dect
/
linux-2.6
Archived
13
0
Fork 0

Auto-update from upstream

This commit is contained in:
Tony Luck 2006-06-23 13:46:23 -07:00
commit 8cf60e04a1
1631 changed files with 58392 additions and 31520 deletions

77
Documentation/ABI/README Normal file
View File

@ -0,0 +1,77 @@
This directory attempts to document the ABI between the Linux kernel and
userspace, and the relative stability of these interfaces. Due to the
everchanging nature of Linux, and the differing maturity levels, these
interfaces should be used by userspace programs in different ways.
We have four different levels of ABI stability, as shown by the four
different subdirectories in this location. Interfaces may change levels
of stability according to the rules described below.
The different levels of stability are:
stable/
This directory documents the interfaces that the developer has
defined to be stable. Userspace programs are free to use these
interfaces with no restrictions, and backward compatibility for
them will be guaranteed for at least 2 years. Most interfaces
(like syscalls) are expected to never change and always be
available.
testing/
This directory documents interfaces that are felt to be stable,
as the main development of this interface has been completed.
The interface can be changed to add new features, but the
current interface will not break by doing this, unless grave
errors or security problems are found in them. Userspace
programs can start to rely on these interfaces, but they must be
aware of changes that can occur before these interfaces move to
be marked stable. Programs that use these interfaces are
strongly encouraged to add their name to the description of
these interfaces, so that the kernel developers can easily
notify them if any changes occur (see the description of the
layout of the files below for details on how to do this.)
obsolete/
This directory documents interfaces that are still remaining in
the kernel, but are marked to be removed at some later point in
time. The description of the interface will document the reason
why it is obsolete and when it can be expected to be removed.
The file Documentation/feature-removal-schedule.txt may describe
some of these interfaces, giving a schedule for when they will
be removed.
removed/
This directory contains a list of the old interfaces that have
been removed from the kernel.
Every file in these directories will contain the following information:
What: Short description of the interface
Date: Date created
KernelVersion: Kernel version this feature first showed up in.
Contact: Primary contact for this interface (may be a mailing list)
Description: Long description of the interface and how to use it.
Users: All users of this interface who wish to be notified when
it changes. This is very important for interfaces in
the "testing" stage, so that kernel developers can work
with userspace developers to ensure that things do not
break in ways that are unacceptable. It is also
important to get feedback for these interfaces to make
sure they are working in a proper way and do not need to
be changed further.
How things move between levels:
Interfaces in stable may move to obsolete, as long as the proper
notification is given.
Interfaces may be removed from obsolete and the kernel as long as the
documented amount of time has gone by.
Interfaces in the testing state can move to the stable state when the
developers feel they are finished. They cannot be removed from the
kernel tree without going through the obsolete state first.
It's up to the developer to place their interfaces in the category they
wish for it to start out in.

View File

@ -0,0 +1,13 @@
What: devfs
Date: July 2005
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
devfs has been unmaintained for a number of years, has unfixable
races, contains a naming policy within the kernel that is
against the LSB, and can be replaced by using udev.
The files fs/devfs/*, include/linux/devfs_fs*.h will be removed,
along with the the assorted devfs function calls throughout the
kernel tree.
Users:

View File

@ -0,0 +1,10 @@
What: The kernel syscall interface
Description:
This interface matches much of the POSIX interface and is based
on it and other Unix based interfaces. It will only be added to
over time, and not have things removed from it.
Note that this interface is different for every architecture
that Linux supports. Please see the architecture-specific
documentation for details on the syscall numbers that are to be
mapped to each syscall.

View File

@ -0,0 +1,30 @@
What: /sys/module
Description:
The /sys/module tree consists of the following structure:
/sys/module/MODULENAME
The name of the module that is in the kernel. This
module name will show up either if the module is built
directly into the kernel, or if it is loaded as a
dyanmic module.
/sys/module/MODULENAME/parameters
This directory contains individual files that are each
individual parameters of the module that are able to be
changed at runtime. See the individual module
documentation as to the contents of these parameters and
what they accomplish.
Note: The individual parameter names and values are not
considered stable, only the fact that they will be
placed in this location within sysfs. See the
individual driver documentation for details as to the
stability of the different parameters.
/sys/module/MODULENAME/refcnt
If the module is able to be unloaded from the kernel, this file
will contain the current reference count of the module.
Note: If the module is built into the kernel, or if the
CONFIG_MODULE_UNLOAD kernel configuration value is not enabled,
this file will not be present.

