /dev/ttyI0 First virtual modem
...
63 = /dev/ttyI63 64th virtual modem
43 block Network block devices
0 = /dev/nb0 First network block device
1 = /dev/nb1 Second network block device
@ -934,12 +950,13 @@ Your cooperation is appreciated.
0 = /dev/cui0 Callout device for ttyI0
...
63 = /dev/cui63 Callout device for ttyI63
44 block Flash Translation Layer (FTL) filesystems
0 = /dev/ftla FTL on first Memory Technology Device
16 = /dev/ftlb FTL on second Memory Technology Device
32 = /dev/ftlc FTL on third Memory Technology Device
...
240 = /dev/ftlp FTL on 16th Memory Technology Device
240 = /dev/ftlp FTL on 16th Memory Technology Device
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
@ -958,6 +975,7 @@ Your cooperation is appreciated.
191 = /dev/ippp63 64th SyncPPP device
255 = /dev/isdninfo ISDN monitor interface
45 block Parallel port IDE disk devices
0 = /dev/pda First parallel port IDE disk
16 = /dev/pdb Second parallel port IDE disk
@ -1044,6 +1062,7 @@ Your cooperation is appreciated.
1 = /dev/dcbri1 Second DataComm card
2 = /dev/dcbri2 Third DataComm card
3 = /dev/dcbri3 Fourth DataComm card
52 block Mylex DAC960 PCI RAID controller; fifth controller
0 = /dev/rd/c4d0 First disk, whole disk
8 = /dev/rd/c4d1 Second disk, whole disk
@ -1093,7 +1112,8 @@ Your cooperation is appreciated.
55 char DSP56001 digital signal processor
0 = /dev/dsp56k First DSP56001
55 block Mylex DAC960 PCI RAID controller; eigth controller
55 block Mylex DAC960 PCI RAID controller; eighth controller
0 = /dev/rd/c7d0 First disk, whole disk
8 = /dev/rd/c7d1 Second disk, whole disk
...
@ -1130,6 +1150,7 @@ Your cooperation is appreciated.
0 = /dev/cup0 Callout device for ttyP0
1 = /dev/cup1 Callout device for ttyP1
...
58 block Reserved for logical volume manager
59 char sf firewall package
@ -1149,6 +1170,7 @@ Your cooperation is appreciated.
NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda0 etc
60-63 char LOCAL/EXPERIMENTAL USE
60-63 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
@ -1434,7 +1456,6 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
78 char PAM Software's multimodem boards
0 = /dev/ttyM0 First PAM modem
1 = /dev/ttyM1 Second PAM modem
@ -1450,13 +1471,12 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
79 char PAM Software's multimodem boards - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1
...
79 block Compaq Intelligent Drive Array, eigth controller
79 block Compaq Intelligent Drive Array, eighth controller
0 = /dev/ida/c7d0 First logical drive whole disk
16 = /dev/ida/c7d1 Second logical drive whole disk
...
@ -1466,7 +1486,6 @@ Your cooperation is appreciated.
DAC960 (see major number 48) except that the limit on
partitions is 15.
80 char Photometrics AT200 CCD camera
0 = /dev/at200 Photometrics AT200 CCD camera
@ -1679,7 +1698,7 @@ Your cooperation is appreciated.
1 = /dev/dcxx1 Second capture card
...
94 block IBM S/390 DASD block storage
94 block IBM S/390 DASD block storage
0 = /dev/dasda First DASD device, major
1 = /dev/dasda1 First DASD device, block 1
2 = /dev/dasda2 First DASD device, block 2
@ -1695,7 +1714,7 @@ Your cooperation is appreciated.
1 = /dev/ipnat NAT control device/log file
2 = /dev/ipstate State information log file
3 = /dev/ipauth Authentication control device/log file
...
...
96 char Parallel port ATAPI tape devices
0 = /dev/pt0 First parallel port ATAPI tape
@ -1705,7 +1724,7 @@ Your cooperation is appreciated.
129 = /dev/npt1 Second p.p. ATAPI tape, no rewind
...
96 block Inverse NAND Flash Translation Layer
96 block Inverse NAND Flash Translation Layer
0 = /dev/inftla First INFTL layer
16 = /dev/inftlb Second INFTL layer
...
@ -1900,7 +1919,7 @@ Your cooperation is appreciated.
1 = /dev/av1 Second A/V card
...
111 block Compaq Next Generation Drive Array, eigth controller
111 block Compaq Next Generation Drive Array, eighth controller
0 = /dev/cciss/c7d0 First logical drive, whole disk
16 = /dev/cciss/c7d1 Second logical drive, whole disk
...
@ -1937,7 +1956,6 @@ Your cooperation is appreciated.
...
113 block IBM iSeries virtual CD-ROM
0 = /dev/iseries/vcda First virtual CD-ROM
1 = /dev/iseries/vcdb Second virtual CD-ROM
...
@ -2059,11 +2077,12 @@ Your cooperation is appreciated.
...
119 char VMware virtual network control
0 = /dev/vnet0 1st virtual network
1 = /dev/vnet1 2nd virtual network
0 = /dev/vmnet0 1st virtual network
1 = /dev/vmnet1 2nd virtual network
...
120-127 char LOCAL/EXPERIMENTAL USE
120-127 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
@ -2075,7 +2094,6 @@ Your cooperation is appreciated.
nodes; instead they should be accessed through the
/dev/ptmx cloning interface.
128 block SCSI disk devices (128-143)
0 = /dev/sddy 129th SCSI disk whole disk
16 = /dev/sddz 130th SCSI disk whole disk
@ -2087,7 +2105,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
129 block SCSI disk devices (144-159)
0 = /dev/sdeo 145th SCSI disk whole disk
16 = /dev/sdep 146th SCSI disk whole disk
@ -2123,7 +2140,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
132 block SCSI disk devices (192-207)
0 = /dev/sdgk 193rd SCSI disk whole disk
16 = /dev/sdgl 194th SCSI disk whole disk
@ -2135,7 +2151,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
133 block SCSI disk devices (208-223)
0 = /dev/sdha 209th SCSI disk whole disk
16 = /dev/sdhb 210th SCSI disk whole disk
@ -2147,7 +2162,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
134 block SCSI disk devices (224-239)
0 = /dev/sdhq 225th SCSI disk whole disk
16 = /dev/sdhr 226th SCSI disk whole disk
@ -2159,7 +2173,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
135 block SCSI disk devices (240-255)
0 = /dev/sdig 241st SCSI disk whole disk
16 = /dev/sdih 242nd SCSI disk whole disk
@ -2171,7 +2184,6 @@ Your cooperation is appreciated.
disks (see major number 3) except that the limit on
partitions is 15.
136-143 char Unix98 PTY slaves
0 = /dev/pts/0 First Unix98 pseudo-TTY
1 = /dev/pts/1 Second Unix98 pesudo-TTY
@ -2384,6 +2396,7 @@ Your cooperation is appreciated.
...
159 char RESERVED
159 block RESERVED
160 char General Purpose Instrument Bus (GPIB)
@ -2427,7 +2440,7 @@ Your cooperation is appreciated.
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.
partitions is 31.
162 char Raw block device interface
0 = /dev/rawctl Raw I/O control device
@ -2483,7 +2496,6 @@ Your cooperation is appreciated.
171 char Reserved for IEEE 1394 (Firewire)
172 char Moxa Intellio serial card
0 = /dev/ttyMX0 First Moxa port
1 = /dev/ttyMX1 Second Moxa port
@ -2543,9 +2555,6 @@ Your cooperation is appreciated.
64 = /dev/usb/rio500 Diamond Rio 500
65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de)
66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD)
67 = /dev/usb/adutux0 1st Ontrak ADU device
...
76 = /dev/usb/adutux10 10th Ontrak ADU device
96 = /dev/usb/hiddev0 1st USB HID device
...
111 = /dev/usb/hiddev15 16th USB HID device
@ -2558,7 +2567,7 @@ Your cooperation is appreciated.
132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
133 = /dev/usb/sisusbvga1 First SiSUSB VGA device
...
140 = /dev/usb/sisusbvga8 Eigth SISUSB VGA device
140 = /dev/usb/sisusbvga8 Eighth SISUSB VGA device
144 = /dev/usb/lcd USB LCD device
160 = /dev/usb/legousbtower0 1st USB Legotower device
...
@ -2571,7 +2580,7 @@ Your cooperation is appreciated.
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device
16 = /dev/ubc Third USB block device
...
...
181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclock0 First Conrad radio clock
@ -2657,7 +2666,7 @@ Your cooperation is appreciated.
32 = /dev/mvideo/status2 Third device
...
...
240 = /dev/mvideo/status15 16th device
240 = /dev/mvideo/status15 16th device
...
195 char Nvidia graphics devices
@ -2795,6 +2804,10 @@ Your cooperation is appreciated.
...
185 = /dev/ttyNX15 Hilscher netX serial port 15
186 = /dev/ttyJ0 JTAG1 DCC protocol based serial port emulation
187 = /dev/ttyUL0 Xilinx uartlite - port 0
...
190 = /dev/ttyUL3 Xilinx uartlite - port 3
191 = /dev/xvc0 Xen virtual console - port 0
205 char Low-density serial ports (alternate device)
0 = /dev/culu0 Callout device for ttyLU0
@ -2832,7 +2845,6 @@ Your cooperation is appreciated.
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1
206 char OnStream SC-x0 tape devices
0 = /dev/osst0 First OnStream SCSI tape, mode 0
1 = /dev/osst1 Second OnStream SCSI tape, mode 0
@ -2922,7 +2934,6 @@ Your cooperation is appreciated.
...
212 char LinuxTV.org DVB driver subsystem
0 = /dev/dvb/adapter0/video0 first video decoder of first card
1 = /dev/dvb/adapter0/audio0 first audio decoder of first card
2 = /dev/dvb/adapter0/sec0 (obsolete/unused)
@ -3008,9 +3019,9 @@ Your cooperation is appreciated.
2 = /dev/3270/tub2 Second 3270 terminal
...
229 char IBM iSeries virtual console
0 = /dev/iseries/vtty0 First console port
1 = /dev/iseries/vtty1 Second console port
229 char IBM iSeries/pSeries virtual console
0 = /dev/hvc0 First console port
1 = /dev/hvc1 Second console port
...
230 char IBM iSeries virtual tape
@ -3083,12 +3094,14 @@ Your cooperation is appreciated.
234-239 UNASSIGNED
240-254 char LOCAL/EXPERIMENTAL USE
240-254 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.
255 char RESERVED
255 block RESERVED
This major is reserved to assist the expansion to a
@ -3115,7 +3128,20 @@ Your cooperation is appreciated.
257 char Phoenix Technologies Cryptographic Services Driver
0 = /dev/ptlsec Crypto Services Driver
257 block SSFDC Flash Translation Layer filesystem
0 = /dev/ssfdca First SSFDC layer
8 = /dev/ssfdcb Second SSFDC layer
16 = /dev/ssfdcc Third SSFDC layer
24 = /dev/ssfdcd 4th SSFDC layer
32 = /dev/ssfdce 5th SSFDC layer
40 = /dev/ssfdcf 6th SSFDC layer
48 = /dev/ssfdcg 7th SSFDC layer
56 = /dev/ssfdch 8th SSFDC layer
258 block ROM/Flash read-only translation layer
0 = /dev/blockrom0 First ROM card's translation layer interface
1 = /dev/blockrom1 Second ROM card's translation layer interface
...
**** ADDITIONAL /dev DIRECTORY ENTRIES

View File

@ -1,99 +1,131 @@
Platform Devices and Drivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See <linux/platform_device.h> for the driver model interface to the
platform bus: platform_device, and platform_driver. This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
like those used to integrate peripherals on many system-on-chip
processors, or some "legacy" PC interconnects; as opposed to large
formally specified ones like PCI or USB.
Platform devices
~~~~~~~~~~~~~~~~
Platform devices are devices that typically appear as autonomous
entities in the system. This includes legacy port-based devices and
host bridges to peripheral buses.
host bridges to peripheral buses, and most controllers integrated
into system-on-chip platforms. What they usually have in common
is direct addressing from a CPU bus. Rarely, a platform_device will
be connected through a segment of some other kind of bus; but its
registers will still be directly addressible.
Platform devices are given a name, used in driver binding, and a
list of resources such as addresses and IRQs.
struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;
};
Platform drivers
~~~~~~~~~~~~~~~~
Drivers for platform devices are typically very simple and
unstructured. Either the device was present at a particular I/O port
and the driver was loaded, or it was not. There was no possibility
of hotplugging or alternative discovery besides probing at a specific
I/O address and expecting a specific response.
Platform drivers follow the standard driver model convention, where
discovery/enumeration is handled outside the drivers, and drivers
provide probe() and remove() methods. They support power management
and shutdown notifications using the standard conventions.
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
Note that probe() should general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
Platform drivers register themselves the normal way:
int platform_driver_register(struct platform_driver *drv);
Or, in common situations where the device is known not to be hot-pluggable,
the probe() routine can live in an init section to reduce the driver's
runtime memory footprint:
int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
Other Architectures, Modern Firmware, and new Platforms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These devices are not always at the legacy I/O ports. This is true on
other architectures and on some modern architectures. In most cases,
the drivers are modified to discover the devices at other well-known
ports for the given platform. However, the firmware in these systems
does usually know where exactly these devices reside, and in some
cases, it's the only way of discovering them.
Device Enumeration
~~~~~~~~~~~~~~~~~~
As a rule, platform specific (and often board-specific) setup code wil
register platform devices:
int platform_device_register(struct platform_device *pdev);
int platform_add_devices(struct platform_device **pdevs, int ndev);
The general rule is to register only those devices that actually exist,
but in some cases extra devices might be registered. For example, a kernel
might be configured to work with an external network adapter that might not
be populated on all boards, or likewise to work with an integrated controller
that some boards might not hook up to any peripherals.
In some cases, boot firmware will export tables describing the devices
that are populated on a given board. Without such tables, often the
only way for system setup code to set up the correct devices is to build
a kernel for a specific target board. Such board-specific kernels are
common with embedded and custom systems development.
In many cases, the memory and IRQ resources associated with the platform
device are not enough to let the device's driver work. Board setup code
will often provide additional information using the device's platform_data
field to hold additional information.
Embedded systems frequently need one or more clocks for platform devices,
which are normally kept off until they're actively needed (to save power).
System setup also associates those clocks with the device, so that that
calls to clk_get(&pdev->dev, clock_name) return them as needed.
The Platform Bus
~~~~~~~~~~~~~~~~
A platform bus has been created to deal with these issues. First and
foremost, it groups all the legacy devices under a common bus, and
gives them a common parent if they don't already have one.
Device Naming and Driver Binding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The platform_device.dev.bus_id is the canonical name for the devices.
It's built from two components:
But, besides the organizational benefits, the platform bus can also
accommodate firmware-based enumeration.
* platform_device.name ... which is also used to for driver matching.
* platform_device.id ... the device instance number, or else "-1"
to indicate there's only one.
Device Discovery
~~~~~~~~~~~~~~~~
The platform bus has no concept of probing for devices. Devices
discovery is left up to either the legacy drivers or the
firmware. These entities are expected to notify the platform of
devices that it discovers via the bus's add() callback:
These are catenated, so name/id "serial"/0 indicates bus_id "serial.0", and
"serial/3" indicates bus_id "serial.3"; both would use the platform_driver
named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)
and use the platform_driver called "my_rtc".
platform_bus.add(parent,bus_id).
Driver binding is performed automatically by the driver core, invoking
driver probe() after finding a match between device and driver. If the
probe() succeeds, the driver and device are bound as usual. There are
three different ways to find such a match:
- Whenever a device is registered, the drivers for that bus are
checked for matches. Platform devices should be registered very
early during system boot.
Bus IDs
~~~~~~~
Bus IDs are the canonical names for the devices. There is no globally
standard addressing mechanism for legacy devices. In the IA-32 world,
we have Pnp IDs to use, as well as the legacy I/O ports. However,
neither tell what the device really is or have any meaning on other
platforms.
- When a driver is registered using platform_driver_register(), all
unbound devices on that bus are checked for matches. Drivers
usually register later during booting, or by module loading.
Since both PnP IDs and the legacy I/O ports (and other standard I/O
ports for specific devices) have a 1:1 mapping, we map the
platform-specific name or identifier to a generic name (at least
within the scope of the kernel).
For example, a serial driver might find a device at I/O 0x3f8. The
ACPI firmware might also discover a device with PnP ID (_HID)
PNP0501. Both correspond to the same device and should be mapped to the
canonical name 'serial'.
The bus_id field should be a concatenation of the canonical name and
the instance of that type of device. For example, the device at I/O
port 0x3f8 should have a bus_id of "serial0". This places the
responsibility of enumerating devices of a particular type up to the
discovery mechanism. But, they are the entity that should know best
(as opposed to the platform bus driver).
Drivers
~~~~~~~
Drivers for platform devices should have a name that is the same as
the canonical name of the devices they support. This allows the
platform bus driver to do simple matching with the basic data
structures to determine if a driver supports a certain device.
For example, a legacy serial driver should have a name of 'serial' and
register itself with the platform bus.
Driver Binding
~~~~~~~~~~~~~~
Legacy drivers assume they are bound to the device once they start up
and probe an I/O port. Divorcing them from this will be a difficult
process. However, that shouldn't prevent us from implementing
firmware-based enumeration.
The firmware should notify the platform bus about devices before the
legacy drivers have had a chance to load. Once the drivers are loaded,
they driver model core will attempt to bind the driver to any
previously-discovered devices. Once that has happened, it will be free
to discover any other devices it pleases.
- Registering a driver using platform_driver_probe() works just like
using platform_driver_register(), except that the the driver won't
be probed later if another device registers. (Which is OK, since
this interface is only for use with non-hotpluggable devices.)

View File

@ -92,7 +92,7 @@ struct device represents a single device. It mainly contains metadata
describing the relationship the device has to other entities.
- Embedd a struct device in the bus-specific device type.
- Embed a struct device in the bus-specific device type.
struct pci_dev {

View File

@ -22,10 +22,10 @@ o Frontends drivers:
- ves1x93 : Alps BSRV2 (ves1893 demodulator) and dbox2 (ves1993)
- cx24110 : Conexant HM1221/HM1811 (cx24110 or cx24106 demod, cx24108 PLL)
- grundig_29504-491 : Grundig 29504-491 (Philips TDA8083 demodulator), tsa5522 PLL
- mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLL
- mt312 : Zarlink mt312 or Mitel vp310 demodulator, sl1935 or tsa5059 PLLi, Technisat Sky2Pc with bios Rev. 2.3
- stv0299 : Alps BSRU6 (tsa5059 PLL), LG TDQB-S00x (tsa5059 PLL),
LG TDQF-S001F (sl1935 PLL), Philips SU1278 (tua6100 PLL),
Philips SU1278SH (tsa5059 PLL), Samsung TBMU24112IMB
Philips SU1278SH (tsa5059 PLL), Samsung TBMU24112IMB, Technisat Sky2Pc with bios Rev. 2.6
DVB-C:
- ves1820 : various (ves1820 demodulator, sp5659c or spXXXX PLL)
- at76c651 : Atmel AT76c651(B) with DAT7021 PLL

View File

@ -71,7 +71,7 @@ eliminating the need for any additional ioctls.
The disadvantage is that the driver/hardware has to manage the rest. For
the application programmer it would be as simple as sending/receiving an
array to/from the CI ioctls as defined in the Linux DVB API. No changes
have been made in the API to accomodate this feature.
have been made in the API to accommodate this feature.
* Why the need for another CI interface ?
@ -102,7 +102,7 @@ This CI interface follows the CI high level interface, which is not
implemented by most applications. Hence this area is revisited.
This CI interface is quite different in the case that it tries to
accomodate all other CI based devices, that fall into the other categories
accommodate all other CI based devices, that fall into the other categories.
This means that this CI interface handles the EN50221 style tags in the
Application layer only and no session management is taken care of by the

View File

@ -62,7 +62,7 @@ res : root device I/O resource
bus_base_addr : slot 0 address on this bus
slots : max slot number to probe
force_probe : Probe even when slot 0 is empty (no EISA mainboard)
dma_mask : Default DMA mask. Usualy the bridge device dma_mask.
dma_mask : Default DMA mask. Usually the bridge device dma_mask.
bus_nr : unique bus id, set by eisa_root_register
** Driver :

View File

@ -0,0 +1,4 @@
#!/bin/bash
echo 1 > /proc/self/make-it-fail
exec $*

View File

@ -0,0 +1,31 @@
#!/bin/bash
#
# Usage: failmodule <failname> <modulename> [stacktrace-depth]
#
# <failname>: "failslab", "fail_alloc_page", or "fail_make_request"
#
# <modulename>: module name that you want to inject faults.
#
# [stacktrace-depth]: the maximum number of stacktrace walking allowed
#
STACKTRACE_DEPTH=5
if [ $# -gt 2 ]; then
STACKTRACE_DEPTH=$3
fi
if [ ! -d /debug/$1 ]; then
echo "Fault-injection $1 does not exist" >&2
exit 1
fi
if [ ! -d /sys/module/$2 ]; then
echo "Module $2 does not exist" >&2
exit 1
fi
# Disable any fault injection
echo 0 > /debug/$1/stacktrace-depth
echo `cat /sys/module/$2/sections/.text` > /debug/$1/require-start
echo `cat /sys/module/$2/sections/.exit.text` > /debug/$1/require-end
echo $STACKTRACE_DEPTH > /debug/$1/stacktrace-depth

View File

@ -0,0 +1,225 @@
Fault injection capabilities infrastructure
===========================================
See also drivers/md/faulty.c and "every_nth" module option for scsi_debug.
Available fault injection capabilities
--------------------------------------
o failslab
injects slab allocation failures. (kmalloc(), kmem_cache_alloc(), ...)
o fail_page_alloc
injects page allocation failures. (alloc_pages(), get_free_pages(), ...)
o fail_make_request
injects disk IO errors on devices permitted by setting
/sys/block/<device>/make-it-fail or
/sys/block/<device>/<partition>/make-it-fail. (generic_make_request())
Configure fault-injection capabilities behavior
-----------------------------------------------
o debugfs entries
fault-inject-debugfs kernel module provides some debugfs entries for runtime
configuration of fault-injection capabilities.
- /debug/fail*/probability:
likelihood of failure injection, in percent.
Format: <percent>
Note that one-failure-per-hundred is a very high error rate
for some testcases. Consider setting probability=100 and configure
/debug/fail*/interval for such testcases.
- /debug/fail*/interval:
specifies the interval between failures, for calls to
should_fail() that pass all the other tests.
Note that if you enable this, by setting interval>1, you will
probably want to set probability=100.
- /debug/fail*/times:
specifies how many times failures may happen at most.
A value of -1 means "no limit".
- /debug/fail*/space:
specifies an initial resource "budget", decremented by "size"
on each call to should_fail(,size). Failure injection is
suppressed until "space" reaches zero.
- /debug/fail*/verbose
Format: { 0 | 1 | 2 }
specifies the verbosity of the messages when failure is
injected. '0' means no messages; '1' will print only a single
log line per failure; '2' will print a call trace too -- useful
to debug the problems revealed by fault injection.
- /debug/fail*/task-filter:
Format: { 'Y' | 'N' }
A value of 'N' disables filtering by process (default).
Any positive value limits failures to only processes indicated by
/proc/<pid>/make-it-fail==1.
- /debug/fail*/require-start:
- /debug/fail*/require-end:
- /debug/fail*/reject-start:
- /debug/fail*/reject-end:
specifies the range of virtual addresses tested during
stacktrace walking. Failure is injected only if some caller
in the walked stacktrace lies within the required range, and
none lies within the rejected range.
Default required range is [0,ULONG_MAX) (whole of virtual address space).
Default rejected range is [0,0).
- /debug/fail*/stacktrace-depth:
specifies the maximum stacktrace depth walked during search
for a caller within [require-start,require-end) OR
[reject-start,reject-end).
- /debug/fail_page_alloc/ignore-gfp-highmem:
Format: { 'Y' | 'N' }
default is 'N', setting it to 'Y' won't inject failures into
highmem/user allocations.
- /debug/failslab/ignore-gfp-wait:
- /debug/fail_page_alloc/ignore-gfp-wait:
Format: { 'Y' | 'N' }
default is 'N', setting it to 'Y' will inject failures
only into non-sleep allocations (GFP_ATOMIC allocations).
o Boot option
In order to inject faults while debugfs is not available (early boot time),
use the boot option:
failslab=
fail_page_alloc=
fail_make_request=<interval>,<probability>,<space>,<times>
How to add new fault injection capability
-----------------------------------------
o #include <linux/fault-inject.h>
o define the fault attributes
DECLARE_FAULT_INJECTION(name);
Please see the definition of struct fault_attr in fault-inject.h
for details.
o provide a way to configure fault attributes
- boot option
If you need to enable the fault injection capability from boot time, you can
provide boot option to configure it. There is a helper function for it:
setup_fault_attr(attr, str);
- debugfs entries
failslab, fail_page_alloc, and fail_make_request use this way.
Helper functions:
init_fault_attr_entries(entries, attr, name);
void cleanup_fault_attr_entries(entries);
- module parameters
If the scope of the fault injection capability is limited to a
single kernel module, it is better to provide module parameters to
configure the fault attributes.
o add a hook to insert failures
Upon should_fail() returning true, client code should inject a failure.
should_fail(attr, size);
Application Examples
--------------------
o inject slab allocation failures into module init/cleanup code
------------------------------------------------------------------------------
#!/bin/bash
FAILCMD=Documentation/fault-injection/failcmd.sh
BLACKLIST="root_plug evbug"
FAILNAME=failslab
echo Y > /debug/$FAILNAME/task-filter
echo 10 > /debug/$FAILNAME/probability
echo 100 > /debug/$FAILNAME/interval
echo -1 > /debug/$FAILNAME/times
echo 2 > /debug/$FAILNAME/verbose
echo 1 > /debug/$FAILNAME/ignore-gfp-wait
blacklist()
{
echo $BLACKLIST | grep $1 > /dev/null 2>&1
}
oops()
{
dmesg | grep BUG > /dev/null 2>&1
}
find /lib/modules/`uname -r` -name '*.ko' -exec basename {} .ko \; |
while read i
do
oops && exit 1
if ! blacklist $i
then
echo inserting $i...
bash $FAILCMD modprobe $i
fi
done
lsmod | awk '{ if ($3 == 0) { print $1 } }' |
while read i
do
oops && exit 1
if ! blacklist $i
then
echo removing $i...
bash $FAILCMD modprobe -r $i
fi
done
------------------------------------------------------------------------------
o inject slab allocation failures only for a specific module
------------------------------------------------------------------------------
#!/bin/bash
FAILMOD=Documentation/fault-injection/failmodule.sh
echo injecting errors into the module $1...
modprobe $1
bash $FAILMOD failslab $1 10
echo 25 > /debug/failslab/probability
------------------------------------------------------------------------------

View File

@ -30,11 +30,39 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN
When: November 2006
Why: Deprecated in favour of the new ioctl-based rawiso interface, which is
more efficient. You should really be using libraw1394 for raw1394
access anyway.
Who: Jody McIntyre <scjody@modernduck.com>
When: June 2007
Why: Deprecated in favour of the more efficient and robust rawiso interface.
Affected are applications which use the deprecated part of libraw1394
(raw1394_iso_write, raw1394_start_iso_write, raw1394_start_iso_rcv,
raw1394_stop_iso_rcv) or bypass libraw1394.
Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: dv1394 driver (CONFIG_IEEE1394_DV1394)
When: June 2007
Why: Replaced by raw1394 + userspace libraries, notably libiec61883. This
shift of application support has been indicated on www.linux1394.org
and developers' mailinglists for quite some time. Major applications
have been converted, with the exception of ffmpeg and hence xine.
Piped output of dvgrab2 is a partial equivalent to dv1394.
Who: Dan Dennedy <dan@dennedy.org>, Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: ieee1394 core's unused exports (CONFIG_IEEE1394_EXPORT_FULL_API)
When: January 2007
Why: There are no projects known to use these exported symbols, except
dfg1394 (uses one symbol whose functionality is core-internal now).
Who: Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
What: ieee1394's *_oui sysfs attributes (CONFIG_IEEE1394_OUI_DB)
When: January 2007
Files: drivers/ieee1394/: oui.db, oui2c.sh
Why: big size, little value
Who: Stefan Richter <stefanr@s5r6.in-berlin.de>
---------------------------
@ -70,18 +98,6 @@ Who: Dominik Brodowski <linux@brodo.de>
---------------------------
What: ip_queue and ip6_queue (old ipv4-only and ipv6-only netfilter queue)
When: December 2005
Why: This interface has been obsoleted by the new layer3-independent
"nfnetlink_queue". The Kernel interface is compatible, so the old
ip[6]tables "QUEUE" targets still work and will transparently handle
all packets into nfnetlink queue number 0. Userspace users will have
to link against API-compatible library on top of libnfnetlink_queue
instead of the current 'libipq'.
Who: Harald Welte <laforge@netfilter.org>
---------------------------
What: remove EXPORT_SYMBOL(kernel_thread)
When: August 2006
Files: arch/*/kernel/*_ksyms.c
@ -135,15 +151,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
---------------------------
What: I2C interface of the it87 driver
When: January 2007
Why: The ISA interface is faster and should be always available. The I2C
probing is also known to cause trouble in at least one case (see
bug #5889.)
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Unused EXPORT_SYMBOL/EXPORT_SYMBOL_GPL exports
(temporary transition config option provided until then)
The transition config option will also be removed at the same time.
@ -200,48 +207,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
---------------------------
What: i2c-ite and i2c-algo-ite drivers
When: September 2006
Why: These drivers never compiled since they were added to the kernel
tree 5 years ago. This feature removal can be reevaluated if
someone shows interest in the drivers, fixes them and takes over
maintenance.
http://marc.theaimsgroup.com/?l=linux-mips&m=115040510817448
Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: Bridge netfilter deferred IPv4/IPv6 output hook calling
When: January 2007
Why: The deferred output hooks are a layering violation causing unusual
and broken behaviour on bridge devices. Examples of things they
break include QoS classifation using the MARK or CLASSIFY targets,
the IPsec policy match and connection tracking with VLANs on a
bridge. Their only use is to enable bridge output port filtering
within iptables with the physdev match, which can also be done by
combining iptables and ebtables using netfilter marks. Until it
will get removed the hook deferral is disabled by default and is
only enabled when needed.
Who: Patrick McHardy <kaber@trash.net>
---------------------------
What: frame diverter
When: November 2006
Why: The frame diverter is included in most distribution kernels, but is
broken. It does not correctly handle many things:
- IPV6
- non-linear skb's
- network device RCU on removal
- input frames not correctly checked for protocol errors
It also adds allocation overhead even if not enabled.
It is not clear if anyone is still using it.
Who: Stephen Hemminger <shemminger@osdl.org>
---------------------------
What: PHYSDEVPATH, PHYSDEVBUS, PHYSDEVDRIVER in the uevent environment
When: October 2008
Why: The stacking of class devices makes these values misleading and
@ -261,10 +226,95 @@ Who: Jean Delvare <khali@linux-fr.org>
---------------------------
What: ftape
When: 2.6.20
Why: Orphaned for ages. SMP bugs long unfixed. Few users left
in the world.
Who: Jeff Garzik <jeff@garzik.org>
What: i2c_adapter.dev
i2c_adapter.list
When: July 2007
Why: Superfluous, given i2c_adapter.class_dev:
* The "dev" was a stand-in for the physical device node that legacy
drivers would not have; but now it's almost always present. Any
remaining legacy drivers must upgrade (they now trigger warnings).
* The "list" duplicates class device children.
The delay in removing this is so upgraded lm_sensors and libsensors
can get deployed. (Removal causes minor changes in the sysfs layout,
notably the location of the adapter type name and parenting the i2c
client hardware directly from their controller.)
Who: Jean Delvare <khali@linux-fr.org>,
David Brownell <dbrownell@users.sourceforge.net>
---------------------------
What: IPv4 only connection tracking/NAT/helpers
When: 2.6.22
Why: The new layer 3 independant connection tracking replaces the old
IPv4 only version. After some stabilization of the new code the
old one will be removed.
Who: Patrick McHardy <kaber@trash.net>
---------------------------
What: ACPI hooks (X86_SPEEDSTEP_CENTRINO_ACPI) in speedstep-centrino driver
When: December 2006
Why: Speedstep-centrino driver with ACPI hooks and acpi-cpufreq driver are
functionally very much similar. They talk to ACPI in same way. Only
difference between them is the way they do frequency transitions.
One uses MSRs and the other one uses IO ports. Functionaliy of
speedstep_centrino with ACPI hooks is now merged into acpi-cpufreq.
That means one common driver will support all Intel Enhanced Speedstep
capable CPUs. That means less confusion over name of
speedstep-centrino driver (with that driver supposed to be used on
non-centrino platforms). That means less duplication of code and
less maintenance effort and no possibility of these two drivers
going out of sync.
Current users of speedstep_centrino with ACPI hooks are requested to
switch over to acpi-cpufreq driver. speedstep-centrino will continue
to work using older non-ACPI static table based scheme even after this
date.
Who: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
---------------------------
What: ACPI hotkey driver (CONFIG_ACPI_HOTKEY)
When: 2.6.21
Why: hotkey.c was an attempt to consolidate multiple drivers that use
ACPI to implement hotkeys. However, hotkeys are not documented
in the ACPI specification, so the drivers used undocumented
vendor-specific hooks and turned out to be more different than
the same.
Further, the keys and the features supplied by each platform
are different, so there will always be a need for
platform-specific drivers.
So the new plan is to delete hotkey.c and instead, work on the
platform specific drivers to try to make them look the same
to the user when they supply the same features.
hotkey.c has always depended on CONFIG_EXPERIMENTAL
Who: Len Brown <len.brown@intel.com>
---------------------------
What: /sys/firmware/acpi/namespace
When: 2.6.21
Why: The ACPI namespace is effectively the symbol list for
the BIOS. The device names are completely arbitrary
and have no place being exposed to user-space.
For those interested in the BIOS ACPI namespace,
the BIOS can be extracted and disassembled with acpidump
and iasl as documented in the pmtools package here:
http://ftp.kernel.org/pub/linux/kernel/people/lenb/acpi/utils
Who: Len Brown <len.brown@intel.com>
---------------------------
What: /proc/acpi/button
When: August 2007
Why: /proc/acpi/button has been replaced by events to the input layer
since 2.6.20.
Who: Len Brown <len.brown@intel.com>
---------------------------

View File

@ -124,7 +124,7 @@ sync_fs: no no read
write_super_lockfs: ?
unlockfs: ?
statfs: no no no
remount_fs: no yes maybe (see below)
remount_fs: yes yes maybe (see below)
clear_inode: no
umount_begin: yes no no
show_options: no (vfsmount->sem)
@ -171,6 +171,7 @@ prototypes:
int (*releasepage) (struct page *, int);
int (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
loff_t offset, unsigned long nr_segs);
int (*launder_page) (struct page *);
locking rules:
All except set_page_dirty may block
@ -188,6 +189,7 @@ bmap: yes
invalidatepage: no yes
releasepage: no yes
direct_IO: no
launder_page: no yes
->prepare_write(), ->commit_write(), ->sync_page() and ->readpage()
may be called from the request handler (/dev/loop).
@ -281,6 +283,12 @@ buffers from the page in preparation for freeing it. It returns zero to
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.
->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
Note: currently almost all instances of address_space methods are
using BKL for internal serialization and that's one of the worst sources
of contention. Normally they are calling library functions (in fs/buffer.c)

View File

@ -3,7 +3,7 @@ Mount options for ADFS
uid=nnn All files in the partition will be owned by
user id nnn. Default 0 (root).
gid=nnn All files in the partition willbe in group
gid=nnn All files in the partition will be in group
nnn. Default 0 (root).
ownmask=nnn The permission mask for ADFS 'owner' permissions
will be nnn. Default 0700.

View File

@ -54,4 +54,4 @@ The first 4 bytes should be 0x1badface.
If you have any patches, questions or suggestions regarding this BFS
implementation please contact the author:
Tigran A. Aivazian <tigran@veritas.com>
Tigran Aivazian <tigran@aivazian.fsnet.co.uk>

View File

@ -209,7 +209,7 @@ will happen for write(2).
[struct config_group]
A config_item cannot live in a vaccum. The only way one can be created
A config_item cannot live in a vacuum. The only way one can be created
is via mkdir(2) on a config_group. This will trigger creation of a
child item.
@ -275,7 +275,7 @@ directory is not empty.
[struct configfs_subsystem]
A subsystem must register itself, ususally at module_init time. This
A subsystem must register itself, usually at module_init time. This
tells configfs to make the subsystem appear in the file tree.
struct configfs_subsystem {