View File

@ -0,0 +1,16 @@
What: /sys/class/
Date: Febuary 2006
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
The /sys/class directory will consist of a group of
subdirectories describing individual classes of devices
in the kernel. The individual directories will consist
of either subdirectories, or symlinks to other
directories.
All programs that use this directory tree must be able
to handle both subdirectories or symlinks in order to
work properly.
Users:
udev <linux-hotplug-devel@lists.sourceforge.net>

View File

@ -0,0 +1,25 @@
What: /sys/devices
Date: February 2006
Contact: Greg Kroah-Hartman <gregkh@suse.de>
Description:
The /sys/devices tree contains a snapshot of the
internal state of the kernel device tree. Devices will
be added and removed dynamically as the machine runs,
and between different kernel versions, the layout of the
devices within this tree will change.
Please do not rely on the format of this tree because of
this. If a program wishes to find different things in
the tree, please use the /sys/class structure and rely
on the symlinks there to point to the proper location
within the /sys/devices tree of the individual devices.
Or rely on the uevent messages to notify programs of
devices being added and removed from this tree to find
the location of those devices.
Note that sometimes not all devices along the directory
chain will have emitted uevent messages, so userspace
programs must be able to handle such occurrences.
Users:
udev <linux-hotplug-devel@lists.sourceforge.net>

View File

@ -155,7 +155,83 @@ problem, which is called the function-growth-hormone-imbalance syndrome.
See next chapter.
Chapter 5: Functions
Chapter 5: Typedefs
Please don't use things like "vps_t".
It's a _mistake_ to use typedef for structures and pointers. When you see a
vps_t a;
in the source, what does it mean?
In contrast, if it says
struct virtual_container *a;
you can actually tell what "a" is.
Lots of people think that typedefs "help readability". Not so. They are
useful only for:
(a) totally opaque objects (where the typedef is actively used to _hide_
what the object is).
Example: "pte_t" etc. opaque objects that you can only access using
the proper accessor functions.
NOTE! Opaqueness and "accessor functions" are not good in themselves.
The reason we have them for things like pte_t etc. is that there
really is absolutely _zero_ portably accessible information there.
(b) Clear integer types, where the abstraction _helps_ avoid confusion
whether it is "int" or "long".
u8/u16/u32 are perfectly fine typedefs, although they fit into
category (d) better than here.
NOTE! Again - there needs to be a _reason_ for this. If something is
"unsigned long", then there's no reason to do
typedef unsigned long myflags_t;
but if there is a clear reason for why it under certain circumstances
might be an "unsigned int" and under other configurations might be
"unsigned long", then by all means go ahead and use a typedef.
(c) when you use sparse to literally create a _new_ type for
type-checking.
(d) New types which are identical to standard C99 types, in certain
exceptional circumstances.
Although it would only take a short amount of time for the eyes and
brain to become accustomed to the standard types like 'uint32_t',
some people object to their use anyway.
Therefore, the Linux-specific 'u8/u16/u32/u64' types and their
signed equivalents which are identical to standard types are
permitted -- although they are not mandatory in new code of your
own.
When editing existing code which already uses one or the other set
of types, you should conform to the existing choices in that code.
(e) Types safe for use in userspace.
In certain structures which are visible to userspace, we cannot
require C99 types and cannot use the 'u32' form above. Thus, we
use __u32 and similar types in all structures which are shared
with userspace.
Maybe there are other cases too, but the rule should basically be to NEVER
EVER use a typedef unless you can clearly match one of those rules.
In general, a pointer, or a struct that has elements that can reasonably
be directly accessed should _never_ be a typedef.
Chapter 6: Functions
Functions should be short and sweet, and do just one thing. They should
fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
@ -183,7 +259,7 @@ and it gets confused. You know you're brilliant, but maybe you'd like
to understand what you did 2 weeks from now.
Chapter 6: Centralized exiting of functions
Chapter 7: Centralized exiting of functions
Albeit deprecated by some people, the equivalent of the goto statement is
used frequently by compilers in form of the unconditional jump instruction.
@ -220,7 +296,7 @@ out:
return result;
}
Chapter 7: Commenting
Chapter 8: Commenting
Comments are good, but there is also a danger of over-commenting. NEVER
try to explain HOW your code works in a comment: it's much better to
@ -240,7 +316,7 @@ When commenting the kernel API functions, please use the kerneldoc format.
See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc
for details.
Chapter 8: You've made a mess of it
Chapter 9: You've made a mess of it
That's OK, we all do. You've probably been told by your long-time Unix
user helper that "GNU emacs" automatically formats the C sources for
@ -288,7 +364,7 @@ re-formatting you may want to take a look at the man page. But
remember: "indent" is not a fix for bad programming.
Chapter 9: Configuration-files
Chapter 10: Configuration-files
For configuration options (arch/xxx/Kconfig, and all the Kconfig files),
somewhat different indentation is used.
@ -313,7 +389,7 @@ support for file-systems, for instance) should be denoted (DANGEROUS), other
experimental options should be denoted (EXPERIMENTAL).
Chapter 10: Data structures
Chapter 11: Data structures
Data structures that have visibility outside the single-threaded
environment they are created and destroyed in should always have
@ -344,7 +420,7 @@ Remember: if another thread can find your data structure, and you don't
have a reference count on it, you almost certainly have a bug.
Chapter 11: Macros, Enums and RTL
Chapter 12: Macros, Enums and RTL
Names of macros defining constants and labels in enums are capitalized.
@ -399,7 +475,7 @@ The cpp manual deals with macros exhaustively. The gcc internals manual also
covers RTL which is used frequently with assembly language in the kernel.
Chapter 12: Printing kernel messages
Chapter 13: Printing kernel messages
Kernel developers like to be seen as literate. Do mind the spelling
of kernel messages to make a good impression. Do not use crippled
@ -410,7 +486,7 @@ Kernel messages do not have to be terminated with a period.
Printing numbers in parentheses (%d) adds no value and should be avoided.
Chapter 13: Allocating memory
Chapter 14: Allocating memory
The kernel provides the following general purpose memory allocators:
kmalloc(), kzalloc(), kcalloc(), and vmalloc(). Please refer to the API
@ -429,7 +505,7 @@ from void pointer to any other pointer type is guaranteed by the C programming
language.
Chapter 14: The inline disease
Chapter 15: The inline disease
There appears to be a common misperception that gcc has a magic "make me
faster" speedup option called "inline". While the use of inlines can be
@ -457,7 +533,7 @@ something it would have done anyway.
Chapter 15: References
Appendix I: References
The C Programming Language, Second Edition
by Brian W. Kernighan and Dennis M. Ritchie.
@ -481,4 +557,4 @@ Kernel CodingStyle, by greg@kroah.com at OLS 2002:
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
--
Last updated on 30 December 2005 by a community effort on LKML.
Last updated on 30 April 2006.