View File

@ -51,6 +51,22 @@ homepage:
http://fuse.sourceforge.net/
Filesystem type
~~~~~~~~~~~~~~~
The filesystem type given to mount(2) can be one of the following:
'fuse'
This is the usual way to mount a FUSE filesystem. The first
argument of the mount system call may contain an arbitrary string,
which is not interpreted by the kernel.
'fuseblk'
The filesystem is block device based. The first argument of the
mount system call is interpreted as the name of the device.
Mount options
~~~~~~~~~~~~~
@ -78,8 +94,8 @@ Mount options
filesystem is free to implement it's access policy or leave it to
the underlying file access mechanism (e.g. in case of network
filesystems). This option enables permission checking, restricting
access based on file mode. This is option is usually useful
together with the 'allow_other' mount option.
access based on file mode. It is usually useful together with the
'allow_other' mount option.
'allow_other'
@ -94,6 +110,11 @@ Mount options
The default is infinite. Note that the size of read requests is
limited anyway to 32 pages (which is 128kbyte on i386).
'blksize=N'
Set the block size for the filesystem. The default is 512. This
option is only valid for 'fuseblk' type mounts.
Control filesystem
~~~~~~~~~~~~~~~~~~
@ -111,7 +132,7 @@ For each connection the following files exist within this directory:
'waiting'
The number of requests which are waiting to be transfered to
The number of requests which are waiting to be transferred to
userspace or being processed by the filesystem daemon. If there is
no filesystem activity and 'waiting' is non-zero, then the
filesystem is hung or deadlocked.
@ -136,7 +157,7 @@ following will happen:
2) If the request is not yet sent to userspace AND the signal is not
fatal, then an 'interrupted' flag is set for the request. When
the request has been successfully transfered to userspace and
the request has been successfully transferred to userspace and
this flag is set, an INTERRUPT request is queued.
3) If the request is already sent to userspace, then an INTERRUPT

View File

@ -274,7 +274,7 @@ History
Fixed race-condition in buffer code - it is in all filesystems in Linux;
when reading device (cat /dev/hda) while creating files on it, files
could be damaged
2.02 Woraround for bug in breada in Linux. breada could cause accesses beyond
2.02 Workaround for bug in breada in Linux. breada could cause accesses beyond
end of partition
2.03 Char, block devices and pipes are correctly created
Fixed non-crashing race in unlink (Alexander Viro)

View File

@ -337,7 +337,7 @@ Finally, for a mirrored volume, i.e. raid level 1, the table would look like
this (note all values are in 512-byte sectors):
--- cut here ---
# Ofs Size Raid Log Number Region Should Number Source Start Taget Start
# Ofs Size Raid Log Number Region Should Number Source Start Target Start
# in of the type type of log size sync? of Device in Device in
# vol volume params mirrors Device Device
0 2056320 mirror core 2 16 nosync 2 /dev/hda1 0 /dev/hdb1 0
@ -599,7 +599,7 @@ Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
- Major bug fixes for reading files and volumes in corner cases which
were being hit by Windows 2k/XP users.
2.1.2:
- Major bug fixes aleviating the hangs in statfs experienced by some
- Major bug fixes alleviating the hangs in statfs experienced by some
users.
2.1.1:
- Update handling of compressed files so people no longer get the

View File

@ -30,7 +30,7 @@ Caveats
Features which OCFS2 does not support yet:
- sparse files
- extended attributes
- shared writeable mmap
- shared writable mmap
- loopback is supported, but data written will not
be cluster coherent.
- quotas
@ -54,3 +54,6 @@ errors=panic Panic and halt the machine if an error occurs.
intr (*) Allow signals to interrupt cluster operations.
nointr Do not allow signals to interrupt cluster
operations.
atime_quantum=60(*) OCFS2 will not update atime unless this number
of seconds has passed since the last update.
Set to zero to always update atime.

View File

@ -1220,9 +1220,9 @@ applications are using mlock(), or if you are running with no swap then
you probably should increase the lower_zone_protection setting.
The units of this tunable are fairly vague. It is approximately equal
to "megabytes". So setting lower_zone_protection=100 will protect around 100
to "megabytes," so setting lower_zone_protection=100 will protect around 100
megabytes of the lowmem zone from user allocations. It will also make
those 100 megabytes unavaliable for use by applications and by
those 100 megabytes unavailable for use by applications and by
pagecache, so there is a cost.
The effects of this tunable may be observed by monitoring
@ -1538,10 +1538,10 @@ TCP settings
tcp_ecn
-------
This file controls the use of the ECN bit in the IPv4 headers, this is a new
This file controls the use of the ECN bit in the IPv4 headers. This is a new
feature about Explicit Congestion Notification, but some routers and firewalls
block trafic that has this bit set, so it could be necessary to echo 0 to
/proc/sys/net/ipv4/tcp_ecn, if you want to talk to this sites. For more info
block traffic that has this bit set, so it could be necessary to echo 0 to
/proc/sys/net/ipv4/tcp_ecn if you want to talk to these sites. For more info
you could read RFC2481.
tcp_retrans_collapse

View File

@ -210,7 +210,7 @@ FILES
/signal2
The two signal notification channels of an SPU. These are read-write
files that operate on a 32 bit word. Writing to one of these files
triggers an interrupt on the SPU. The value writting to the signal
triggers an interrupt on the SPU. The value written to the signal
files can be read from the SPU through a channel read or from host user
space through the file. After the value has been read by the SPU, it
is reset to zero. The possible operations on an open signal1 or sig-

View File

@ -1,11 +1,8 @@
This is the implementation of the SystemV/Coherent filesystem for Linux.
It implements all of
- Xenix FS,
- SystemV/386 FS,
- Coherent FS.
This is version beta 4.
To install:
* Answer the 'System V and Coherent filesystem support' question with 'y'
when configuring the kernel.
@ -28,11 +25,173 @@ Bugs in the present implementation:
for this FS on hard disk yet.
Please report any bugs and suggestions to
Bruno Haible <haible@ma2s2.mathematik.uni-karlsruhe.de>
Pascal Haible <haible@izfm.uni-stuttgart.de>
Krzysztof G. Baranowski <kgb@manjak.knm.org.pl>
These filesystems are rather similar. Here is a comparison with Minix FS:
Bruno Haible
<haible@ma2s2.mathematik.uni-karlsruhe.de>
* Linux fdisk reports on partitions
- Minix FS 0x81 Linux/Minix
- Xenix FS ??
- SystemV FS ??
- Coherent FS 0x08 AIX bootable
* Size of a block or zone (data allocation unit on disk)
- Minix FS 1024
- Xenix FS 1024 (also 512 ??)
- SystemV FS 1024 (also 512 and 2048)
- Coherent FS 512
* General layout: all have one boot block, one super block and
separate areas for inodes and for directories/data.
On SystemV Release 2 FS (e.g. Microport) the first track is reserved and
all the block numbers (including the super block) are offset by one track.
* Byte ordering of "short" (16 bit entities) on disk:
- Minix FS little endian 0 1
- Xenix FS little endian 0 1
- SystemV FS little endian 0 1
- Coherent FS little endian 0 1
Of course, this affects only the file system, not the data of files on it!
* Byte ordering of "long" (32 bit entities) on disk:
- Minix FS little endian 0 1 2 3
- Xenix FS little endian 0 1 2 3
- SystemV FS little endian 0 1 2 3
- Coherent FS PDP-11 2 3 0 1
Of course, this affects only the file system, not the data of files on it!
* Inode on disk: "short", 0 means non-existent, the root dir ino is:
- Minix FS 1
- Xenix FS, SystemV FS, Coherent FS 2
* Maximum number of hard links to a file:
- Minix FS 250
- Xenix FS ??
- SystemV FS ??
- Coherent FS >=10000
* Free inode management:
- Minix FS a bitmap
- Xenix FS, SystemV FS, Coherent FS
There is a cache of a certain number of free inodes in the super-block.
When it is exhausted, new free inodes are found using a linear search.
* Free block management:
- Minix FS a bitmap
- Xenix FS, SystemV FS, Coherent FS
Free blocks are organized in a "free list". Maybe a misleading term,
since it is not true that every free block contains a pointer to
the next free block. Rather, the free blocks are organized in chunks
of limited size, and every now and then a free block contains pointers
to the free blocks pertaining to the next chunk; the first of these
contains pointers and so on. The list terminates with a "block number"
0 on Xenix FS and SystemV FS, with a block zeroed out on Coherent FS.
* Super-block location:
- Minix FS block 1 = bytes 1024..2047
- Xenix FS block 1 = bytes 1024..2047
- SystemV FS bytes 512..1023
- Coherent FS block 1 = bytes 512..1023
* Super-block layout:
- Minix FS
unsigned short s_ninodes;
unsigned short s_nzones;
unsigned short s_imap_blocks;
unsigned short s_zmap_blocks;
unsigned short s_firstdatazone;
unsigned short s_log_zone_size;
unsigned long s_max_size;
unsigned short s_magic;
- Xenix FS, SystemV FS, Coherent FS
unsigned short s_firstdatazone;
unsigned long s_nzones;
unsigned short s_fzone_count;
unsigned long s_fzones[NICFREE];
unsigned short s_finode_count;
unsigned short s_finodes[NICINOD];
char s_flock;
char s_ilock;
char s_modified;
char s_rdonly;
unsigned long s_time;
short s_dinfo[4]; -- SystemV FS only
unsigned long s_free_zones;
unsigned short s_free_inodes;
short s_dinfo[4]; -- Xenix FS only
unsigned short s_interleave_m,s_interleave_n; -- Coherent FS only
char s_fname[6];
char s_fpack[6];
then they differ considerably:
Xenix FS
char s_clean;
char s_fill[371];
long s_magic;
long s_type;
SystemV FS
long s_fill[12 or 14];
long s_state;
long s_magic;
long s_type;
Coherent FS
unsigned long s_unique;
Note that Coherent FS has no magic.
* Inode layout:
- Minix FS
unsigned short i_mode;
unsigned short i_uid;
unsigned long i_size;
unsigned long i_time;
unsigned char i_gid;
unsigned char i_nlinks;
unsigned short i_zone[7+1+1];
- Xenix FS, SystemV FS, Coherent FS
unsigned short i_mode;
unsigned short i_nlink;
unsigned short i_uid;
unsigned short i_gid;
unsigned long i_size;
unsigned char i_zone[3*(10+1+1+1)];
unsigned long i_atime;
unsigned long i_mtime;
unsigned long i_ctime;
* Regular file data blocks are organized as
- Minix FS
7 direct blocks
1 indirect block (pointers to blocks)
1 double-indirect block (pointer to pointers to blocks)
- Xenix FS, SystemV FS, Coherent FS
10 direct blocks
1 indirect block (pointers to blocks)
1 double-indirect block (pointer to pointers to blocks)
1 triple-indirect block (pointer to pointers to pointers to blocks)
* Inode size, inodes per block
- Minix FS 32 32
- Xenix FS 64 16
- SystemV FS 64 16
- Coherent FS 64 8
* Directory entry on disk
- Minix FS
unsigned short inode;
char name[14/30];
- Xenix FS, SystemV FS, Coherent FS
unsigned short inode;
char name[14];
* Dir entry size, dir entries per block
- Minix FS 16/32 64/32
- Xenix FS 16 64
- SystemV FS 16 64
- Coherent FS 16 32
* How to implement symbolic links such that the host fsck doesn't scream:
- Minix FS normal
- Xenix FS kludge: as regular files with chmod 1000
- SystemV FS ??
- Coherent FS kludge: as regular files with chmod 1000
Notation: We often speak of a "block" but mean a zone (the allocation unit)
and not the disk driver's notion of "block".

View File

@ -1,307 +0,0 @@
Intro
=====
This file describes some issues involved when using the "ftape"
floppy tape device driver that comes with the Linux kernel.
ftape has a home page at
http://ftape.dot-heine.de/
which contains further information about ftape. Please cross check
this WWW address against the address given (if any) in the MAINTAINERS
file located in the top level directory of the Linux kernel source
tree.
NOTE: This is an unmaintained set of drivers, and it is not guaranteed to work.
If you are interested in taking over maintenance, contact Claus-Justus Heine
<ch@dot-heine.de>, the former maintainer.
Contents
========
A minus 1: Ftape documentation
A. Changes
1. Goal
2. I/O Block Size
3. Write Access when not at EOD (End Of Data) or BOT (Begin Of Tape)
4. Formatting
5. Interchanging cartridges with other operating systems
B. Debugging Output
1. Introduction
2. Tuning the debugging output
C. Boot and load time configuration
1. Setting boot time parameters
2. Module load time parameters
3. Ftape boot- and load time options
4. Example kernel parameter setting
5. Example module parameter setting
D. Support and contacts
*******************************************************************************
A minus 1. Ftape documentation
==============================
Unluckily, the ftape-HOWTO is out of date. This really needs to be
changed. Up to date documentation as well as recent development
versions of ftape and useful links to related topics can be found at
the ftape home page at
http://ftape.dot-heine.de/
*******************************************************************************
A. Changes
==========
1. Goal
~~~~
The goal of all that incompatibilities was to give ftape an interface
that resembles the interface provided by SCSI tape drives as close
as possible. Thus any Unix backup program that is known to work
with SCSI tape drives should also work.
The concept of a fixed block size for read/write transfers is
rather unrelated to this SCSI tape compatibility at the file system
interface level. It developed out of a feature of zftape, a
block wise user transparent on-the-fly compression. That compression
support will not be dropped in future releases for compatibility
reasons with previous releases of zftape.
2. I/O Block Size
~~~~~~~~~~~~~~
The block size defaults to 10k which is the default block size of
GNU tar.
The block size can be tuned either during kernel configuration or
at runtime with the MTIOCTOP ioctl using the MTSETBLK operation
(i.e. do "mt -f /dev/qft0" setblk #BLKSZ). A block size of 0
switches to variable block size mode i.e. "mt setblk 0" switches
off the block size restriction. However, this disables zftape's
built in on-the-fly compression which doesn't work with variable
block size mode.
The BLKSZ parameter must be given as a byte count and must be a
multiple of 32k or 0, i.e. use "mt setblk 32768" to switch to a
block size of 32k.
The typical symptom of a block size mismatch is an "invalid
argument" error message.
3. Write Access when not at EOD (End Of Data) or BOT (Begin Of Tape)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
zftape (the file system interface of ftape-3.x) denies write access
to the tape cartridge when it isn't positioned either at BOT or
EOD.
4. Formatting
~~~~~~~~~~
ftape DOES support formatting of floppy tape cartridges. You need the
`ftformat' program that is shipped with the modules version of ftape.
Please get the latest version of ftape from
ftp://sunsite.unc.edu/pub/Linux/kernel/tapes
or from the ftape home page at
http://ftape.dot-heine.de/
`ftformat' is contained in the `./contrib/' subdirectory of that
separate ftape package.
5. Interchanging cartridges with other operating systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The internal emulation of Unix tape device file marks has changed
completely. ftape now uses the volume table segment as specified
by the QIC-40/80/3010/3020/113 standards to emulate file marks. As
a consequence there is limited support to interchange cartridges
with other operating systems.
To be more precise: ftape will detect volumes written by other OS's
programs and other OS's programs will detect volumes written by
ftape.
However, it isn't possible to extract the data dumped to the tape
by some MSDOS program with ftape. This exceeds the scope of a
kernel device driver. If you need such functionality, then go ahead
and write a user space utility that is able to do that. ftape already
provides all kernel level support necessary to do that.
*******************************************************************************
B. Debugging Output
================
1. Introduction
~~~~~~~~~~~~
The ftape driver can be very noisy in that is can print lots of
debugging messages to the kernel log files and the system console.
While this is useful for debugging it might be annoying during
normal use and enlarges the size of the driver by several kilobytes.
To reduce the size of the driver you can trim the maximal amount of
debugging information available during kernel configuration. Please
refer to the kernel configuration script and its on-line help
functionality.
The amount of debugging output maps to the "tracing" boot time
option and the "ft_tracing" modules option as follows:
0 bugs
1 + errors (with call-stack dump)
2 + warnings
3 + information
4 + more information
5 + program flow
6 + fdc/dma info
7 + data flow
8 + everything else
2. Tuning the debugging output
~~~~~~~~~~~~~~~~~~~~~~~~~~~
To reduce the amount of debugging output printed to the system
console you can
i) trim the debugging output at run-time with
mt -f /dev/nqft0 setdensity #DBGLVL
where "#DBGLVL" is a number between 0 and 9
ii) trim the debugging output at module load time with
modprobe ftape ft_tracing=#DBGLVL
Of course, this applies only if you have configured ftape to be
compiled as a module.
iii) trim the debugging output during system boot time. Add the
following to the kernel command line:
ftape=#DBGLVL,tracing
Please refer also to the next section if you don't know how to
set boot time parameters.
*******************************************************************************
C. Boot and load time configuration
================================
1. Setting boot time parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Assuming that you use lilo, the LI)nux LO)ader, boot time kernel
parameters can be set by adding a line
append some_kernel_boot_time_parameter
to `/etc/lilo.conf' or at real boot time by typing in the options
at the prompt provided by LILO. I can't give you advice on how to
specify those parameters with other loaders as I don't use them.
For ftape, each "some_kernel_boot_time_parameter" looks like
"ftape=value,option". As an example, the debugging output can be
increased with
ftape=4,tracing
NOTE: the value precedes the option name.
2. Module load time parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Module parameters can be specified either directly when invoking
the program 'modprobe' at the shell prompt:
modprobe ftape ft_tracing=4
or by editing the file `/etc/modprobe.conf' in which case they take
effect each time when the module is loaded with `modprobe' (please
refer to the respective manual pages). Thus, you should add a line
options ftape ft_tracing=4
to `/etc/modprobe.conf` if you intend to increase the debugging
output of the driver.
3. Ftape boot- and load time options
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i. Controlling the amount of debugging output
DBGLVL has to be replaced by a number between 0 and 8.
module | kernel command line
-----------------------|----------------------
ft_tracing=DBGLVL | ftape=DBGLVL,tracing
ii. Hardware setup
BASE is the base address of your floppy disk controller,
IRQ and DMA give its interrupt and DMA channel, respectively.
BOOL is an integer, "0" means "no"; any other value means
"yes". You don't need to specify anything if connecting your tape
drive to the standard floppy disk controller. All of these
values have reasonable defaults. The defaults can be modified
during kernel configuration, i.e. while running "make config",
"make menuconfig" or "make xconfig" in the top level directory
of the Linux kernel source tree. Please refer also to the on
line documentation provided during that kernel configuration
process.
ft_probe_fc10 is set to a non-zero value if you wish for ftape to
probe for a Colorado FC-10 or FC-20 controller.
ft_mach2 is set to a non-zero value if you wish for ftape to probe
for a Mountain MACH-2 controller.
module | kernel command line
-----------------------|----------------------
ft_fdc_base=BASE | ftape=BASE,ioport
ft_fdc_irq=IRQ | ftape=IRQ,irq
ft_fdc_dma=DMA | ftape=DMA,dma
ft_probe_fc10=BOOL | ftape=BOOL,fc10
ft_mach2=BOOL | ftape=BOOL,mach2
ft_fdc_threshold=THR | ftape=THR,threshold
ft_fdc_rate_limit=RATE | ftape=RATE,datarate
4. Example kernel parameter setting
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To configure ftape to probe for a Colorado FC-10/FC-20 controller
and to increase the amount of debugging output a little bit, add
the following line to `/etc/lilo.conf':
append ftape=1,fc10 ftape=4,tracing
5. Example module parameter setting
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To do the same, but with ftape compiled as a loadable kernel
module, add the following line to `/etc/modprobe.conf':
options ftape ft_probe_fc10=1 ft_tracing=4
*******************************************************************************
D. Support and contacts
====================
Ftape is distributed under the GNU General Public License. There is
absolutely no warranty for this software. However, you can reach
the current maintainer of the ftape package under the email address
given in the MAINTAINERS file which is located in the top level
directory of the Linux kernel source tree. There you'll find also
the relevant mailing list to use as a discussion forum and the web
page to query for the most recent documentation, related work and
development versions of ftape.
Changelog:
==========
~1996: Original Document
10-24-2004: General cleanup and updating, noting additional module options.
James Nelson <james4765@gmail.com>

View File

@ -59,7 +59,7 @@ the following things on the "Kernel Hacking" tab:
Then build as usual, download to the board and execute. Note that if
"Immediate activation" was selected, then the kernel will wait for GDB to
attach. If not, then the kernel will boot immediately and GDB will have to
interupt it or wait for an exception to occur if before doing anything with
interrupt it or wait for an exception to occur before doing anything with
the kernel.

View File

@ -156,7 +156,7 @@ with the main kernel in this regard. Hence the debug mode code (gdbstub) is
almost completely self-contained. The only external code used is the
sprintf family of functions.
Futhermore, break.S is so complicated because single-step mode does not
Furthermore, break.S is so complicated because single-step mode does not
switch off on entry to an exception. That means unless manually disabled,
single-stepping will blithely go on stepping into things like interrupts.
See gdbstub.txt for more information.

View File

@ -6,6 +6,10 @@ Supported chips:
Prefix: 'f71805f'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Provided by Fintek on request
* Fintek F71872F/FG
Prefix: 'f71872f'
Addresses scanned: none, address read from Super I/O config space
Datasheet: Provided by Fintek on request
Author: Jean Delvare <khali@linux-fr.org>
@ -13,8 +17,8 @@ Thanks to Denis Kieft from Barracuda Networks for the donation of a
test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
for providing initial documentation.
Thanks to Kris Chen from Fintek for answering technical questions and
providing additional documentation.
Thanks to Kris Chen and Aaron Huang from Fintek for answering technical
questions and providing additional documentation.
Thanks to Chris Lin from Jetway for providing wiring schematics and
answering technical questions.
@ -28,8 +32,11 @@ capabilities. It can monitor up to 9 voltages (counting its own power
source), 3 fans and 3 temperature sensors.
This chip also has fan controlling features, using either DC or PWM, in
three different modes (one manual, two automatic). The driver doesn't
support these features yet.
three different modes (one manual, two automatic).
The Fintek F71872F/FG Super I/O chip is almost the same, with two
additional internal voltages monitored (VSB and battery). It also features
6 VID inputs. The VID inputs are not yet supported by this driver.
The driver assumes that no more than one chip is present, which seems
reasonable.
@ -42,7 +49,8 @@ Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported
range is thus from 0 to 2.040 V. Voltage values outside of this range
need external resistors. An exception is in0, which is used to monitor
the chip's own power source (+3.3V), and is divided internally by a
factor 2.
factor 2. For the F71872F/FG, in9 (VSB) and in10 (battery) are also
divided internally by a factor 2.
The two LSB of the voltage limit registers are not used (always 0), so
you can only set the limits in steps of 32 mV (before scaling).
@ -61,9 +69,12 @@ in5 VIN5 +12V 200K 20K 11.00 1.05 V
in6 VIN6 VCC1.5V 10K - 1.00 1.50 V
in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1)
in8 VIN8 VSB5V 200K 47K 1.00 0.95 V
in10 VSB VSB3.3V int. int. 2.00 1.65 V (3)
in9 VBAT VBATTERY int. int. 2.00 1.50 V (3)
(1) Depends on your hardware setup.
(2) Obviously not correct, swapping R1 and R2 would make more sense.
(3) F71872F/FG only.
These values can be used as hints at best, as motherboard manufacturers
are free to use a completely different setup. As a matter of fact, the
@ -103,3 +114,38 @@ sensor. Each channel can be used for connecting either a thermal diode
or a thermistor. The driver reports the currently selected mode, but
doesn't allow changing it. In theory, the BIOS should have configured
everything properly.
Fan Control
-----------
Both PWM (pulse-width modulation) and DC fan speed control methods are
supported. The right one to use depends on external circuitry on the
motherboard, so the driver assumes that the BIOS set the method
properly. The driver will report the method, but won't let you change
it.
When the PWM method is used, you can select the operating frequency,
from 187.5 kHz (default) to 31 Hz. The best frequency depends on the
fan model. As a rule of thumb, lower frequencies seem to give better
control, but may generate annoying high-pitch noise. Fintek recommends
not going below 1 kHz, as the fan tachometers get confused by lower
frequencies as well.
When the DC method is used, Fintek recommends not going below 5 V, which
corresponds to a pwm value of 106 for the driver. The driver doesn't
enforce this limit though.
Three different fan control modes are supported:
* Manual mode
You ask for a specific PWM duty cycle or DC voltage.
* Fan speed mode
You ask for a specific fan speed. This mode assumes that pwm1
corresponds to fan1, pwm2 to fan2 and pwm3 to fan3.
* Temperature mode
You define 3 temperature/fan speed trip points, and the fan speed is
adjusted depending on the measured temperature, using interpolation.
This mode is not yet supported by the driver.

View File

@ -9,8 +9,7 @@ Supported chips:
http://www.ite.com.tw/
* IT8712F
Prefix: 'it8712'
Addresses scanned: I2C 0x2d
from Super I/O config space (8 I/O ports)
Addresses scanned: from Super I/O config space (8 I/O ports)
Datasheet: Publicly available at the ITE website
http://www.ite.com.tw/
* IT8716F
@ -53,6 +52,18 @@ Module Parameters
misconfigured by BIOS - PWM values would be inverted. This option tries
to fix this. Please contact your BIOS manufacturer and ask him for fix.
Hardware Interfaces
-------------------
All the chips suported by this driver are LPC Super-I/O chips, accessed
through the LPC bus (ISA-like I/O ports). The IT8712F additionally has an
SMBus interface to the hardware monitoring functions. This driver no
longer supports this interface though, as it is slower and less reliable
than the ISA access, and was only available on a small number of
motherboard models.
Description
-----------

View File

@ -8,7 +8,7 @@ Supported chips:
Datasheet: http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
Author: Rudolf Marek
Contact: Rudolf Marek <r.marek@sh.cvut.cz>
Contact: Rudolf Marek <r.marek@assembler.cz>
Description
-----------

View File

@ -0,0 +1,38 @@
Kernel driver pc87427
=====================
Supported chips:
* National Semiconductor PC87427
Prefix: 'pc87427'
Addresses scanned: none, address read from Super I/O config space
Datasheet: http://www.winbond.com.tw/E-WINBONDHTM/partner/apc_007.html
Author: Jean Delvare <khali@linux-fr.org>
Thanks to Amir Habibi at Candelis for setting up a test system, and to
Michael Kress for testing several iterations of this driver.
Description
-----------
The National Semiconductor Super I/O chip includes complete hardware
monitoring capabilities. It can monitor up to 18 voltages, 8 fans and
6 temperature sensors. Only the fans are supported at the moment.
This chip also has fan controlling features, which are not yet supported
by this driver either.
The driver assumes that no more than one chip is present, which seems
reasonable.
Fan Monitoring
--------------
Fan rotation speeds are reported as 14-bit values from a gated clock
signal. Speeds down to 83 RPM can be measured.
An alarm is triggered if the rotation speed drops below a programmable
limit. Another alarm is triggered if the speed is too low to to be measured
(including stalled or missing fan).

View File

@ -208,12 +208,14 @@ temp[1-*]_auto_point[1-*]_temp_hyst
****************
temp[1-*]_type Sensor type selection.
Integers 1 to 4 or thermistor Beta value (typically 3435)
Integers 1 to 6 or thermistor Beta value (typically 3435)
RW
1: PII/Celeron Diode
2: 3904 transistor
3: thermal diode
4: thermistor (default/unknown Beta)
5: AMD AMDSI
6: Intel PECI
Not all types are supported by all chips
temp[1-*]_max Temperature max value.

View File

@ -10,7 +10,7 @@ Supported chips:
Authors:
Jean Delvare <khali@linux-fr.org>
Yuan Mu (Winbond)
Rudolf Marek <r.marek@sh.cvut.cz>
Rudolf Marek <r.marek@assembler.cz>
Description
-----------

View File

@ -18,7 +18,7 @@ Credits:
and Mark Studebaker <mdsxyz123@yahoo.com>
w83792d.c:
Chunhao Huang <DZShen@Winbond.com.tw>,
Rudolf Marek <r.marek@sh.cvut.cz>
Rudolf Marek <r.marek@assembler.cz>
Additional contributors:
Sven Anders <anders@anduras.de>

110
Documentation/hwmon/w83793 Normal file
View File

@ -0,0 +1,110 @@
Kernel driver w83793
====================
Supported chips:
* Winbond W83793G/W83793R
Prefix: 'w83793'
Addresses scanned: I2C 0x2c - 0x2f
Datasheet: Still not published
Authors:
Yuan Mu (Winbond Electronics)
Rudolf Marek <r.marek@assembler.cz>
Module parameters
-----------------
* reset int
(default 0)
This parameter is not recommended, it will lose motherboard specific
settings. Use 'reset=1' to reset the chip when loading this module.
* force_subclients=bus,caddr,saddr1,saddr2
This is used to force the i2c addresses for subclients of
a certain chip. Typical usage is `force_subclients=0,0x2f,0x4a,0x4b'
to force the subclients of chip 0x2f on bus 0 to i2c addresses
0x4a and 0x4b.
Description
-----------
This driver implements support for Winbond W83793G/W83793R chips.
* Exported features
This driver exports 10 voltage sensors, up to 12 fan tachometer inputs,
6 remote temperatures, up to 8 sets of PWM fan controls, SmartFan
(automatic fan speed control) on all temperature/PWM combinations, 2
sets of 6-pin CPU VID input.
* Sensor resolutions
If your motherboard maker used the reference design, the resolution of
voltage0-2 is 2mV, resolution of voltage3/4/5 is 16mV, 8mV for voltage6,
24mV for voltage7/8. Temp1-4 have a 0.25 degree Celsius resolution,
temp5-6 have a 1 degree Celsiis resolution.
* Temperature sensor types
Temp1-4 have 3 possible types. It can be read from (and written to)
temp[1-4]_type.
- If the value of 0, the related temperature channel stops
monitoring.
- If the value is 3, it starts monitoring using a remote termal diode
(default).
- If the value is 5, it starts monitoring using the temperature sensor
in AMD CPU and get result by AMDSI.
- If the value is 6, it starts monitoring using the temperature sensor
in Intel CPU and get result by PECI.
Temp5-6 can be connected to external thermistors (value of
temp[5-6]_type is 4). They can also be disabled (value is 0).
* Alarm mechanism
For voltage sensors, an alarm triggers if the measured value is below
the low voltage limit or over the high voltage limit.
For temperature sensors, an alarm triggers if the measured value goes
above the high temperature limit, and wears off only after the measured
value drops below the hysteresis value.
For fan sensors, an alarm triggers if the measured value is below the
low speed limit.
* SmartFan/PWM control
If you want to set a pwm fan to manual mode, you just need to make sure it
is not controlled by any temp channel, for example, you want to set fan1
to manual mode, you need to check the value of temp[1-6]_fan_map, make
sure bit 0 is cleared in the 6 values. And then set the pwm1 value to
control the fan.
Each temperature channel can control all the 8 PWM outputs (by setting the
corresponding bit in tempX_fan_map), you can set the temperature channel
mode using temp[1-6]_pwm_enable, 2 is Thermal Cruise mode and 3
is the SmartFanII mode. Temperature channels will try to speed up or
slow down all controlled fans, this means one fan can receive different
PWM value requests from different temperature channels, but the chip
will always pick the safest (max) PWM value for each fan.
In Thermal Cruise mode, the chip attempts to keep the temperature at a
predefined value, within a tolerance margin. So if tempX_input >
thermal_cruiseX + toleranceX, the chip will increase the PWM value,
if tempX_input < thermal_cruiseX - toleranceX, the chip will decrease
the PWM value. If the temperature is within the tolerance range, the PWM
value is left unchanged.
SmartFanII works differently, you have to define up to 7 PWM, temperature
trip points, defining a PWM/temperature curve which the chip will follow.
While not fundamentally different from the Thermal Cruise mode, the
implementation is quite different, giving you a finer-grained control.
* Chassis
If the case open alarm triggers, it will stay in this state unless cleared
by any write to the sysfs file "chassis".
* VID and VRM
The VRM version is detected automatically, don't modify the it unless you
*do* know the cpu VRM version and it's not properly detected.
Notes
-----
Only Fan1-5 and PWM1-3 are guaranteed to always exist, other fan inputs and
PWM outputs may or may not exist depending on the chip pin configuration.

View File

@ -5,7 +5,7 @@ Supported adapters:
Datasheets:
AMD datasheet not yet available, but almost everything can be found
in publically available ACPI 2.0 specification, which the adapter
in the publicly available ACPI 2.0 specification, which the adapter
follows.
Author: Vojtech Pavlik <vojtech@suse.cz>

View File

@ -9,7 +9,10 @@ Supported adapters:
* Intel 82801EB/ER (ICH5) (HW PEC supported, 32 byte buffer not supported)
* Intel 6300ESB
* Intel 82801FB/FR/FW/FRW (ICH6)
* Intel ICH7
* Intel 82801G (ICH7)
* Intel 631xESB/632xESB (ESB2)
* Intel 82801H (ICH8)
* Intel ICH9
Datasheets: Publicly available at the Intel website
Authors:

View File

@ -10,11 +10,11 @@ Supported adapters:
* nForce4 MCP51 10de:0264
* nForce4 MCP55 10de:0368
Datasheet: not publically available, but seems to be similar to the
Datasheet: not publicly available, but seems to be similar to the
AMD-8111 SMBus 2.0 adapter.
Authors:
Hans-Frieder Vogt <hfvogt@arcor.de>,
Hans-Frieder Vogt <hfvogt@gmx.net>,
Thomas Leibold <thomas@plx.com>,
Patrick Dreker <patrick@dreker.de>
@ -38,7 +38,7 @@ Notes
-----
The SMBus adapter in the nForce2 chipset seems to be very similar to the
SMBus 2.0 adapter in the AMD-8111 southbridge. However, I could only get
SMBus 2.0 adapter in the AMD-8111 south bridge. However, I could only get
the driver to work with direct I/O access, which is different to the EC
interface of the AMD-8111. Tested on Asus A7N8X. The ACPI DSDT table of the
Asus A7N8X lists two SMBuses, both of which are supported by this driver.

View File

@ -2,7 +2,7 @@
----------------------------
H. Peter Anvin <hpa@zytor.com>
Last update 2005-09-02
Last update 2006-11-17
On the i386 platform, the Linux kernel uses a rather complicated boot
convention. This has evolved partially due to historical aspects, as
@ -35,6 +35,8 @@ Protocol 2.03: (Kernel 2.4.18-pre1) Explicitly makes the highest possible
initrd address available to the bootloader.
Protocol 2.04: (Kernel 2.6.14) Extend the syssize field to four bytes.
Protocol 2.05: (Kernel 2.6.20) Make protected mode kernel relocatable.
Introduce relocatable_kernel and kernel_alignment fields.
**** MEMORY LAYOUT
@ -129,6 +131,8 @@ Offset Proto Name Meaning
0226/2 N/A pad1 Unused
0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line
022C/4 2.03+ initrd_addr_max Highest legal initrd address
0230/4 2.05+ kernel_alignment Physical addr alignment required for kernel
0234/1 2.05+ relocatable_kernel Whether kernel is relocatable or not
(1) For backwards compatibility, if the setup_sects field contains 0, the
real value is 4.

View File

@ -398,26 +398,68 @@ Temperature sensors -- /proc/acpi/ibm/thermal
Most ThinkPads include six or more separate temperature sensors but
only expose the CPU temperature through the standard ACPI methods.
This feature shows readings from up to eight different sensors. Some
readings may not be valid, e.g. may show large negative values. For
example, on the X40, a typical output may be:
temperatures: 42 42 45 41 36 -128 33 -128
Thomas Gruber took his R51 apart and traced all six active sensors in
his laptop (the location of sensors may vary on other models):
1: CPU
2: Mini PCI Module
3: HDD
4: GPU
5: Battery
6: N/A
7: Battery
8: N/A
This feature shows readings from up to eight different sensors on older
ThinkPads, and it has experimental support for up to sixteen different
sensors on newer ThinkPads. Readings from sensors that are not available
return -128.
No commands can be written to this file.
EXPERIMENTAL: The 16-sensors feature is marked EXPERIMENTAL because the
implementation directly accesses hardware registers and may not work as
expected. USE WITH CAUTION! To use this feature, you need to supply the
experimental=1 parameter when loading the module. When EXPERIMENTAL
mode is enabled, reading the first 8 sensors on newer ThinkPads will
also use an new experimental thermal sensor access mode.
For example, on the X40, a typical output may be:
temperatures: 42 42 45 41 36 -128 33 -128
EXPERIMENTAL: On the T43/p, a typical output may be:
temperatures: 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
The mapping of thermal sensors to physical locations varies depending on
system-board model (and thus, on ThinkPad model).
http://thinkwiki.org/wiki/Thermal_Sensors is a public wiki page that
tries to track down these locations for various models.
Most (newer?) models seem to follow this pattern:
1: CPU
2: (depends on model)
3: (depends on model)
4: GPU
5: Main battery: main sensor
6: Bay battery: main sensor
7: Main battery: secondary sensor
8: Bay battery: secondary sensor
9-15: (depends on model)
For the R51 (source: Thomas Gruber):
2: Mini-PCI
3: Internal HDD
For the T43, T43/p (source: Shmidoax/Thinkwiki.org)
http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_T43.2C_T43p
2: System board, left side (near PCMCIA slot), reported as HDAPS temp
3: PCMCIA slot
9: MCH (northbridge) to DRAM Bus
10: ICH (southbridge), under Mini-PCI card, under touchpad
11: Power regulator, underside of system board, below F2 key
The A31 has a very atypical layout for the thermal sensors
(source: Milos Popovic, http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_A31)
1: CPU
2: Main Battery: main sensor
3: Power Converter
4: Bay Battery: main sensor
5: MCH (northbridge)
6: PCMCIA/ambient
7: Main Battery: secondary sensor
8: Bay Battery: secondary sensor
EXPERIMENTAL: Embedded controller register dump -- /proc/acpi/ibm/ecdump
------------------------------------------------------------------------
@ -529,27 +571,57 @@ directly accesses hardware registers and may not work as expected. USE
WITH CAUTION! To use this feature, you need to supply the
experimental=1 parameter when loading the module.
This feature attempts to show the current fan speed. The speed is read
directly from the hardware registers of the embedded controller. This
is known to work on later R, T and X series ThinkPads but may show a
bogus value on other models.
This feature attempts to show the current fan speed, control mode and
other fan data that might be available. The speed is read directly
from the hardware registers of the embedded controller. This is known
to work on later R, T and X series ThinkPads but may show a bogus
value on other models.
Most ThinkPad fans work in "levels". Level 0 stops the fan. The higher
the level, the higher the fan speed, although adjacent levels often map
to the same fan speed. 7 is the highest level, where the fan reaches
the maximum recommended speed. Level "auto" means the EC changes the
fan level according to some internal algorithm, usually based on
readings from the thermal sensors. Level "disengaged" means the EC
disables the speed-locked closed-loop fan control, and drives the fan as
fast as it can go, which might exceed hardware limits, so use this level
with caution.
The fan usually ramps up or down slowly from one speed to another,
and it is normal for the EC to take several seconds to react to fan
commands.
The fan may be enabled or disabled with the following commands:
echo enable >/proc/acpi/ibm/fan
echo disable >/proc/acpi/ibm/fan
WARNING WARNING WARNING: do not leave the fan disabled unless you are
monitoring the temperature sensor readings and you are ready to enable
it if necessary to avoid overheating.
Placing a fan on level 0 is the same as disabling it. Enabling a fan
will try to place it in a safe level if it is too slow or disabled.
The fan only runs if it's enabled *and* the various temperature
sensors which control it read high enough. On the X40, this seems to
depend on the CPU and HDD temperatures. Specifically, the fan is
turned on when either the CPU temperature climbs to 56 degrees or the
HDD temperature climbs to 46 degrees. The fan is turned off when the
CPU temperature drops to 49 degrees and the HDD temperature drops to
41 degrees. These thresholds cannot currently be controlled.
WARNING WARNING WARNING: do not leave the fan disabled unless you are
monitoring all of the temperature sensor readings and you are ready to
enable it if necessary to avoid overheating.
An enabled fan in level "auto" may stop spinning if the EC decides the
ThinkPad is cool enough and doesn't need the extra airflow. This is
normal, and the EC will spin the fan up if the varios thermal readings
rise too much.
On the X40, this seems to depend on the CPU and HDD temperatures.
Specifically, the fan is turned on when either the CPU temperature
climbs to 56 degrees or the HDD temperature climbs to 46 degrees. The
fan is turned off when the CPU temperature drops to 49 degrees and the
HDD temperature drops to 41 degrees. These thresholds cannot
currently be controlled.
The fan level can be controlled with the command:
echo 'level <level>' > /proc/acpi/ibm/thermal
Where <level> is an integer from 0 to 7, or one of the words "auto"
or "disengaged" (without the quotes). Not all ThinkPads support the
"auto" and "disengaged" levels.
On the X31 and X40 (and ONLY on those models), the fan speed can be
controlled to a certain degree. Once the fan is running, it can be
@ -562,12 +634,9 @@ about 3700 to about 7350. Values outside this range either do not have
any effect or the fan speed eventually settles somewhere in that
range. The fan cannot be stopped or started with this command.
On the 570, temperature readings are not available through this
feature and the fan control works a little differently. The fan speed
is reported in levels from 0 (off) to 7 (max) and can be controlled
with the following command:
echo 'level <level>' > /proc/acpi/ibm/thermal
The ThinkPad's ACPI DSDT code will reprogram the fan on its own when
certain conditions are met. It will override any fan programming done
through ibm-acpi.
EXPERIMENTAL: WAN -- /proc/acpi/ibm/wan
---------------------------------------
@ -601,6 +670,26 @@ example:
modprobe ibm_acpi hotkey=enable,0xffff video=auto_disable
The ibm-acpi kernel driver can be programmed to revert the fan level
to a safe setting if userspace does not issue one of the fan commands:
"enable", "disable", "level" or "watchdog" within a configurable
ammount of time. To do this, use the "watchdog" command.
echo 'watchdog <interval>' > /proc/acpi/ibm/fan
Interval is the ammount of time in seconds to wait for one of the
above mentioned fan commands before reseting the fan level to a safe
one. If set to zero, the watchdog is disabled (default). When the
watchdog timer runs out, it does the exact equivalent of the "enable"
fan command.
Note that the watchdog timer stops after it enables the fan. It will
be rearmed again automatically (using the same interval) when one of
the above mentioned fan commands is received. The fan watchdog is,
therefore, not suitable to protect against fan mode changes made
through means other than the "enable", "disable", and "level" fan
commands.
Example Configuration
---------------------

View File

@ -390,5 +390,5 @@ mlord@pobox.com
Wed Apr 17 22:52:44 CEST 2002 edited by Marcin Dalecki, the current
maintainer.
Wed Aug 20 22:31:29 CEST 2003 updated ide boot uptions to current ide.c
Wed Aug 20 22:31:29 CEST 2003 updated ide boot options to current ide.c
comments at 2.6.0-test4 time. Maciej Soltysiak <solt@dns.toxicfilms.tv>

View File

@ -91,8 +91,8 @@ JOY1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0
| 1 | M0HQ | JOY0DAT Horizontal Clock (quadrature) |
| 2 | M0V | JOY0DAT Vertical Clock |
| 3 | M0VQ | JOY0DAT Vertical Clock (quadrature) |
| 4 | M1V | JOY1DAT Horizontall Clock |
| 5 | M1VQ | JOY1DAT Horizontall Clock (quadrature) |
| 4 | M1V | JOY1DAT Horizontal Clock |
| 5 | M1VQ | JOY1DAT Horizontal Clock (quadrature) |
| 6 | M1V | JOY1DAT Vertical Clock |
| 7 | M1VQ | JOY1DAT Vertical Clock (quadrature) |
+--------+----------+-----------------------------------------+

View File

@ -103,7 +103,7 @@ LEFT=0x74 & RIGHT=0x75).
5.1 Joystick Event Reporting
In this mode, the ikbd generates a record whever the joystick position is
In this mode, the ikbd generates a record whenever the joystick position is
changed (i.e. for each opening or closing of a joystick switch or trigger).
The joystick event record is two bytes of the form:
@ -277,8 +277,8 @@ default to 1 at RESET (or power-up).
9.7 SET MOUSE SCALE
0x0C
X ; horizontal mouse ticks per internel X
Y ; vertical mouse ticks per internel Y
X ; horizontal mouse ticks per internal X
Y ; vertical mouse ticks per internal Y
This command sets the scale factor for the ABSOLUTE MOUSE POSITIONING mode.
In this mode, the specified number of mouse phase changes ('clicks') must
@ -323,7 +323,7 @@ mouse position.
0x0F
This command makes the origin of the Y axis to be at the bottom of the
logical coordinate system internel to the ikbd for all relative or absolute
logical coordinate system internal to the ikbd for all relative or absolute
mouse motion. This causes mouse motion toward the user to be negative in sign
and away from the user to be positive.
@ -597,8 +597,8 @@ mode or FIRE BUTTON MONITORING mode.
10. SCAN CODES
The key scan codes return by the ikbd are chosen to simplify the
implementaion of GSX.
The key scan codes returned by the ikbd are chosen to simplify the
implementation of GSX.
GSX Standard Keyboard Mapping.

View File

@ -134,7 +134,7 @@ Reading /sys/../lineX will return the format string with its current value:
888888888888
Linux Rocks!
Writing to /sys/../lineX will set the coresponding LCD line.
Writing to /sys/../lineX will set the corresponding LCD line.
- Excess characters are ignored.
- If less characters are written than allowed, the remaining digits are
unchanged.

View File

@ -191,3 +191,5 @@ Code Seq# Include File Comments
<mailto:aherrman@de.ibm.com>
0xF3 00-3F video/sisfb.h sisfb (in development)
<mailto:thomas@winischhofer.net>
0xF4 00-1F video/mbxfb.h mbxfb
<mailto:raph@8d.com>

View File

@ -735,7 +735,7 @@ CDROM_DISC_STATUS Get disc type, etc.
Ok, this is where problems start. The current interface for
the CDROM_DISC_STATUS ioctl is flawed. It makes the false
assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
Unfortunatly, while this is often the case, it is also
Unfortunately, while this is often the case, it is also
very common for CDs to have some tracks with data, and some
tracks with audio. Just because I feel like it, I declare
the following to be the best way to cope. If the CD has

View File

@ -0,0 +1,24 @@
To decode a hex IOCTL code:
Most architecures use this generic format, but check
include/ARCH/ioctl.h for specifics, e.g. powerpc
uses 3 bits to encode read/write and 13 bits for size.
bits meaning
31-30 00 - no parameters: uses _IO macro
10 - read: _IOR
01 - write: _IOW
11 - read/write: _IOWR
29-16 size of arguments
15-8 ascii character supposedly
unique to each driver
7-0 function #
So for example 0x82187201 is a read with arg length of 0x218,
character 'r' function 1. Grepping the source reveals this is:
#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])

View File

@ -29,7 +29,7 @@ them. A single configuration option is defined like this:
config MODVERSIONS
bool "Set version information on all module symbols"
depends MODULES
depends on MODULES
help
Usually, modules have to be recompiled whenever you switch to a new
kernel. ...
@ -163,7 +163,7 @@ The position of a menu entry in the tree is determined in two ways. First
it can be specified explicitly:
menu "Network device support"
depends NET
depends on NET
config NETDEVICES
...
@ -188,10 +188,10 @@ config MODULES
config MODVERSIONS
bool "Set version information on all module symbols"
depends MODULES
depends on MODULES
comment "module support disabled"
depends !MODULES
depends on !MODULES
MODVERSIONS directly depends on MODULES, this means it's only visible if
MODULES is different from 'n'. The comment on the other hand is always

View File

@ -227,9 +227,9 @@ more details, with real examples.
be included in a library, lib.a.
All objects listed with lib-y are combined in a single
library for that directory.
Objects that are listed in obj-y and additionaly listed in
lib-y will not be included in the library, since they will anyway
be accessible.
Objects that are listed in obj-y and additionally listed in
lib-y will not be included in the library, since they will
be accessible anyway.
For consistency, objects listed in lib-m will be included in lib.a.
Note that the same kbuild makefile may list files to be built-in
@ -535,7 +535,7 @@ Both possibilities are described in the following.
Host programs can be made up based on composite objects.
The syntax used to define composite objects for host programs is
similar to the syntax used for kernel objects.
$(<executeable>-objs) lists all objects used to link the final
$(<executable>-objs) lists all objects used to link the final
executable.
Example:
@ -1022,7 +1022,7 @@ When kbuild executes, the following steps are followed (roughly):
In this example, there are two possible targets, requiring different
options to the linker. The linker options are specified using the
LDFLAGS_$@ syntax - one for each potential target.
$(targets) are assinged all potential targets, by which kbuild knows
$(targets) are assigned all potential targets, by which kbuild knows
the targets and will:
1) check for commandline changes
2) delete target during make clean