View File

@ -117,6 +117,7 @@ X!Ilib/string.c
<chapter id="mm">
<title>Memory Management in Linux</title>
<sect1><title>The Slab Cache</title>
!Iinclude/linux/slab.h
!Emm/slab.c
</sect1>
<sect1><title>User Space Memory Access</title>
@ -331,6 +332,18 @@ X!Earch/i386/kernel/mca.c
!Esecurity/security.c
</chapter>
<chapter id="audit">
<title>Audit Interfaces</title>
!Ekernel/audit.c
!Ikernel/auditsc.c
!Ikernel/auditfilter.c
</chapter>
<chapter id="accounting">
<title>Accounting Framework</title>
!Ikernel/acct.c
</chapter>
<chapter id="pmfuncs">
<title>Power Management</title>
!Ekernel/power/pm.c

View File

@ -790,7 +790,6 @@ RCU pointer update:
RCU grace period:
synchronize_kernel (deprecated)
synchronize_net
synchronize_sched
synchronize_rcu

View File

@ -0,0 +1,57 @@
Linux Kernel patch sumbittal checklist
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here are some basic things that developers should do if they
want to see their kernel patch submittals accepted quicker.
These are all above and beyond the documentation that is provided
in Documentation/SubmittingPatches and elsewhere about submitting
Linux kernel patches.
- Builds cleanly with applicable or modified CONFIG options =y, =m, and =n.
No gcc warnings/errors, no linker warnings/errors.
- Passes allnoconfig, allmodconfig
- Builds on multiple CPU arch-es by using local cross-compile tools
or something like PLM at OSDL.
- ppc64 is a good architecture for cross-compilation checking because it
tends to use `unsigned long' for 64-bit quantities.
- Matches kernel coding style(!)
- Any new or modified CONFIG options don't muck up the config menu.
- All new Kconfig options have help text.
- Has been carefully reviewed with respect to relevant Kconfig
combinations. This is very hard to get right with testing --
brainpower pays off here.
- Check cleanly with sparse.
- Use 'make checkstack' and 'make namespacecheck' and fix any
problems that they find. Note: checkstack does not point out
problems explicitly, but any one function that uses more than
512 bytes on the stack is a candidate for change.
- Include kernel-doc to document global kernel APIs. (Not required
for static functions, but OK there also.) Use 'make htmldocs'
or 'make mandocs' to check the kernel-doc and fix any issues.
- Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEP all simultaneously
enabled.
- Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.
- If the patch affects IO/Disk, etc: has been tested with and without
CONFIG_LBD.
2006-APR-27