View File

@ -17,7 +17,7 @@ You can use common Linux commands, such as cp and scp, to copy the
memory image to a dump file on the local disk, or across the network to
a remote system.
Kdump and kexec are currently supported on the x86, x86_64, and ppc64
Kdump and kexec are currently supported on the x86, x86_64, ppc64 and IA64
architectures.
When the system kernel boots, it reserves a small section of memory for
@ -54,59 +54,64 @@ memory," in two ways:
Setup and Installation
======================
Install kexec-tools and the Kdump patch
---------------------------------------
Install kexec-tools
-------------------
1) Login as the root user.
2) Download the kexec-tools user-space package from the following URL:
http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing-20061214.tar.gz
Note: Latest kexec-tools-testing git tree is available at
git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools-testing.git
or
http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools-testing.git;a=summary
3) Unpack the tarball with the tar command, as follows:
tar xvpzf kexec-tools-1.101.tar.gz
tar xvpzf kexec-tools-testing-20061214.tar.gz
4) Download the latest consolidated Kdump patch from the following URL:
4) Change to the kexec-tools-1.101 directory, as follows:
http://lse.sourceforge.net/kdump/
cd kexec-tools-testing-20061214
(This location is being used until all the user-space Kdump patches
are integrated with the kexec-tools package.)
5) Change to the kexec-tools-1.101 directory, as follows:
cd kexec-tools-1.101
6) Apply the consolidated patch to the kexec-tools-1.101 source tree
with the patch command, as follows. (Modify the path to the downloaded
patch as necessary.)
patch -p1 < /path-to-kdump-patch/kexec-tools-1.101-kdump.patch
7) Configure the package, as follows:
5) Configure the package, as follows:
./configure
8) Compile the package, as follows:
6) Compile the package, as follows:
make
9) Install the package, as follows:
7) Install the package, as follows:
make install
Download and build the system and dump-capture kernels
------------------------------------------------------
Build the system and dump-capture kernels
-----------------------------------------
There are two possible methods of using Kdump.
Download the mainline (vanilla) kernel source code (2.6.13-rc1 or newer)
from http://www.kernel.org. Two kernels must be built: a system kernel
and a dump-capture kernel. Use the following steps to configure these
kernels with the necessary kexec and Kdump features:
1) Build a separate custom dump-capture kernel for capturing the
kernel core dump.
System kernel
-------------
2) Or use the system kernel binary itself as dump-capture kernel and there is
no need to build a separate dump-capture kernel. This is possible
only with the architecutres which support a relocatable kernel. As
of today i386 and ia64 architectures support relocatable kernel.
Building a relocatable kernel is advantageous from the point of view that
one does not have to build a second kernel for capturing the dump. But
at the same time one might want to build a custom dump capture kernel
suitable to his needs.
Following are the configuration setting required for system and
dump-capture kernels for enabling kdump support.
System kernel config options
----------------------------
1) Enable "kexec system call" in "Processor type and features."
@ -132,89 +137,161 @@ System kernel
analysis tools require a vmlinux with debug symbols in order to read
and analyze a dump file.
4) Make and install the kernel and its modules. Update the boot loader
(such as grub, yaboot, or lilo) configuration files as necessary.
Dump-capture kernel config options (Arch Independent)
-----------------------------------------------------
5) Boot the system kernel with the boot parameter "crashkernel=Y@X",
where Y specifies how much memory to reserve for the dump-capture kernel
and X specifies the beginning of this reserved memory. For example,
"crashkernel=64M@16M" tells the system kernel to reserve 64 MB of memory
starting at physical address 0x01000000 for the dump-capture kernel.
1) Enable "kernel crash dumps" support under "Processor type and
features":
On x86 and x86_64, use "crashkernel=64M@16M".
CONFIG_CRASH_DUMP=y
On ppc64, use "crashkernel=128M@32M".
2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems".
CONFIG_PROC_VMCORE=y
(CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)
The dump-capture kernel
-----------------------
1) Under "General setup," append "-kdump" to the current string in
"Local version."
2) On x86, enable high memory support under "Processor type and
Dump-capture kernel config options (Arch Dependent, i386)
--------------------------------------------------------
1) On x86, enable high memory support under "Processor type and
features":
CONFIG_HIGHMEM64G=y
or
CONFIG_HIGHMEM4G
3) On x86 and x86_64, disable symmetric multi-processing support
2) On x86 and x86_64, disable symmetric multi-processing support
under "Processor type and features":
CONFIG_SMP=n
(If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line
when loading the dump-capture kernel, see section "Load the Dump-capture
Kernel".)
4) On ppc64, disable NUMA support and enable EMBEDDED support:
3) If one wants to build and use a relocatable kernel,
Enable "Build a relocatable kernel" support under "Processor type and
features"
CONFIG_NUMA=n
CONFIG_EMBEDDED=y
CONFIG_EEH=N for the dump-capture kernel
CONFIG_RELOCATABLE=y
5) Enable "kernel crash dumps" support under "Processor type and
features":
4) Use a suitable value for "Physical address where the kernel is
loaded" (under "Processor type and features"). This only appears when
"kernel crash dumps" is enabled. A suitable value depends upon
whether kernel is relocatable or not.
CONFIG_CRASH_DUMP=y
If you are using a relocatable kernel use CONFIG_PHYSICAL_START=0x100000
This will compile the kernel for physical address 1MB, but given the fact
kernel is relocatable, it can be run from any physical address hence
kexec boot loader will load it in memory region reserved for dump-capture
kernel.
6) Use a suitable value for "Physical address where the kernel is
Otherwise it should be the start of memory region reserved for
second kernel using boot parameter "crashkernel=Y@X". Here X is
start of memory region reserved for dump-capture kernel.
Generally X is 16MB (0x1000000). So you can set
CONFIG_PHYSICAL_START=0x1000000
5) Make and install the kernel and its modules. DO NOT add this kernel
to the boot loader configuration files.
Dump-capture kernel config options (Arch Dependent, x86_64)
----------------------------------------------------------
1) On x86 and x86_64, disable symmetric multi-processing support
under "Processor type and features":
CONFIG_SMP=n
(If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line
when loading the dump-capture kernel, see section "Load the Dump-capture
Kernel".)
2) Use a suitable value for "Physical address where the kernel is
loaded" (under "Processor type and features"). This only appears when
"kernel crash dumps" is enabled. By default this value is 0x1000000
(16MB). It should be the same as X in the "crashkernel=Y@X" boot
parameter discussed above.
parameter.
On x86 and x86_64, use "CONFIG_PHYSICAL_START=0x1000000".
For x86_64, normally "CONFIG_PHYSICAL_START=0x1000000".
On ppc64 the value is automatically set at 32MB when
CONFIG_CRASH_DUMP is set.
6) Optionally enable "/proc/vmcore support" under "Filesystems" ->
"Pseudo filesystems".
CONFIG_PROC_VMCORE=y
(CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)
7) Make and install the kernel and its modules. DO NOT add this kernel
3) Make and install the kernel and its modules. DO NOT add this kernel
to the boot loader configuration files.
Dump-capture kernel config options (Arch Dependent, ppc64)
----------------------------------------------------------
- Make and install the kernel and its modules. DO NOT add this kernel
to the boot loader configuration files.
Dump-capture kernel config options (Arch Dependent, ia64)
----------------------------------------------------------
(To be filled)
Boot into System Kernel
=======================
1) Make and install the kernel and its modules. Update the boot loader
(such as grub, yaboot, or lilo) configuration files as necessary.
2) Boot the system kernel with the boot parameter "crashkernel=Y@X",
where Y specifies how much memory to reserve for the dump-capture kernel
and X specifies the beginning of this reserved memory. For example,
"crashkernel=64M@16M" tells the system kernel to reserve 64 MB of memory
starting at physical address 0x01000000 (16MB) for the dump-capture kernel.
On x86 and x86_64, use "crashkernel=64M@16M".
On ppc64, use "crashkernel=128M@32M".
Load the Dump-capture Kernel
============================
After booting to the system kernel, load the dump-capture kernel using
the following command:
After booting to the system kernel, dump-capture kernel needs to be
loaded.
kexec -p <dump-capture-kernel> \
Based on the architecture and type of image (relocatable or not), one
can choose to load the uncompressed vmlinux or compressed bzImage/vmlinuz
of dump-capture kernel. Following is the summary.
For i386:
- Use vmlinux if kernel is not relocatable.
- Use bzImage/vmlinuz if kernel is relocatable.
For x86_64:
- Use vmlinux
For ppc64:
- Use vmlinux
For ia64:
(To be filled)
If you are using a uncompressed vmlinux image then use following command
to load dump-capture kernel.
kexec -p <dump-capture-kernel-vmlinux-image> \
--initrd=<initrd-for-dump-capture-kernel> --args-linux \
--append="root=<root-dev> init 1 irqpoll"
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed bzImage/vmlinuz, then use following command
to load dump-capture kernel.
kexec -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
--append="root=<root-dev> <arch-specific-options>"
Following are the arch specific command line options to be used while
loading dump-capture kernel.
For i386 and x86_64:
"init 1 irqpoll maxcpus=1"
For ppc64:
"init 1 maxcpus=1 noirqdistrib"
For IA64
(To be filled)
Notes on loading the dump-capture kernel:
* <dump-capture-kernel> must be a vmlinux image (that is, an
uncompressed ELF image). bzImage does not work at this time.
* By default, the ELF headers are stored in ELF64 format to support
systems with more than 4GB memory. The --elf32-core-headers option can
be used to force the generation of ELF32 headers. This is necessary
@ -231,6 +308,9 @@ Notes on loading the dump-capture kernel:
* "init 1" boots the dump-capture kernel into single-user mode without
networking. If you want networking, use "init 3."
* We generally don' have to bring up a SMP kernel just to capture the
dump. Hence generally it is useful either to build a UP dump-capture
kernel or specify maxcpus=1 option while loading dump-capture kernel.
Kernel Panic
============

View File

@ -548,6 +548,13 @@ and is between 256 and 4096 characters. It is defined in the file
eurwdt= [HW,WDT] Eurotech CPU-1220/1410 onboard watchdog.
Format: <io>[,<irq>]
failslab=
fail_page_alloc=
fail_make_request=[KNL]
General fault injection mechanism.
Format: <interval>,<probability>,<space>,<times>
See also /Documentation/fault-injection/.
fd_mcs= [HW,SCSI]
See header of drivers/scsi/fd_mcs.c.
@ -557,9 +564,6 @@ and is between 256 and 4096 characters. It is defined in the file
floppy= [HW]
See Documentation/floppy.txt.
ftape= [HW] Floppy Tape subsystem debugging options.
See Documentation/ftape.txt.
gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
@ -602,8 +606,6 @@ and is between 256 and 4096 characters. It is defined in the file
hugepages= [HW,IA-32,IA-64] Maximal number of HugeTLB pages.
noirqbalance [IA-32,SMP,KNL] Disable kernel irq balancing
i8042.direct [HW] Put keyboard port into non-translated mode
i8042.dumbkbd [HW] Pretend that controller can only read data from
keyboard and cannot control its state
@ -653,6 +655,10 @@ and is between 256 and 4096 characters. It is defined in the file
idle= [HW]
Format: idle=poll or idle=halt
ignore_loglevel [KNL]
Ignore loglevel setting - this will print /all/
kernel messages to the console. Useful for debugging.
ihash_entries= [KNL]
Set number of hash buckets for inode cache.
@ -717,7 +723,12 @@ and is between 256 and 4096 characters. It is defined in the file
Format: <RDP>,<reset>,<pci_scan>,<verbosity>
isolcpus= [KNL,SMP] Isolate CPUs from the general scheduler.
Format: <cpu number>,...,<cpu number>
Format:
<cpu number>,...,<cpu number>
or
<cpu number>-<cpu number> (must be a positive range in ascending order)
or a mixture
<cpu number>,...,<cpu number>-<cpu number>
This option can be used to specify one or more CPUs
to isolate from the general SMP balancing and scheduling
algorithms. The only way to move a process onto or off
@ -1015,6 +1026,10 @@ and is between 256 and 4096 characters. It is defined in the file
emulation library even if a 387 maths coprocessor
is present.
noaliencache [MM, NUMA] Disables the allcoation of alien caches in
the slab allocator. Saves per-node memory, but will
impact performance on real NUMA hardware.
noalign [KNL,ARM]
noapic [SMP,APIC] Tells the kernel to not make use of any
@ -1055,9 +1070,14 @@ and is between 256 and 4096 characters. It is defined in the file
in certain environments such as networked servers or
real-time systems.
noirqbalance [IA-32,SMP,KNL] Disable kernel irq balancing
noirqdebug [IA-32] Disables the code which attempts to detect and
disable unhandled interrupt sources.
no_timer_check [IA-32,X86_64,APIC] Disables the code which tests for
broken timer IRQ sources.
noisapnp [ISAPNP] Disables ISA PnP code.
noinitrd [RAM] Tells the kernel not to load any configured
@ -1288,6 +1308,7 @@ and is between 256 and 4096 characters. It is defined in the file
Param: "schedule" - profile schedule points.
Param: <number> - step/bucket size as a power of 2 for
statistical time based profiling.
Param: "sleep" - profile D-state sleeping (millisecs)
processor.max_cstate= [HW,ACPI]
Limit processor to maximum C-state
@ -1369,6 +1390,12 @@ and is between 256 and 4096 characters. It is defined in the file
resume= [SWSUSP]
Specify the partition device for software suspend
resume_offset= [SWSUSP]
Specify the offset from the beginning of the partition
given by "resume=" at which the swap header is located,
in <PAGE_SIZE> units (needed only for swap files).
See Documentation/power/swsusp-and-swap-files.txt
rhash_entries= [KNL,NET]
Set number of hash buckets for route cache
@ -1419,6 +1446,11 @@ and is between 256 and 4096 characters. It is defined in the file
scsi_logging= [SCSI]
scsi_mod.scan= [SCSI] sync (default) scans SCSI busses as they are
discovered. async scans them in kernel threads,
allowing boot to proceed. none ignores them, expecting
user space to do the scan.
selinux [SELINUX] Disable or enable SELinux at boot time.
Format: { "0" | "1" }
See security/selinux/Kconfig help text.
@ -1624,6 +1656,12 @@ and is between 256 and 4096 characters. It is defined in the file
sym53c416= [HW,SCSI]
See header of drivers/scsi/sym53c416.c.
sysrq_always_enabled
[KNL]
Ignore sysrq setting - this boot parameter will
neutralize any effect of /proc/sys/kernel/sysrq.
Useful for debugging.
t128= [HW,SCSI]
See header of drivers/scsi/t128.c.
@ -1676,6 +1714,14 @@ and is between 256 and 4096 characters. It is defined in the file
uart6850= [HW,OSS]
Format: <io>,<irq>
uhci-hcd.ignore_oc=
[USB] Ignore overcurrent events (default N).
Some badly-designed motherboards generate lots of
bogus events, for ports that aren't wired to
anything. Set this parameter to avoid log spamming.
Note that genuine overcurrent events won't be
reported either.
usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.
@ -1730,6 +1776,9 @@ and is between 256 and 4096 characters. It is defined in the file
norandmaps Don't use address space randomization
Equivalent to echo 0 > /proc/sys/kernel/randomize_va_space
unwind_debug=N N > 0 will enable dwarf2 unwinder debugging
This is useful to get more information why
you got a "dwarf2 unwinder stuck"
______________________________________________________________________

View File

@ -304,7 +304,7 @@ about the status of the key service:
R Revoked
D Dead
Q Contributes to user's quota
U Under contruction by callback to userspace
U Under construction by callback to userspace
N Negative key
This file must be enabled at kernel configuration time as it allows anyone

View File

@ -121,7 +121,7 @@ contains the following options:
MAX_AGE:
Maximum time, in seconds, of hard drive spindown time that you are
confortable with. Worst case, it's possible that you could lose this
comfortable with. Worst case, it's possible that you could lose this
amount of work if your battery fails while you're in laptop mode.
MINIMUM_BATTERY_MINUTES:
@ -235,7 +235,7 @@ It should be installed as /etc/default/laptop-mode on Debian, and as
--------------------CONFIG FILE BEGIN-------------------------------------------
# Maximum time, in seconds, of hard drive spindown time that you are
# confortable with. Worst case, it's possible that you could lose this
# comfortable with. Worst case, it's possible that you could lose this
# amount of work if your battery fails you while in laptop mode.
#MAX_AGE=600
@ -350,7 +350,7 @@ fi
# set defaults instead:
# Maximum time, in seconds, of hard drive spindown time that you are
# confortable with. Worst case, it's possible that you could lose this
# comfortable with. Worst case, it's possible that you could lose this
# amount of work if your battery fails you while in laptop mode.
MAX_AGE=${MAX_AGE:-'600'}
@ -699,7 +699,7 @@ ACPI integration
Dax Kelson submitted this so that the ACPI acpid daemon will
kick off the laptop_mode script and run hdparm. The part that
automatically disables laptop mode when the battery is low was
writen by Jan Topinski.
written by Jan Topinski.
-----------------/etc/acpi/events/ac_adapter BEGIN------------------------------
event=ac_adapter

View File

@ -212,7 +212,7 @@ There are some minimal guarantees that may be expected of a CPU:
STORE *X = c, d = LOAD *X
(Loads and stores overlap if they are targetted at overlapping pieces of
(Loads and stores overlap if they are targeted at overlapping pieces of
memory).
And there are a number of things that _must_ or _must_not_ be assumed:

View File

@ -58,6 +58,8 @@ fore200e.txt
- FORE Systems PCA-200E/SBA-200E ATM NIC driver info.
framerelay.txt
- info on using Frame Relay/Data Link Connection Identifier (DLCI).
generic_netlink.txt
- info on Generic Netlink
ip-sysctl.txt
- /proc/sys/net/ipv4/* variables
ip_dynaddr.txt

View File

@ -95,8 +95,8 @@ There are two types of event register ACK mechanisms.
Move all to dev->poll()
C) Ability to detect new work correctly.
NAPI works by shutting down event interrupts when theres work and
turning them on when theres none.
NAPI works by shutting down event interrupts when there's work and
turning them on when there's none.
New packets might show up in the small window while interrupts were being
re-enabled (refer to appendix 2). A packet might sneak in during the period
we are enabling interrupts. We only get to know about such a packet when the
@ -114,7 +114,7 @@ Locking rules and environmental guarantees
only one CPU can pick the initial interrupt and hence the initial
netif_rx_schedule(dev);
- The core layer invokes devices to send packets in a round robin format.
This implies receive is totaly lockless because of the guarantee only that
This implies receive is totally lockless because of the guarantee that only
one CPU is executing it.
- contention can only be the result of some other CPU accessing the rx
ring. This happens only in close() and suspend() (when these methods
@ -510,7 +510,7 @@ static int my_poll (struct net_device *dev, int *budget)
an interrupt will be generated */
goto done;
}
/* done! at least thats what it looks like ;->
/* done! at least that's what it looks like ;->
if new packets came in after our last check on status bits
they'll be caught by the while check and we go back and clear them
since we havent exceeded our quota */
@ -535,11 +535,11 @@ done:
* 1. it can race with disabling irqs in irq handler (which are done to
* schedule polls)
* 2. it can race with dis/enabling irqs in other poll threads
* 3. if an irq raised after the begining of the outer beginning
* loop(marked in the code above), it will be immediately
* 3. if an irq raised after the beginning of the outer beginning
* loop (marked in the code above), it will be immediately
* triggered here.
*
* Summarizing: the logic may results in some redundant irqs both
* Summarizing: the logic may result in some redundant irqs both
* due to races in masking and due to too late acking of already
* processed irqs. The good news: no events are ever lost.
*/
@ -601,7 +601,7 @@ a)
5) dev->close() and dev->suspend() issues
==========================================
The driver writter neednt worry about this. The top net layer takes
The driver writer needn't worry about this; the top net layer takes
care of it.
6) Adding new Stats to /proc
@ -622,9 +622,9 @@ FC should be programmed to apply in the case when the system cant pull out
packets fast enough i.e send a pause only when you run out of rx buffers.
Note FC in itself is a good solution but we have found it to not be
much of a commodity feature (both in NICs and switches) and hence falls
under the same category as using NIC based mitigation. Also experiments
indicate that its much harder to resolve the resource allocation
issue (aka lazy receiving that NAPI offers) and hence quantify its usefullness
under the same category as using NIC based mitigation. Also, experiments
indicate that it's much harder to resolve the resource allocation
issue (aka lazy receiving that NAPI offers) and hence quantify its usefulness
proved harder. In any case, FC works even better with NAPI but is not
necessary.
@ -678,10 +678,10 @@ routine:
CSR5 bit of interest is only the rx status.
If you look at the last if statement:
you just finished grabbing all the packets from the rx ring .. you check if
status bit says theres more packets just in ... it says none; you then
status bit says there are more packets just in ... it says none; you then
enable rx interrupts again; if a new packet just came in during this check,
we are counting that CSR5 will be set in that small window of opportunity
and that by re-enabling interrupts, we would actually triger an interrupt
and that by re-enabling interrupts, we would actually trigger an interrupt
to register the new packet for processing.
[The above description nay be very verbose, if you have better wording

View File

@ -248,7 +248,7 @@ c) The driver's hardware probe routine is designed to avoid
with device probing. To avoid this behaviour, add one
to the `io=' module parameter. This doesn't actually change
the I/O address, but it is a flag to tell the driver
topartially initialise the hardware before trying to
to partially initialise the hardware before trying to
identify the card. This could be dangerous if you are
not sure that there is a cs89x0 card at the provided address.
@ -620,8 +620,8 @@ I/O Address Device IRQ Device
12 Mouse (PS/2)
Memory Address Device 13 Math Coprocessor
-------------- --------------------- 14 Hard Disk controller
A000-BFFF EGA Graphics Adpater
A000-C7FF VGA Graphics Adpater
A000-BFFF EGA Graphics Adapter
A000-C7FF VGA Graphics Adapter
B000-BFFF Mono Graphics Adapter
B800-BFFF Color Graphics Adapter
E000-FFFF AT BIOS

View File

@ -19,40 +19,92 @@ for real time and multimedia traffic.
It has a base protocol and pluggable congestion control IDs (CCIDs).
It is at draft RFC status and the homepage for DCCP as a protocol is at:
http://www.icir.org/kohler/dcp/
It is at proposed standard RFC status and the homepage for DCCP as a protocol
is at:
http://www.read.cs.ucla.edu/dccp/
Missing features
================
The DCCP implementation does not currently have all the features that are in
the draft RFC.
the RFC.
In particular the following are missing:
- CCID2 support
- feature negotiation
When testing against other implementations it appears that elapsed time
options are not coded compliant to the specification.
The known bugs are at:
http://linux-net.osdl.org/index.php/TODO#DCCP
Socket options
==============
DCCP_SOCKOPT_PACKET_SIZE is used for CCID3 to set default packet size for
calculations.
DCCP_SOCKOPT_SERVICE sets the service. The specification mandates use of
service codes (RFC 4340, sec. 8.1.2); if this socket option is not set,
the socket will fall back to 0 (which means that no meaningful service code
is present). Connecting sockets set at most one service option; for
listening sockets, multiple service codes can be specified.
DCCP_SOCKOPT_SEND_CSCOV and DCCP_SOCKOPT_RECV_CSCOV are used for setting the
partial checksum coverage (RFC 4340, sec. 9.2). The default is that checksums
always cover the entire packet and that only fully covered application data is
accepted by the receiver. Hence, when using this feature on the sender, it must
be enabled at the receiver, too with suitable choice of CsCov.
DCCP_SOCKOPT_SEND_CSCOV sets the sender checksum coverage. Values in the
range 0..15 are acceptable. The default setting is 0 (full coverage),
values between 1..15 indicate partial coverage.
DCCP_SOCKOPT_SEND_CSCOV is for the receiver and has a different meaning: it
sets a threshold, where again values 0..15 are acceptable. The default
of 0 means that all packets with a partial coverage will be discarded.
Values in the range 1..15 indicate that packets with minimally such a
coverage value are also acceptable. The higher the number, the more
restrictive this setting (see [RFC 4340, sec. 9.2.1]).
Sysctl variables
================
Several DCCP default parameters can be managed by the following sysctls
(sysctl net.dccp.default or /proc/sys/net/dccp/default):
request_retries
The number of active connection initiation retries (the number of
Requests minus one) before timing out. In addition, it also governs
the behaviour of the other, passive side: this variable also sets
the number of times DCCP repeats sending a Response when the initial
handshake does not progress from RESPOND to OPEN (i.e. when no Ack
is received after the initial Request). This value should be greater
than 0, suggested is less than 10. Analogue of tcp_syn_retries.
retries1
How often a DCCP Response is retransmitted until the listening DCCP
side considers its connecting peer dead. Analogue of tcp_retries1.
retries2
The number of times a general DCCP packet is retransmitted. This has
importance for retransmitted acknowledgments and feature negotiation,
data packets are never retransmitted. Analogue of tcp_retries2.
send_ndp = 1
Whether or not to send NDP count options (sec. 7.7.2).
send_ackvec = 1
Whether or not to send Ack Vector options (sec. 11.5).
ack_ratio = 2
The default Ack Ratio (sec. 11.3) to use.
tx_ccid = 2
Default CCID for the sender-receiver half-connection.
rx_ccid = 2
Default CCID for the receiver-sender half-connection.
seq_window = 100
The initial sequence window (sec. 7.5.2).
tx_qlen = 5
The size of the transmit buffer in packets. A value of 0 corresponds
to an unbounded transmit buffer.
Notes
=====
SELinux does not yet have support for DCCP. You will need to turn it off or
else you will get EACCES.
DCCP does not travel through NAT successfully at present. This is because
the checksum covers the psuedo-header as per TCP and UDP. It should be
relatively trivial to add Linux NAT support for DCCP.
DCCP does not travel through NAT successfully at present on many boxes. This is
because the checksum covers the psuedo-header as per TCP and UDP. Linux NAT
support for DCCP has been added.

View File

@ -1,7 +1,7 @@
Linux* Base Driver for the Intel(R) PRO/1000 Family of Adapters
===============================================================
November 15, 2005
September 26, 2006
Contents
@ -9,6 +9,7 @@ Contents
- In This Release
- Identifying Your Adapter
- Building and Installation
- Command Line Parameters
- Speed and Duplex Configuration
- Additional Configurations
@ -41,6 +42,9 @@ or later), lspci, and ifconfig to obtain the same information.
Instructions on updating ethtool can be found in the section "Additional
Configurations" later in this document.
NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100
support.
Identifying Your Adapter
========================
@ -51,28 +55,27 @@ Driver ID Guide at:
http://support.intel.com/support/network/adapter/pro100/21397.htm
For the latest Intel network drivers for Linux, refer to the following
website. In the search field, enter your adapter name or type, or use the
website. In the search field, enter your adapter name or type, or use the
networking link on the left to search for your adapter:
http://downloadfinder.intel.com/scripts-df/support_intel.asp
Command Line Parameters =======================
Command Line Parameters
=======================
If the driver is built as a module, the following optional parameters
are used by entering them on the command line with the modprobe or insmod
command using this syntax:
are used by entering them on the command line with the modprobe command
using this syntax:
modprobe e1000 [<option>=<VAL1>,<VAL2>,...]
insmod e1000 [<option>=<VAL1>,<VAL2>,...]
For example, with two PRO/1000 PCI adapters, entering:
insmod e1000 TxDescriptors=80,128
modprobe e1000 TxDescriptors=80,128
loads the e1000 driver with 80 TX descriptors for the first adapter and 128
TX descriptors for the second adapter.
loads the e1000 driver with 80 TX descriptors for the first adapter and
128 TX descriptors for the second adapter.
The default value for each parameter is generally the recommended setting,
unless otherwise noted.
@ -87,7 +90,7 @@ NOTES: For more information about the AutoNeg, Duplex, and Speed
http://www.intel.com/design/network/applnots/ap450.htm
A descriptor describes a data buffer and attributes related to
the data buffer. This information is accessed by the hardware.
the data buffer. This information is accessed by the hardware.
AutoNeg
@ -96,9 +99,9 @@ AutoNeg
Valid Range: 0x01-0x0F, 0x20-0x2F
Default Value: 0x2F
This parameter is a bit mask that specifies which speed and duplex
settings the board advertises. When this parameter is used, the Speed
and Duplex parameters must not be specified.
This parameter is a bit-mask that specifies the speed and duplex settings
advertised by the adapter. When this parameter is used, the Speed and
Duplex parameters must not be specified.
NOTE: Refer to the Speed and Duplex section of this readme for more
information on the AutoNeg parameter.
@ -110,14 +113,15 @@ Duplex
Valid Range: 0-2 (0=auto-negotiate, 1=half, 2=full)
Default Value: 0
Defines the direction in which data is allowed to flow. Can be either
one or two-directional. If both Duplex and the link partner are set to
auto-negotiate, the board auto-detects the correct duplex. If the link
partner is forced (either full or half), Duplex defaults to half-duplex.
This defines the direction in which data is allowed to flow. Can be
either one or two-directional. If both Duplex and the link partner are
set to auto-negotiate, the board auto-detects the correct duplex. If the
link partner is forced (either full or half), Duplex defaults to half-
duplex.
FlowControl
----------
-----------
Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
Default Value: Reads flow control settings from the EEPROM
@ -127,57 +131,107 @@ to Ethernet PAUSE frames.
InterruptThrottleRate
---------------------
(not supported on Intel 82542, 82543 or 82544-based adapters)
Valid Range: 100-100000 (0=off, 1=dynamic)
Default Value: 8000
(not supported on Intel(R) 82542, 82543 or 82544-based adapters)
Valid Range: 0,1,3,100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
Default Value: 3
This value represents the maximum number of interrupts per second the
controller generates. InterruptThrottleRate is another setting used in
interrupt moderation. Dynamic mode uses a heuristic algorithm to adjust
InterruptThrottleRate based on the current traffic load.
The driver can limit the amount of interrupts per second that the adapter
will generate for incoming packets. It does this by writing a value to the
adapter that is based on the maximum amount of interrupts that the adapter
will generate per second.
Setting InterruptThrottleRate to a value greater or equal to 100
will program the adapter to send out a maximum of that many interrupts
per second, even if more packets have come in. This reduces interrupt
load on the system and can lower CPU utilization under heavy load,
but will increase latency as packets are not processed as quickly.
The default behaviour of the driver previously assumed a static
InterruptThrottleRate value of 8000, providing a good fallback value for
all traffic types,but lacking in small packet performance and latency.
The hardware can handle many more small packets per second however, and
for this reason an adaptive interrupt moderation algorithm was implemented.
Since 7.3.x, the driver has two adaptive modes (setting 1 or 3) in which
it dynamically adjusts the InterruptThrottleRate value based on the traffic
that it receives. After determining the type of incoming traffic in the last
timeframe, it will adjust the InterruptThrottleRate to an appropriate value
for that traffic.
The algorithm classifies the incoming traffic every interval into
classes. Once the class is determined, the InterruptThrottleRate value is
adjusted to suit that traffic type the best. There are three classes defined:
"Bulk traffic", for large amounts of packets of normal size; "Low latency",
for small amounts of traffic and/or a significant percentage of small
packets; and "Lowest latency", for almost completely small packets or
minimal traffic.
In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
latency" or "Lowest latency" class, the InterruptThrottleRate is increased
stepwise to 20000. This default mode is suitable for most applications.
For situations where low latency is vital such as cluster or
grid computing, the algorithm can reduce latency even more when
InterruptThrottleRate is set to mode 1. In this mode, which operates
the same as mode 3, the InterruptThrottleRate will be increased stepwise to
70000 for traffic in class "Lowest latency".
Setting InterruptThrottleRate to 0 turns off any interrupt moderation
and may improve small packet latency, but is generally not suitable
for bulk throughput traffic.
NOTE: InterruptThrottleRate takes precedence over the TxAbsIntDelay and
RxAbsIntDelay parameters. In other words, minimizing the receive
RxAbsIntDelay parameters. In other words, minimizing the receive
and/or transmit absolute delays does not force the controller to
generate more interrupts than what the Interrupt Throttle Rate
allows.
CAUTION: If you are using the Intel PRO/1000 CT Network Connection
CAUTION: If you are using the Intel(R) PRO/1000 CT Network Connection
(controller 82547), setting InterruptThrottleRate to a value
greater than 75,000, may hang (stop transmitting) adapters
under certain network conditions. If this occurs a NETDEV
WATCHDOG message is logged in the system event log. In
under certain network conditions. If this occurs a NETDEV
WATCHDOG message is logged in the system event log. In
addition, the controller is automatically reset, restoring
the network connection. To eliminate the potential for the
the network connection. To eliminate the potential for the
hang, ensure that InterruptThrottleRate is set no greater
than 75,000 and is not set to 0.
NOTE: When e1000 is loaded with default settings and multiple adapters
are in use simultaneously, the CPU utilization may increase non-
linearly. In order to limit the CPU utilization without impacting
linearly. In order to limit the CPU utilization without impacting
the overall throughput, we recommend that you load the driver as
follows:
insmod e1000.o InterruptThrottleRate=3000,3000,3000
modprobe e1000 InterruptThrottleRate=3000,3000,3000
This sets the InterruptThrottleRate to 3000 interrupts/sec for
the first, second, and third instances of the driver. The range
the first, second, and third instances of the driver. The range
of 2000 to 3000 interrupts per second works on a majority of
systems and is a good starting point, but the optimal value will
be platform-specific. If CPU utilization is not a concern, use
be platform-specific. If CPU utilization is not a concern, use
RX_POLLING (NAPI) and default driver settings.
RxDescriptors
-------------
Valid Range: 80-256 for 82542 and 82543-based adapters
80-4096 for all other supported adapters
Default Value: 256
This value specifies the number of receive descriptors allocated by the
driver. Increasing this value allows the driver to buffer more incoming
packets. Each descriptor is 16 bytes. A receive buffer is also
allocated for each descriptor and is 2048.
This value specifies the number of receive buffer descriptors allocated
by the driver. Increasing this value allows the driver to buffer more
incoming packets, at the expense of increased system memory utilization.
Each descriptor is 16 bytes. A receive buffer is also allocated for each
descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending
on the MTU setting. The maximum MTU size is 16110.
NOTE: MTU designates the frame size. It only needs to be set for Jumbo
Frames. Depending on the available system resources, the request
for a higher number of receive descriptors may be denied. In this
case, use a lower number.
RxIntDelay
@ -187,17 +241,17 @@ Default Value: 0
This value delays the generation of receive interrupts in units of 1.024
microseconds. Receive interrupt reduction can improve CPU efficiency if
properly tuned for specific network traffic. Increasing this value adds
properly tuned for specific network traffic. Increasing this value adds
extra latency to frame reception and can end up decreasing the throughput
of TCP traffic. If the system is reporting dropped receives, this value
of TCP traffic. If the system is reporting dropped receives, this value
may be set too high, causing the driver to run out of available receive
descriptors.
CAUTION: When setting RxIntDelay to a value other than 0, adapters may
hang (stop transmitting) under certain network conditions. If
hang (stop transmitting) under certain network conditions. If
this occurs a NETDEV WATCHDOG message is logged in the system
event log. In addition, the controller is automatically reset,
restoring the network connection. To eliminate the potential
event log. In addition, the controller is automatically reset,
restoring the network connection. To eliminate the potential
for the hang ensure that RxIntDelay is set to 0.
@ -208,7 +262,7 @@ Valid Range: 0-65535 (0=off)
Default Value: 128
This value, in units of 1.024 microseconds, limits the delay in which a
receive interrupt is generated. Useful only if RxIntDelay is non-zero,
receive interrupt is generated. Useful only if RxIntDelay is non-zero,
this value ensures that an interrupt is generated after the initial
packet is received within the set amount of time. Proper tuning,
along with RxIntDelay, may improve traffic throughput in specific network
@ -222,9 +276,9 @@ Valid Settings: 0, 10, 100, 1000
Default Value: 0 (auto-negotiate at all supported speeds)
Speed forces the line speed to the specified value in megabits per second
(Mbps). If this parameter is not specified or is set to 0 and the link
(Mbps). If this parameter is not specified or is set to 0 and the link
partner is set to auto-negotiate, the board will auto-detect the correct
speed. Duplex should also be set when Speed is set to either 10 or 100.
speed. Duplex should also be set when Speed is set to either 10 or 100.
TxDescriptors
@ -234,7 +288,7 @@ Valid Range: 80-256 for 82542 and 82543-based adapters
Default Value: 256
This value is the number of transmit descriptors allocated by the driver.
Increasing this value allows the driver to queue more transmits. Each
Increasing this value allows the driver to queue more transmits. Each
descriptor is 16 bytes.
NOTE: Depending on the available system resources, the request for a
@ -248,8 +302,8 @@ Valid Range: 0-65535 (0=off)
Default Value: 64
This value delays the generation of transmit interrupts in units of
1.024 microseconds. Transmit interrupt reduction can improve CPU
efficiency if properly tuned for specific network traffic. If the
1.024 microseconds. Transmit interrupt reduction can improve CPU
efficiency if properly tuned for specific network traffic. If the
system is reporting dropped transmits, this value may be set too high
causing the driver to run out of available transmit descriptors.
@ -261,7 +315,7 @@ Valid Range: 0-65535 (0=off)
Default Value: 64
This value, in units of 1.024 microseconds, limits the delay in which a
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
this value ensures that an interrupt is generated after the initial
packet is sent on the wire within the set amount of time. Proper tuning,
along with TxIntDelay, may improve traffic throughput in specific
@ -288,15 +342,15 @@ fiber interface board only links at 1000 Mbps full-duplex.
For copper-based boards, the keywords interact as follows:
The default operation is auto-negotiate. The board advertises all
The default operation is auto-negotiate. The board advertises all
supported speed and duplex combinations, and it links at the highest
common speed and duplex mode IF the link partner is set to auto-negotiate.
If Speed = 1000, limited auto-negotiation is enabled and only 1000 Mbps
is advertised (The 1000BaseT spec requires auto-negotiation.)
If Speed = 10 or 100, then both Speed and Duplex should be set. Auto-
negotiation is disabled, and the AutoNeg parameter is ignored. Partner
If Speed = 10 or 100, then both Speed and Duplex should be set. Auto-
negotiation is disabled, and the AutoNeg parameter is ignored. Partner
SHOULD also be forced.
The AutoNeg parameter is used when more control is required over the
@ -304,7 +358,7 @@ auto-negotiation process. It should be used when you wish to control which
speed and duplex combinations are advertised during the auto-negotiation
process.
The parameter may be specified as either a decimal or hexidecimal value as
The parameter may be specified as either a decimal or hexadecimal value as
determined by the bitmap below.
Bit position 7 6 5 4 3 2 1 0
@ -337,20 +391,19 @@ Additional Configurations
Configuring the Driver on Different Distributions
-------------------------------------------------
Configuring a network driver to load properly when the system is started
is distribution dependent. Typically, the configuration process involves
is distribution dependent. Typically, the configuration process involves
adding an alias line to /etc/modules.conf or /etc/modprobe.conf as well
as editing other system startup scripts and/or configuration files. Many
as editing other system startup scripts and/or configuration files. Many
popular Linux distributions ship with tools to make these changes for you.
To learn the proper way to configure a network device for your system,
refer to your distribution documentation. If during this process you are
refer to your distribution documentation. If during this process you are
asked for the driver or module name, the name for the Linux Base Driver
for the Intel PRO/1000 Family of Adapters is e1000.
for the Intel(R) PRO/1000 Family of Adapters is e1000.
As an example, if you install the e1000 driver for two PRO/1000 adapters
(eth0 and eth1) and set the speed and duplex to 10full and 100half, add
the following to modules.conf or modprobe.conf:
the following to modules.conf or or modprobe.conf:
alias eth0 e1000
alias eth1 e1000
@ -358,9 +411,8 @@ Additional Configurations
Viewing Link Messages
---------------------
Link messages will not be displayed to the console if the distribution is
restricting system messages. In order to see network driver link messages
restricting system messages. In order to see network driver link messages
on your console, set dmesg to eight by entering the following:
dmesg -n 8
@ -369,11 +421,9 @@ Additional Configurations
Jumbo Frames
------------
The driver supports Jumbo Frames for all adapters except 82542 and
82573-based adapters. Jumbo Frames support is enabled by changing the
MTU to a value larger than the default of 1500. Use the ifconfig command
to increase the MTU size. For example:
Jumbo Frames support is enabled by changing the MTU to a value larger than
the default of 1500. Use the ifconfig command to increase the MTU size.
For example:
ifconfig eth<x> mtu 9000 up
@ -390,26 +440,49 @@ Additional Configurations
- To enable Jumbo Frames, increase the MTU size on the interface beyond
1500.
- The maximum MTU setting for Jumbo Frames is 16110. This value coincides
- The maximum MTU setting for Jumbo Frames is 16110. This value coincides
with the maximum Jumbo Frames size of 16128.
- Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or
loss of link.
- Some Intel gigabit adapters that support Jumbo Frames have a frame size
limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes.
The adapters with this limitation are based on the Intel 82571EB and
82572EI controllers, which correspond to these product names:
Intel® PRO/1000 PT Dual Port Server Adapter
Intel® PRO/1000 PF Dual Port Server Adapter
Intel® PRO/1000 PT Server Adapter
Intel® PRO/1000 PT Desktop Adapter
Intel® PRO/1000 PF Server Adapter
The adapters with this limitation are based on the Intel(R) 82571EB,
82572EI, 82573L and 80003ES2LAN controller. These correspond to the
following product names:
Intel(R) PRO/1000 PT Server Adapter
Intel(R) PRO/1000 PT Desktop Adapter
Intel(R) PRO/1000 PT Network Connection
Intel(R) PRO/1000 PT Dual Port Server Adapter
Intel(R) PRO/1000 PT Dual Port Network Connection
Intel(R) PRO/1000 PF Server Adapter
Intel(R) PRO/1000 PF Network Connection
Intel(R) PRO/1000 PF Dual Port Server Adapter
Intel(R) PRO/1000 PB Server Connection
Intel(R) PRO/1000 PL Network Connection
Intel(R) PRO/1000 EB Network Connection with I/O Acceleration
Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration
Intel(R) PRO/1000 PT Quad Port Server Adapter
- The Intel PRO/1000 PM Network Connection does not support jumbo frames.
- Adapters based on the Intel(R) 82542 and 82573V/E controller do not
support Jumbo Frames. These correspond to the following product names:
Intel(R) PRO/1000 Gigabit Server Adapter
Intel(R) PRO/1000 PM Network Connection
- The following adapters do not support Jumbo Frames:
Intel(R) 82562V 10/100 Network Connection
Intel(R) 82566DM Gigabit Network Connection
Intel(R) 82566DC Gigabit Network Connection
Intel(R) 82566MM Gigabit Network Connection
Intel(R) 82566MC Gigabit Network Connection
Intel(R) 82562GT 10/100 Network Connection
Intel(R) 82562G 10/100 Network Connection
Ethtool
-------
The driver utilizes the ethtool interface for driver configuration and
diagnostics, as well as displaying statistical information. Ethtool
version 1.6 or later is required for this functionality.
@ -417,15 +490,14 @@ Additional Configurations
The latest release of ethtool can be found from
http://sourceforge.net/projects/gkernel.
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support
for a more complete ethtool feature set can be enabled by upgrading
ethtool to ethtool-1.8.1.
Enabling Wake on LAN* (WoL)
---------------------------
WoL is configured through the Ethtool* utility. Ethtool is included with
all versions of Red Hat after Red Hat 7.2. For other Linux distributions,
WoL is configured through the Ethtool* utility. Ethtool is included with
all versions of Red Hat after Red Hat 7.2. For other Linux distributions,
download and install Ethtool from the following website:
http://sourceforge.net/projects/gkernel.
@ -436,11 +508,17 @@ Additional Configurations
For this driver version, in order to enable WoL, the e1000 driver must be
loaded when shutting down or rebooting the system.
Wake On LAN is only supported on port A for the following devices:
Intel(R) PRO/1000 PT Dual Port Network Connection
Intel(R) PRO/1000 PT Dual Port Server Connection
Intel(R) PRO/1000 PT Dual Port Server Adapter
Intel(R) PRO/1000 PF Dual Port Server Adapter
Intel(R) PRO/1000 PT Quad Port Server Adapter
NAPI
----
NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled
or disabled based on the configuration of the kernel. To override
NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled
or disabled based on the configuration of the kernel. To override
the default, use the following compile-time flags.
To enable NAPI, compile the driver module, passing in a configuration option:
@ -457,88 +535,105 @@ Additional Configurations
Known Issues
============
Jumbo Frames System Requirement
-------------------------------
Dropped Receive Packets on Half-duplex 10/100 Networks
------------------------------------------------------
If you have an Intel PCI Express adapter running at 10mbps or 100mbps, half-
duplex, you may observe occasional dropped receive packets. There are no
workarounds for this problem in this network configuration. The network must
be updated to operate in full-duplex, and/or 1000mbps only.
Memory allocation failures have been observed on Linux systems with 64 MB
of RAM or less that are running Jumbo Frames. If you are using Jumbo
Frames, your system may require more than the advertised minimum
requirement of 64 MB of system memory.
Jumbo Frames System Requirement
-------------------------------
Memory allocation failures have been observed on Linux systems with 64 MB
of RAM or less that are running Jumbo Frames. If you are using Jumbo
Frames, your system may require more than the advertised minimum
requirement of 64 MB of system memory.
Performance Degradation with Jumbo Frames
-----------------------------------------
Performance Degradation with Jumbo Frames
-----------------------------------------
Degradation in throughput performance may be observed in some Jumbo frames
environments. If this is observed, increasing the application's socket
buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values
may help. See the specific application manual and
/usr/src/linux*/Documentation/
networking/ip-sysctl.txt for more details.
Degradation in throughput performance may be observed in some Jumbo frames
environments. If this is observed, increasing the application's socket
buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values
may help. See the specific application manual and
/usr/src/linux*/Documentation/
networking/ip-sysctl.txt for more details.
Jumbo Frames on Foundry BigIron 8000 switch
-------------------------------------------
There is a known issue using Jumbo frames when connected to a Foundry
BigIron 8000 switch. This is a 3rd party limitation. If you experience
loss of packets, lower the MTU size.
Jumbo frames on Foundry BigIron 8000 switch
-------------------------------------------
There is a known issue using Jumbo frames when connected to a Foundry
BigIron 8000 switch. This is a 3rd party limitation. If you experience
loss of packets, lower the MTU size.
Allocating Rx Buffers when Using Jumbo Frames
---------------------------------------------
Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if
the available memory is heavily fragmented. This issue may be seen with PCI-X
adapters or with packet split disabled. This can be reduced or eliminated
by changing the amount of available memory for receive buffer allocation, by
increasing /proc/sys/vm/min_free_kbytes.
Multiple Interfaces on Same Ethernet Broadcast Network
------------------------------------------------------
Multiple Interfaces on Same Ethernet Broadcast Network
------------------------------------------------------
Due to the default ARP behavior on Linux, it is not possible to have
one system on two IP networks in the same Ethernet broadcast domain
(non-partitioned switch) behave as expected. All Ethernet interfaces
will respond to IP traffic for any IP address assigned to the system.
This results in unbalanced receive traffic.
Due to the default ARP behavior on Linux, it is not possible to have
one system on two IP networks in the same Ethernet broadcast domain
(non-partitioned switch) behave as expected. All Ethernet interfaces
will respond to IP traffic for any IP address assigned to the system.
This results in unbalanced receive traffic.
If you have multiple interfaces in a server, either turn on ARP
filtering by entering:
If you have multiple interfaces in a server, either turn on ARP
filtering by entering:
echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
(this only works if your kernel's version is higher than 2.4.5),
echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
(this only works if your kernel's version is higher than 2.4.5),
NOTE: This setting is not saved across reboots. The configuration
change can be made permanent by adding the line:
net.ipv4.conf.all.arp_filter = 1
to the file /etc/sysctl.conf
NOTE: This setting is not saved across reboots. The configuration
change can be made permanent by adding the line:
net.ipv4.conf.all.arp_filter = 1
to the file /etc/sysctl.conf
or,
or,
install the interfaces in separate broadcast domains (either in
different switches or in a switch partitioned to VLANs).
install the interfaces in separate broadcast domains (either in
different switches or in a switch partitioned to VLANs).
82541/82547 can't link or are slow to link with some link partners
-----------------------------------------------------------------
There is a known compatibility issue with 82541/82547 and some
low-end switches where the link will not be established, or will
be slow to establish. In particular, these switches are known to
be incompatible with 82541/82547:
82541/82547 can't link or are slow to link with some link partners
-----------------------------------------------------------------
Planex FXG-08TE
I-O Data ETG-SH8
There is a known compatibility issue with 82541/82547 and some
low-end switches where the link will not be established, or will
be slow to establish. In particular, these switches are known to
be incompatible with 82541/82547:
To workaround this issue, the driver can be compiled with an override
of the PHY's master/slave setting. Forcing master or forcing slave
mode will improve time-to-link.
Planex FXG-08TE
I-O Data ETG-SH8
# make CFLAGS_EXTRA=-DE1000_MASTER_SLAVE=<n>
To workaround this issue, the driver can be compiled with an override
of the PHY's master/slave setting. Forcing master or forcing slave
mode will improve time-to-link.
Where <n> is:
# make EXTRA_CFLAGS=-DE1000_MASTER_SLAVE=<n>
0 = Hardware default
1 = Master mode
2 = Slave mode
3 = Auto master/slave
Where <n> is:
Disable rx flow control with ethtool
------------------------------------
In order to disable receive flow control using ethtool, you must turn
off auto-negotiation on the same command line.
0 = Hardware default
1 = Master mode
2 = Slave mode
3 = Auto master/slave
For example:
Disable rx flow control with ethtool
------------------------------------
ethtool -A eth? autoneg off rx off
In order to disable receive flow control using ethtool, you must turn
off auto-negotiation on the same command line.
For example:
ethtool -A eth? autoneg off rx off
Unplugging network cable while ethtool -p is running
----------------------------------------------------
In kernel versions 2.5.50 and later (including 2.6 kernel), unplugging
the network cable while ethtool -p is running will cause the system to
become unresponsive to keyboard commands, except for control-alt-delete.
Restarting the system appears to be the only remedy.
Support
@ -548,24 +643,10 @@ For general information, go to the Intel support website at:
http://support.intel.com
or the Intel Wired Networking project hosted by Sourceforge at:
or the Intel Wired Networking project hosted by Sourceforge at:
http://sourceforge.net/projects/e1000
If an issue is identified with the released source code on the supported
kernel with a supported adapter, email the specific information related
to the issue to e1000-devel@lists.sourceforge.net
License
=======
This software program is released under the terms of a license agreement
between you ('Licensee') and Intel. Do not use or load this software or any
associated materials (collectively, the 'Software') until you have carefully
read the full terms and conditions of the file COPYING located in this software
package. By loading or using the Software, you agree to the terms of this
Agreement. If you do not agree with the terms of this Agreement, do not
install or use the Software.
* Other names and brands may be claimed as the property of others.
to the issue to e1000-devel@lists.sf.net

View File

@ -0,0 +1,3 @@
A wiki document on how to use Generic Netlink can be found here:
* http://linux-net.osdl.org/index.php/Generic_Netlink_HOWTO

View File

@ -101,6 +101,11 @@ inet_peer_gc_maxtime - INTEGER
TCP variables:
somaxconn - INTEGER
Limit of socket listen() backlog, known in userspace as SOMAXCONN.
Defaults to 128. See also tcp_max_syn_backlog for additional tuning
for TCP sockets.
tcp_abc - INTEGER
Controls Appropriate Byte Count (ABC) defined in RFC3465.
ABC is a way of increasing congestion window (cwnd) more slowly
@ -112,15 +117,68 @@ tcp_abc - INTEGER
of two segments to compensate for delayed acknowledgments.
Default: 0 (off)
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 255. Default value
is 5, which corresponds to ~180seconds.
tcp_abort_on_overflow - BOOLEAN
If listening service is too slow to accept new connections,
reset them. Default state is FALSE. It means that if overflow
occurred due to a burst, connection will recover. Enable this
option _only_ if you are really sure that listening daemon
cannot be tuned to accept connections faster. Enabling this
option can harm clients of your server.
tcp_synack_retries - INTEGER
Number of times SYNACKs for a passive TCP connection attempt will
be retransmitted. Should not be higher than 255. Default value
is 5, which corresponds to ~180seconds.
tcp_adv_win_scale - INTEGER
Count buffering overhead as bytes/2^tcp_adv_win_scale
(if tcp_adv_win_scale > 0) or bytes-bytes/2^(-tcp_adv_win_scale),
if it is <= 0.
Default: 2
tcp_allowed_congestion_control - STRING
Show/set the congestion control choices available to non-privileged
processes. The list is a subset of those listed in
tcp_available_congestion_control.
Default is "reno" and the default setting (tcp_congestion_control).
tcp_app_win - INTEGER
Reserve max(window/2^tcp_app_win, mss) of window for application
buffer. Value 0 is special, it means that nothing is reserved.
Default: 31
tcp_available_congestion_control - STRING
Shows the available congestion control choices that are registered.
More congestion control algorithms may be available as modules,
but not loaded.
tcp_congestion_control - STRING
Set the congestion control algorithm to be used for new
connections. The algorithm "reno" is always available, but
additional choices may be available based on kernel configuration.
Default is set as part of kernel configuration.
tcp_dsack - BOOLEAN
Allows TCP to send "duplicate" SACKs.
tcp_ecn - BOOLEAN
Enable Explicit Congestion Notification in TCP.
tcp_fack - BOOLEAN
Enable FACK congestion avoidance and fast retransmission.
The value is not used, if tcp_sack is not enabled.
tcp_fin_timeout - INTEGER
Time to hold socket in state FIN-WAIT-2, if it was closed
by our side. Peer can be broken and never close its side,
or even died unexpectedly. Default value is 60sec.
Usual value used in 2.2 was 180 seconds, you may restore
it, but remember that if your machine is even underloaded WEB server,
you risk to overflow memory with kilotons of dead sockets,
FIN-WAIT-2 sockets are less dangerous than FIN-WAIT-1,
because they eat maximum 1.5K of memory, but they tend
to live longer. Cf. tcp_max_orphans.
tcp_frto - BOOLEAN
Enables F-RTO, an enhanced recovery algorithm for TCP retransmission
timeouts. It is particularly beneficial in wireless environments
where packet loss is typically due to random radio interference
rather than intermediate router congestion.
tcp_keepalive_time - INTEGER
How often TCP sends out keepalive messages when keepalive is enabled.
@ -136,54 +194,13 @@ tcp_keepalive_intvl - INTEGER
after probes started. Default value: 75sec i.e. connection
will be aborted after ~11 minutes of retries.
tcp_retries1 - INTEGER
How many times to retry before deciding that something is wrong
and it is necessary to report this suspicion to network layer.
Minimal RFC value is 3, it is default, which corresponds
to ~3sec-8min depending on RTO.
tcp_retries2 - INTEGER
How may times to retry before killing alive TCP connection.
RFC1122 says that the limit should be longer than 100 sec.
It is too small number. Default value 15 corresponds to ~13-30min
depending on RTO.
tcp_orphan_retries - INTEGER
How may times to retry before killing TCP connection, closed
by our side. Default value 7 corresponds to ~50sec-16min
depending on RTO. If you machine is loaded WEB server,
you should think about lowering this value, such sockets
may consume significant resources. Cf. tcp_max_orphans.
tcp_fin_timeout - INTEGER
Time to hold socket in state FIN-WAIT-2, if it was closed
by our side. Peer can be broken and never close its side,
or even died unexpectedly. Default value is 60sec.
Usual value used in 2.2 was 180 seconds, you may restore
it, but remember that if your machine is even underloaded WEB server,
you risk to overflow memory with kilotons of dead sockets,
FIN-WAIT-2 sockets are less dangerous than FIN-WAIT-1,
because they eat maximum 1.5K of memory, but they tend
to live longer. Cf. tcp_max_orphans.
tcp_max_tw_buckets - INTEGER
Maximal number of timewait sockets held by system simultaneously.
If this number is exceeded time-wait socket is immediately destroyed
and warning is printed. This limit exists only to prevent
simple DoS attacks, you _must_ not lower the limit artificially,
but rather increase it (probably, after increasing installed memory),
if network conditions require more than default value.
tcp_tw_recycle - BOOLEAN
Enable fast recycling TIME-WAIT sockets. Default value is 0.
It should not be changed without advice/request of technical
experts.
tcp_tw_reuse - BOOLEAN
Allow to reuse TIME-WAIT sockets for new connections when it is
safe from protocol viewpoint. Default value is 0.
It should not be changed without advice/request of technical
experts.
tcp_low_latency - BOOLEAN
If set, the TCP stack makes decisions that prefer lower
latency as opposed to higher throughput. By default, this
option is not set meaning that higher throughput is preferred.
An example of an application where this default should be
changed would be a Beowulf compute cluster.
Default: 0
tcp_max_orphans - INTEGER
Maximal number of TCP sockets not attached to any user file handle,
@ -197,41 +214,6 @@ tcp_max_orphans - INTEGER
more aggressively. Let me to remind again: each orphan eats
up to ~64K of unswappable memory.
tcp_abort_on_overflow - BOOLEAN
If listening service is too slow to accept new connections,
reset them. Default state is FALSE. It means that if overflow
occurred due to a burst, connection will recover. Enable this
option _only_ if you are really sure that listening daemon
cannot be tuned to accept connections faster. Enabling this
option can harm clients of your server.
tcp_syncookies - BOOLEAN
Only valid when the kernel was compiled with CONFIG_SYNCOOKIES
Send out syncookies when the syn backlog queue of a socket
overflows. This is to prevent against the common 'syn flood attack'
Default: FALSE
Note, that syncookies is fallback facility.
It MUST NOT be used to help highly loaded servers to stand
against legal connection rate. If you see synflood warnings
in your logs, but investigation shows that they occur
because of overload with legal connections, you should tune
another parameters until this warning disappear.
See: tcp_max_syn_backlog, tcp_synack_retries, tcp_abort_on_overflow.
syncookies seriously violate TCP protocol, do not allow
to use TCP extensions, can result in serious degradation
of some services (f.e. SMTP relaying), visible not by you,
but your clients and relays, contacting you. While you see
synflood warnings in logs not being really flooded, your server
is seriously misconfigured.
tcp_stdurg - BOOLEAN
Use the Host requirements interpretation of the TCP urg pointer field.
Most hosts use the older BSD interpretation, so if you turn this on
Linux might not communicate correctly with them.
Default: FALSE
tcp_max_syn_backlog - INTEGER
Maximal number of remembered connection requests, which are
still did not receive an acknowledgment from connecting client.
@ -239,24 +221,34 @@ tcp_max_syn_backlog - INTEGER
and 128 for low memory machines. If server suffers of overload,
try to increase this number.
tcp_window_scaling - BOOLEAN
Enable window scaling as defined in RFC1323.
tcp_max_tw_buckets - INTEGER
Maximal number of timewait sockets held by system simultaneously.
If this number is exceeded time-wait socket is immediately destroyed
and warning is printed. This limit exists only to prevent
simple DoS attacks, you _must_ not lower the limit artificially,
but rather increase it (probably, after increasing installed memory),
if network conditions require more than default value.
tcp_timestamps - BOOLEAN
Enable timestamps as defined in RFC1323.
tcp_mem - vector of 3 INTEGERs: min, pressure, max
min: below this number of pages TCP is not bothered about its
memory appetite.
tcp_sack - BOOLEAN
Enable select acknowledgments (SACKS).
pressure: when amount of memory allocated by TCP exceeds this number
of pages, TCP moderates its memory consumption and enters memory
pressure mode, which is exited when memory consumption falls
under "min".
tcp_fack - BOOLEAN
Enable FACK congestion avoidance and fast retransmission.
The value is not used, if tcp_sack is not enabled.
max: number of pages allowed for queueing by all TCP sockets.
tcp_dsack - BOOLEAN
Allows TCP to send "duplicate" SACKs.
Defaults are calculated at boot time from amount of available
memory.
tcp_ecn - BOOLEAN
Enable Explicit Congestion Notification in TCP.
tcp_orphan_retries - INTEGER
How may times to retry before killing TCP connection, closed
by our side. Default value 7 corresponds to ~50sec-16min
depending on RTO. If you machine is loaded WEB server,
you should think about lowering this value, such sockets
may consume significant resources. Cf. tcp_max_orphans.
tcp_reordering - INTEGER
Maximal reordering of packets in a TCP stream.
@ -267,20 +259,23 @@ tcp_retrans_collapse - BOOLEAN
On retransmit try to send bigger packets to work around bugs in
certain TCP stacks.
tcp_wmem - vector of 3 INTEGERs: min, default, max
min: Amount of memory reserved for send buffers for TCP socket.
Each TCP socket has rights to use it due to fact of its birth.
Default: 4K
tcp_retries1 - INTEGER
How many times to retry before deciding that something is wrong
and it is necessary to report this suspicion to network layer.
Minimal RFC value is 3, it is default, which corresponds
to ~3sec-8min depending on RTO.
default: Amount of memory allowed for send buffers for TCP socket
by default. This value overrides net.core.wmem_default used
by other protocols, it is usually lower than net.core.wmem_default.
Default: 16K
tcp_retries2 - INTEGER
How may times to retry before killing alive TCP connection.
RFC1122 says that the limit should be longer than 100 sec.
It is too small number. Default value 15 corresponds to ~13-30min
depending on RTO.
max: Maximal amount of memory allowed for automatically selected
send buffers for TCP socket. This value does not override
net.core.wmem_max, "static" selection via SO_SNDBUF does not use this.
Default: 128K
tcp_rfc1337 - BOOLEAN
If set, the TCP stack behaves conforming to RFC1337. If unset,
we are not conforming to RFC, but prevent TCP TIME_WAIT
assassination.
Default: 0
tcp_rmem - vector of 3 INTEGERs: min, default, max
min: Minimal size of receive buffer used by TCP sockets.
@ -299,74 +294,8 @@ tcp_rmem - vector of 3 INTEGERs: min, default, max
net.core.rmem_max, "static" selection via SO_RCVBUF does not use this.
Default: 87380*2 bytes.
tcp_mem - vector of 3 INTEGERs: min, pressure, max
min: below this number of pages TCP is not bothered about its
memory appetite.
pressure: when amount of memory allocated by TCP exceeds this number
of pages, TCP moderates its memory consumption and enters memory
pressure mode, which is exited when memory consumption falls
under "min".
max: number of pages allowed for queueing by all TCP sockets.
Defaults are calculated at boot time from amount of available
memory.
tcp_app_win - INTEGER
Reserve max(window/2^tcp_app_win, mss) of window for application
buffer. Value 0 is special, it means that nothing is reserved.
Default: 31
tcp_adv_win_scale - INTEGER
Count buffering overhead as bytes/2^tcp_adv_win_scale
(if tcp_adv_win_scale > 0) or bytes-bytes/2^(-tcp_adv_win_scale),
if it is <= 0.
Default: 2
tcp_rfc1337 - BOOLEAN
If set, the TCP stack behaves conforming to RFC1337. If unset,
we are not conforming to RFC, but prevent TCP TIME_WAIT
assassination.
Default: 0
tcp_low_latency - BOOLEAN
If set, the TCP stack makes decisions that prefer lower
latency as opposed to higher throughput. By default, this
option is not set meaning that higher throughput is preferred.
An example of an application where this default should be
changed would be a Beowulf compute cluster.
Default: 0
tcp_tso_win_divisor - INTEGER
This allows control over what percentage of the congestion window
can be consumed by a single TSO frame.
The setting of this parameter is a choice between burstiness and
building larger TSO frames.
Default: 3
tcp_frto - BOOLEAN
Enables F-RTO, an enhanced recovery algorithm for TCP retransmission
timeouts. It is particularly beneficial in wireless environments
where packet loss is typically due to random radio interference
rather than intermediate router congestion.
tcp_congestion_control - STRING
Set the congestion control algorithm to be used for new
connections. The algorithm "reno" is always available, but
additional choices may be available based on kernel configuration.
somaxconn - INTEGER
Limit of socket listen() backlog, known in userspace as SOMAXCONN.
Defaults to 128. See also tcp_max_syn_backlog for additional tuning
for TCP sockets.
tcp_workaround_signed_windows - BOOLEAN
If set, assume no receipt of a window scaling option means the
remote TCP is broken and treats the window as a signed quantity.
If unset, assume the remote TCP is not broken even if we do
not receive a window scaling option from them.
Default: 0
tcp_sack - BOOLEAN
Enable select acknowledgments (SACKS).
tcp_slow_start_after_idle - BOOLEAN
If set, provide RFC2861 behavior and time out the congestion
@ -375,6 +304,89 @@ tcp_slow_start_after_idle - BOOLEAN
be timed out after an idle period.
Default: 1
tcp_stdurg - BOOLEAN
Use the Host requirements interpretation of the TCP urg pointer field.
Most hosts use the older BSD interpretation, so if you turn this on
Linux might not communicate correctly with them.
Default: FALSE
tcp_synack_retries - INTEGER
Number of times SYNACKs for a passive TCP connection attempt will
be retransmitted. Should not be higher than 255. Default value
is 5, which corresponds to ~180seconds.
tcp_syncookies - BOOLEAN
Only valid when the kernel was compiled with CONFIG_SYNCOOKIES
Send out syncookies when the syn backlog queue of a socket
overflows. This is to prevent against the common 'syn flood attack'
Default: FALSE
Note, that syncookies is fallback facility.
It MUST NOT be used to help highly loaded servers to stand
against legal connection rate. If you see synflood warnings
in your logs, but investigation shows that they occur
because of overload with legal connections, you should tune
another parameters until this warning disappear.
See: tcp_max_syn_backlog, tcp_synack_retries, tcp_abort_on_overflow.
syncookies seriously violate TCP protocol, do not allow
to use TCP extensions, can result in serious degradation
of some services (f.e. SMTP relaying), visible not by you,
but your clients and relays, contacting you. While you see
synflood warnings in logs not being really flooded, your server
is seriously misconfigured.
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 255. Default value
is 5, which corresponds to ~180seconds.
tcp_timestamps - BOOLEAN
Enable timestamps as defined in RFC1323.
tcp_tso_win_divisor - INTEGER
This allows control over what percentage of the congestion window
can be consumed by a single TSO frame.
The setting of this parameter is a choice between burstiness and
building larger TSO frames.
Default: 3
tcp_tw_recycle - BOOLEAN
Enable fast recycling TIME-WAIT sockets. Default value is 0.
It should not be changed without advice/request of technical
experts.
tcp_tw_reuse - BOOLEAN
Allow to reuse TIME-WAIT sockets for new connections when it is
safe from protocol viewpoint. Default value is 0.
It should not be changed without advice/request of technical
experts.
tcp_window_scaling - BOOLEAN
Enable window scaling as defined in RFC1323.
tcp_wmem - vector of 3 INTEGERs: min, default, max
min: Amount of memory reserved for send buffers for TCP socket.
Each TCP socket has rights to use it due to fact of its birth.
Default: 4K
default: Amount of memory allowed for send buffers for TCP socket
by default. This value overrides net.core.wmem_default used
by other protocols, it is usually lower than net.core.wmem_default.
Default: 16K
max: Maximal amount of memory allowed for automatically selected
send buffers for TCP socket. This value does not override
net.core.wmem_max, "static" selection via SO_SNDBUF does not use this.
Default: 128K
tcp_workaround_signed_windows - BOOLEAN
If set, assume no receipt of a window scaling option means the
remote TCP is broken and treats the window as a signed quantity.
If unset, assume the remote TCP is not broken even if we do
not receive a window scaling option from them.
Default: 0
CIPSOv4 Variables:
cipso_cache_enable - BOOLEAN
@ -974,4 +986,3 @@ no_cong_thresh FIXME
slot_timeout FIXME
warn_noreply_time FIXME
$Id: ip-sysctl.txt,v 1.20 2001/12/13 09:00:18 davem Exp $

View File

@ -81,7 +81,7 @@ Installation
1M. The RAM size decides the number of buffers and buffer size. The default
size and number of buffers are set as following:
Totol Rx RAM Tx RAM Rx Buf Tx Buf Rx buf Tx buf
Total Rx RAM Tx RAM Rx Buf Tx Buf Rx buf Tx buf
RAM size size size size size cnt cnt
-------- ------ ------ ------ ------ ------ ------
128K 64K 64K 10K 10K 6 6

View File

@ -284,7 +284,7 @@ the necessary memory, so normally limits can be reached.
-------------------
If you check the source code you will see that what I draw here as a frame
is not only the link level frame. At the begining of each frame there is a
is not only the link level frame. At the beginning of each frame there is a
header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
meta information like timestamp. So what we draw here a frame it's really
the following (from include/linux/if_packet.h):

View File

@ -1,7 +1,7 @@
-------
PHY Abstraction Layer
(Updated 2005-07-21)
(Updated 2006-11-30)
Purpose
@ -97,11 +97,12 @@ Letting the PHY Abstraction Layer do Everything
Next, you need to know the device name of the PHY connected to this device.
The name will look something like, "phy0:0", where the first number is the
bus id, and the second is the PHY's address on that bus.
bus id, and the second is the PHY's address on that bus. Typically,
the bus is responsible for making its ID unique.
Now, to connect, just call this function:
phydev = phy_connect(dev, phy_name, &adjust_link, flags);
phydev = phy_connect(dev, phy_name, &adjust_link, flags, interface);
phydev is a pointer to the phy_device structure which represents the PHY. If
phy_connect is successful, it will return the pointer. dev, here, is the
@ -115,6 +116,10 @@ Letting the PHY Abstraction Layer do Everything
This is useful if the system has put hardware restrictions on
the PHY/controller, of which the PHY needs to be aware.
interface is a u32 which specifies the connection type used
between the controller and the PHY. Examples are GMII, MII,
RGMII, and SGMII. For a full list, see include/linux/phy.h
Now just make sure that phydev->supported and phydev->advertising have any
values pruned from them which don't make sense for your controller (a 10/100
controller may be connected to a gigabit capable PHY, so you would need to
@ -191,7 +196,7 @@ Doing it all yourself
start, or disables then frees them for stop.
struct phy_device * phy_attach(struct net_device *dev, const char *phy_id,
u32 flags);
u32 flags, phy_interface_t interface);
Attaches a network device to a particular PHY, binding the PHY to a generic
driver if none was found during bus initialization. Passes in

View File

@ -63,8 +63,8 @@ Current:
Result: OK: 13101142(c12220741+d880401) usec, 10000000 (60byte,0frags)
763292pps 390Mb/sec (390805504bps) errors: 39664
Confguring threads and devices
==============================
Configuring threads and devices
================================
This is done via the /proc interface easiest done via pgset in the scripts
Examples:
@ -116,7 +116,7 @@ Examples:
there must be no spaces between the
arguments. Leading zeros are required.
Do not set the bottom of stack bit,
thats done automatically. If you do
that's done automatically. If you do
set the bottom of stack bit, that
indicates that you want to randomly
generate that address and the flag

View File

@ -25,7 +25,7 @@ up into 3 parts because of the length of the line):
1000 0 54165785 4 cd1e6040 25 4 27 3 -1
| | | | | | | | | |--> slow start size threshold,
| | | | | | | | | or -1 if the treshold
| | | | | | | | | or -1 if the threshold
| | | | | | | | | is >= 0xFFFF
| | | | | | | | |----> sending congestion window
| | | | | | | |-------> (ack.quick<<1)|ack.pingpong

View File

@ -346,7 +346,7 @@ Possible modes:
depending on the load of the system. If the driver detects that the
system load is too high, the driver tries to shield the system against
too much network load by enabling interrupt moderation. If - at a later
time - the CPU utilizaton decreases again (or if the network load is
time - the CPU utilization decreases again (or if the network load is
negligible) the interrupt moderation will automatically be disabled.
Interrupt moderation should be used when the driver has to handle one or more

View File

@ -126,7 +126,7 @@ comx0/boardnum - board number of the SliceCom in the PC (using the 'natural'
Though the options below are to be set on a single interface, they apply to the
whole board. The restriction, to use them on 'UP' interfaces, is because the
command sequence below could lead to unpredicable results.
command sequence below could lead to unpredictable results.
# echo 0 >boardnum
# echo internal >clock_source

View File

@ -0,0 +1,281 @@
===========================================================================
The UDP-Lite protocol (RFC 3828)
===========================================================================
UDP-Lite is a Standards-Track IETF transport protocol whose characteristic
is a variable-length checksum. This has advantages for transport of multimedia
(video, VoIP) over wireless networks, as partly damaged packets can still be
fed into the codec instead of being discarded due to a failed checksum test.
This file briefly describes the existing kernel support and the socket API.
For in-depth information, you can consult:
o The UDP-Lite Homepage: http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/
Fom here you can also download some example application source code.
o The UDP-Lite HOWTO on
http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/files/UDP-Lite-HOWTO.txt
o The Wireshark UDP-Lite WiKi (with capture files):
http://wiki.wireshark.org/Lightweight_User_Datagram_Protocol
o The Protocol Spec, RFC 3828, http://www.ietf.org/rfc/rfc3828.txt
I) APPLICATIONS
Several applications have been ported successfully to UDP-Lite. Ethereal
(now called wireshark) has UDP-Litev4/v6 support by default. The tarball on
http://www.erg.abdn.ac.uk/users/gerrit/udp-lite/files/udplite_linux.tar.gz
has source code for several v4/v6 client-server and network testing examples.
Porting applications to UDP-Lite is straightforward: only socket level and
IPPROTO need to be changed; senders additionally set the checksum coverage
length (default = header length = 8). Details are in the next section.
II) PROGRAMMING API
UDP-Lite provides a connectionless, unreliable datagram service and hence
uses the same socket type as UDP. In fact, porting from UDP to UDP-Lite is
very easy: simply add `IPPROTO_UDPLITE' as the last argument of the socket(2)
call so that the statement looks like:
s = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);
or, respectively,
s = socket(PF_INET6, SOCK_DGRAM, IPPROTO_UDPLITE);
With just the above change you are able to run UDP-Lite services or connect
to UDP-Lite servers. The kernel will assume that you are not interested in
using partial checksum coverage and so emulate UDP mode (full coverage).
To make use of the partial checksum coverage facilities requires setting a
single socket option, which takes an integer specifying the coverage length:
* Sender checksum coverage: UDPLITE_SEND_CSCOV
For example,
int val = 20;
setsockopt(s, SOL_UDPLITE, UDPLITE_SEND_CSCOV, &val, sizeof(int));
sets the checksum coverage length to 20 bytes (12b data + 8b header).
Of each packet only the first 20 bytes (plus the pseudo-header) will be
checksummed. This is useful for RTP applications which have a 12-byte
base header.
* Receiver checksum coverage: UDPLITE_RECV_CSCOV
This option is the receiver-side analogue. It is truly optional, i.e. not
required to enable traffic with partial checksum coverage. Its function is
that of a traffic filter: when enabled, it instructs the kernel to drop
all packets which have a coverage _less_ than this value. For example, if
RTP and UDP headers are to be protected, a receiver can enforce that only
packets with a minimum coverage of 20 are admitted:
int min = 20;
setsockopt(s, SOL_UDPLITE, UDPLITE_RECV_CSCOV, &min, sizeof(int));
The calls to getsockopt(2) are analogous. Being an extension and not a stand-
alone protocol, all socket options known from UDP can be used in exactly the
same manner as before, e.g. UDP_CORK or UDP_ENCAP.
A detailed discussion of UDP-Lite checksum coverage options is in section IV.
III) HEADER FILES
The socket API requires support through header files in /usr/include:
* /usr/include/netinet/in.h
to define IPPROTO_UDPLITE
* /usr/include/netinet/udplite.h
for UDP-Lite header fields and protocol constants
For testing purposes, the following can serve as a `mini' header file:
#define IPPROTO_UDPLITE 136
#define SOL_UDPLITE 136
#define UDPLITE_SEND_CSCOV 10
#define UDPLITE_RECV_CSCOV 11
Ready-made header files for various distros are in the UDP-Lite tarball.
IV) KERNEL BEHAVIOUR WITH REGARD TO THE VARIOUS SOCKET OPTIONS
To enable debugging messages, the log level need to be set to 8, as most
messages use the KERN_DEBUG level (7).
1) Sender Socket Options
If the sender specifies a value of 0 as coverage length, the module
assumes full coverage, transmits a packet with coverage length of 0
and according checksum. If the sender specifies a coverage < 8 and
different from 0, the kernel assumes 8 as default value. Finally,
if the specified coverage length exceeds the packet length, the packet
length is used instead as coverage length.
2) Receiver Socket Options
The receiver specifies the minimum value of the coverage length it
is willing to accept. A value of 0 here indicates that the receiver
always wants the whole of the packet covered. In this case, all
partially covered packets are dropped and an error is logged.
It is not possible to specify illegal values (<0 and <8); in these
cases the default of 8 is assumed.
All packets arriving with a coverage value less than the specified
threshold are discarded, these events are also logged.
3) Disabling the Checksum Computation
On both sender and receiver, checksumming will always be performed
and can not be disabled using SO_NO_CHECK. Thus
setsockopt(sockfd, SOL_SOCKET, SO_NO_CHECK, ... );
will always will be ignored, while the value of
getsockopt(sockfd, SOL_SOCKET, SO_NO_CHECK, &value, ...);
is meaningless (as in TCP). Packets with a zero checksum field are
illegal (cf. RFC 3828, sec. 3.1) will be silently discarded.
4) Fragmentation
The checksum computation respects both buffersize and MTU. The size
of UDP-Lite packets is determined by the size of the send buffer. The
minimum size of the send buffer is 2048 (defined as SOCK_MIN_SNDBUF
in include/net/sock.h), the default value is configurable as
net.core.wmem_default or via setting the SO_SNDBUF socket(7)
option. The maximum upper bound for the send buffer is determined
by net.core.wmem_max.
Given a payload size larger than the send buffer size, UDP-Lite will
split the payload into several individual packets, filling up the
send buffer size in each case.
The precise value also depends on the interface MTU. The interface MTU,
in turn, may trigger IP fragmentation. In this case, the generated
UDP-Lite packet is split into several IP packets, of which only the
first one contains the L4 header.
The send buffer size has implications on the checksum coverage length.
Consider the following example:
Payload: 1536 bytes Send Buffer: 1024 bytes
MTU: 1500 bytes Coverage Length: 856 bytes
UDP-Lite will ship the 1536 bytes in two separate packets:
Packet 1: 1024 payload + 8 byte header + 20 byte IP header = 1052 bytes
Packet 2: 512 payload + 8 byte header + 20 byte IP header = 540 bytes
The coverage packet covers the UDP-Lite header and 848 bytes of the
payload in the first packet, the second packet is fully covered. Note
that for the second packet, the coverage length exceeds the packet
length. The kernel always re-adjusts the coverage length to the packet
length in such cases.
As an example of what happens when one UDP-Lite packet is split into
several tiny fragments, consider the following example.
Payload: 1024 bytes Send buffer size: 1024 bytes
MTU: 300 bytes Coverage length: 575 bytes
+-+-----------+--------------+--------------+--------------+
|8| 272 | 280 | 280 | 280 |
+-+-----------+--------------+--------------+--------------+
280 560 840 1032
^
*****checksum coverage*************
The UDP-Lite module generates one 1032 byte packet (1024 + 8 byte
header). According to the interface MTU, these are split into 4 IP
packets (280 byte IP payload + 20 byte IP header). The kernel module
sums the contents of the entire first two packets, plus 15 bytes of
the last packet before releasing the fragments to the IP module.
To see the analogous case for IPv6 fragmentation, consider a link
MTU of 1280 bytes and a write buffer of 3356 bytes. If the checksum
coverage is less than 1232 bytes (MTU minus IPv6/fragment header
lengths), only the first fragment needs to be considered. When using
larger checksum coverage lengths, each eligible fragment needs to be
checksummed. Suppose we have a checksum coverage of 3062. The buffer
of 3356 bytes will be split into the following fragments:
Fragment 1: 1280 bytes carrying 1232 bytes of UDP-Lite data
Fragment 2: 1280 bytes carrying 1232 bytes of UDP-Lite data
Fragment 3: 948 bytes carrying 900 bytes of UDP-Lite data
The first two fragments have to be checksummed in full, of the last
fragment only 598 (= 3062 - 2*1232) bytes are checksummed.
While it is important that such cases are dealt with correctly, they
are (annoyingly) rare: UDP-Lite is designed for optimising multimedia
performance over wireless (or generally noisy) links and thus smaller
coverage lenghts are likely to be expected.
V) UDP-LITE RUNTIME STATISTICS AND THEIR MEANING
Exceptional and error conditions are logged to syslog at the KERN_DEBUG
level. Live statistics about UDP-Lite are available in /proc/net/snmp
and can (with newer versions of netstat) be viewed using
netstat -svu
This displays UDP-Lite statistics variables, whose meaning is as follows.
InDatagrams: Total number of received datagrams.
NoPorts: Number of packets received to an unknown port.
These cases are counted separately (not as InErrors).
InErrors: Number of erroneous UDP-Lite packets. Errors include:
* internal socket queue receive errors
* packet too short (less than 8 bytes or stated
coverage length exceeds received length)
* xfrm4_policy_check() returned with error
* application has specified larger min. coverage
length than that of incoming packet
* checksum coverage violated
* bad checksum
OutDatagrams: Total number of sent datagrams.
These statistics derive from the UDP MIB (RFC 2013).
VI) IPTABLES
There is packet match support for UDP-Lite as well as support for the LOG target.
If you copy and paste the following line into /etc/protcols,
udplite 136 UDP-Lite # UDP-Lite [RFC 3828]
then
iptables -A INPUT -p udplite -j LOG
will produce logging output to syslog. Dropping and rejecting packets also works.
VII) MAINTAINER ADDRESS
The UDP-Lite patch was developed at
University of Aberdeen
Electronics Research Group
Department of Engineering
Fraser Noble Building
Aberdeen AB24 3UE; UK
The current maintainer is Gerrit Renker, <gerrit@erg.abdn.ac.uk>. Initial
code was developed by William Stanislaus, <william@erg.abdn.ac.uk>.

View File

@ -412,7 +412,7 @@ beta-2.1.4 Jul 2000 o Dynamic interface configuration:
beta3-2.1.4 Jul 2000 o X25 M_BIT Problem fix.
o Added the Multi-Port PPP
Updated utilites for the Multi-Port PPP.
Updated utilities for the Multi-Port PPP.
2.1.4 Aut 2000
o In X25API:
@ -444,13 +444,13 @@ beta1-2.1.5 Nov 15 2000
o Cpipemon
- Added set FT1 commands to the cpipemon. Thus CSU/DSU
configuraiton can be performed using cpipemon.
configuration can be performed using cpipemon.
All systems that cannot run cfgft1 GUI utility should
use cpipemon to configure the on board CSU/DSU.
o Keyboard Led Monitor/Debugger
- A new utilty /usr/sbin/wpkbdmon uses keyboard leds
- A new utility /usr/sbin/wpkbdmon uses keyboard leds
to convey operational statistic information of the
Sangoma WANPIPE cards.
NUM_LOCK = Line State (On=connected, Off=disconnected)
@ -464,7 +464,7 @@ beta1-2.1.5 Nov 15 2000
- Appropriate number of devices are dynamically loaded
based on the number of Sangoma cards found.
Note: The kernel configuraiton option
Note: The kernel configuration option
CONFIG_WANPIPE_CARDS has been taken out.
o Fixed the Frame Relay and Chdlc network interfaces so they are

View File

@ -47,10 +47,13 @@ aevent_id structure looks like:
struct xfrm_aevent_id {
struct xfrm_usersa_id sa_id;
xfrm_address_t saddr;
__u32 flags;
__u32 reqid;
};
xfrm_usersa_id in this message layout identifies the SA.
The unique SA is identified by the combination of xfrm_usersa_id,
reqid and saddr.
flags are used to indicate different things. The possible
flags are:

View File

@ -184,7 +184,7 @@ static const struct pnp_id pnp_dev_table[] = {
Please note that the character 'X' can be used as a wild card in the function
portion (last four characters).
ex:
/* Unkown PnP modems */
/* Unknown PnP modems */
{ "PNPCXXX", UNKNOWN_DEV },
Supported PnP card IDs can optionally be defined.

View File

@ -153,7 +153,7 @@ Description:
events, which is implicit if it doesn't even support it in the first
place).
Note that the PMC Register in the device's PM Capabilties has a bitmask
Note that the PMC Register in the device's PM Capabilities has a bitmask
of the states it supports generating PME# from. D3hot is bit 3 and
D3cold is bit 4. So, while a value of 4 as the state may not seem
semantically correct, it is.
@ -268,7 +268,7 @@ to wake the system up. (However, it is possible that a device may support
some non-standard way of generating a wake event on sleep.)
Bits 15:11 of the PMC (Power Mgmt Capabilities) Register in a device's
PM Capabilties describe what power states the device supports generating a
PM Capabilities describe what power states the device supports generating a
wake event from:
+------------------+

View File

@ -0,0 +1,56 @@
How to get s2ram working
~~~~~~~~~~~~~~~~~~~~~~~~
2006 Linus Torvalds
2006 Pavel Machek
1) Check suspend.sf.net, program s2ram there has long whitelist of
"known ok" machines, along with tricks to use on each one.
2) If that does not help, try reading tricks.txt and
video.txt. Perhaps problem is as simple as broken module, and
simple module unload can fix it.
3) You can use Linus' TRACE_RESUME infrastructure, described below.
Using TRACE_RESUME
~~~~~~~~~~~~~~~~~~
I've been working at making the machines I have able to STR, and almost
always it's a driver that is buggy. Thank God for the suspend/resume
debugging - the thing that Chuck tried to disable. That's often the _only_
way to debug these things, and it's actually pretty powerful (but
time-consuming - having to insert TRACE_RESUME() markers into the device
driver that doesn't resume and recompile and reboot).
Anyway, the way to debug this for people who are interested (have a
machine that doesn't boot) is:
- enable PM_DEBUG, and PM_TRACE
- use a script like this:
#!/bin/sh
sync
echo 1 > /sys/power/pm_trace
echo mem > /sys/power/state
to suspend
- if it doesn't come back up (which is usually the problem), reboot by
holding the power button down, and look at the dmesg output for things
like
Magic number: 4:156:725
hash matches drivers/base/power/resume.c:28
hash matches device 0000:01:00.0
which means that the last trace event was just before trying to resume
device 0000:01:00.0. Then figure out what driver is controlling that
device (lspci and /sys/devices/pci* is your friend), and see if you can
fix it, disable it, or trace into its resume function.
For example, the above happens to be the VGA device on my EVO, which I
used to run with "radeonfb" (it's an ATI Radeon mobility). It turns out
that "radeonfb" simply cannot resume that device - it tries to set the
PLL's, and it just _hangs_. Using the regular VGA console and letting X
resume it instead works fine.

View File

@ -62,7 +62,7 @@ setup via another operating system for it to use. Despite the
inconvenience, this method requires minimal work by the kernel, since
the firmware will also handle restoring memory contents on resume.
If the kernel is responsible for persistantly saving state, a mechanism
If the kernel is responsible for persistently saving state, a mechanism
called 'swsusp' (Swap Suspend) is used to write memory contents to
free swap space. swsusp has some restrictive requirements, but should
work in most cases. Some, albeit outdated, documentation can be found

View File

@ -0,0 +1,60 @@
Using swap files with software suspend (swsusp)
(C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
The Linux kernel handles swap files almost in the same way as it handles swap
partitions and there are only two differences between these two types of swap
areas:
(1) swap files need not be contiguous,
(2) the header of a swap file is not in the first block of the partition that
holds it. From the swsusp's point of view (1) is not a problem, because it is
already taken care of by the swap-handling code, but (2) has to be taken into
consideration.
In principle the location of a swap file's header may be determined with the
help of appropriate filesystem driver. Unfortunately, however, it requires the
filesystem holding the swap file to be mounted, and if this filesystem is
journaled, it cannot be mounted during resume from disk. For this reason to
identify a swap file swsusp uses the name of the partition that holds the file
and the offset from the beginning of the partition at which the swap file's
header is located. For convenience, this offset is expressed in <PAGE_SIZE>
units.
In order to use a swap file with swsusp, you need to:
1) Create the swap file and make it active, eg.
# dd if=/dev/zero of=<swap_file_path> bs=1024 count=<swap_file_size_in_k>
# mkswap <swap_file_path>
# swapon <swap_file_path>
2) Use an application that will bmap the swap file with the help of the
FIBMAP ioctl and determine the location of the file's swap header, as the
offset, in <PAGE_SIZE> units, from the beginning of the partition which
holds the swap file.
3) Add the following parameters to the kernel command line:
resume=<swap_file_partition> resume_offset=<swap_file_offset>
where <swap_file_partition> is the partition on which the swap file is located
and <swap_file_offset> is the offset of the swap header determined by the
application in 2) (of course, this step may be carried out automatically
by the same application that determies the swap file's header offset using the
FIBMAP ioctl)
OR
Use a userland suspend application that will set the partition and offset
with the help of the SNAPSHOT_SET_SWAP_AREA ioctl described in
Documentation/power/userland-swsusp.txt (this is the only method to suspend
to a swap file allowing the resume to be initiated from an initrd or initramfs
image).
Now, swsusp will use the swap file in the same way in which it would use a swap
partition. In particular, the swap file has to be active (ie. be present in
/proc/swaps) so that it can be used for suspending.
Note that if the swap file used for suspending is deleted and recreated,
the location of its header need not be the same as before. Thus every time
this happens the value of the "resume_offset=" kernel command line parameter
has to be updated.

View File

@ -153,7 +153,7 @@ add:
If the thread is needed for writing the image to storage, you should
instead set the PF_NOFREEZE process flag when creating the thread (and
be very carefull).
be very careful).
Q: What is the difference between "platform", "shutdown" and
@ -297,20 +297,12 @@ system is shut down or suspended. Additionally use the encrypted
suspend image to prevent sensitive data from being stolen after
resume.
Q: Why can't we suspend to a swap file?
Q: Can I suspend to a swap file?
A: Because accessing swap file needs the filesystem mounted, and
filesystem might do something wrong (like replaying the journal)
during mount.
There are few ways to get that fixed:
1) Probably could be solved by modifying every filesystem to support
some kind of "really read-only!" option. Patches welcome.
2) suspend2 gets around that by storing absolute positions in on-disk
image (and blocksize), with resume parameter pointing directly to
suspend header.
A: Generally, yes, you can. However, it requires you to use the "resume=" and
"resume_offset=" kernel command line parameters, so the resume from a swap file
cannot be initiated from an initrd or initramfs image. See
swsusp-and-swap-files.txt for details.
Q: Is there a maximum system RAM size that is supported by swsusp?

Some files were not shown because too many files have changed in this diff Show More