View File

@ -3,7 +3,7 @@
Maintained by Torben Mathiasen <device@lanana.org>
Last revised: 25 January 2005
Last revised: 01 March 2006
This list is the Linux Device List, the official registry of allocated
device numbers and /dev directory nodes for the Linux operating
@ -94,7 +94,6 @@ Your cooperation is appreciated.
9 = /dev/urandom Faster, less secure random number gen.
10 = /dev/aio Asyncronous I/O notification interface
11 = /dev/kmsg Writes to this come out as printk's
12 = /dev/oldmem Access to crash dump from kexec kernel
1 block RAM disk
0 = /dev/ram0 First RAM disk
1 = /dev/ram1 Second RAM disk
@ -262,13 +261,13 @@ Your cooperation is appreciated.
NOTE: These devices permit both read and write access.
7 block Loopback devices
0 = /dev/loop0 First loopback device
1 = /dev/loop1 Second loopback device
0 = /dev/loop0 First loop device
1 = /dev/loop1 Second loop device
...
The loopback devices are used to mount filesystems not
The loop devices are used to mount filesystems not
associated with block devices. The binding to the
loopback devices is handled by mount(8) or losetup(8).
loop devices is handled by mount(8) or losetup(8).
8 block SCSI disk devices (0-15)
0 = /dev/sda First SCSI disk whole disk
@ -943,7 +942,7 @@ Your cooperation is appreciated.
240 = /dev/ftlp FTL on 16th Memory Technology Device
Partitions are handled in the same way as for IDE
disks (see major number 3) expect that the partition
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk (same as SCSI.)
45 char isdn4linux ISDN BRI driver
@ -1168,7 +1167,7 @@ Your cooperation is appreciated.
The filename of the encrypted container and the passwords
are sent via ioctls (using the sdmount tool) to the master
node which then activates them via one of the
/dev/scramdisk/x nodes for loopback mounting (all handled
/dev/scramdisk/x nodes for loop mounting (all handled
through the sdmount tool).
Requested by: andy@scramdisklinux.org
@ -2538,18 +2537,32 @@ Your cooperation is appreciated.
0 = /dev/usb/lp0 First USB printer
...
15 = /dev/usb/lp15 16th USB printer
16 = /dev/usb/mouse0 First USB mouse
...
31 = /dev/usb/mouse15 16th USB mouse
32 = /dev/usb/ez0 First USB firmware loader
...
47 = /dev/usb/ez15 16th USB firmware loader
48 = /dev/usb/scanner0 First USB scanner
...
63 = /dev/usb/scanner15 16th USB scanner
64 = /dev/usb/rio500 Diamond Rio 500
65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de)
66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD)
96 = /dev/usb/hiddev0 1st USB HID device
...
111 = /dev/usb/hiddev15 16th USB HID device
112 = /dev/usb/auer0 1st auerswald ISDN device
...
127 = /dev/usb/auer15 16th auerswald ISDN device
128 = /dev/usb/brlvgr0 First Braille Voyager device
...
131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
133 = /dev/usb/sisusbvga1 First SiSUSB VGA device
...
140 = /dev/usb/sisusbvga8 Eigth SISUSB VGA device
144 = /dev/usb/lcd USB LCD device
160 = /dev/usb/legousbtower0 1st USB Legotower device
...
175 = /dev/usb/legousbtower15 16th USB Legotower device
240 = /dev/usb/dabusb0 First daubusb device
...
243 = /dev/usb/dabusb3 Fourth dabusb device
180 block USB block devices
0 = /dev/uba First USB block device
@ -2710,6 +2723,17 @@ Your cooperation is appreciated.
1 = /dev/cpu/1/msr MSRs on CPU 1
...
202 block Xen Virtual Block Device
0 = /dev/xvda First Xen VBD whole disk
16 = /dev/xvdb Second Xen VBD whole disk
32 = /dev/xvdc Third Xen VBD whole disk
...
240 = /dev/xvdp Sixteenth Xen VBD whole disk
Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.
203 char CPU CPUID information
0 = /dev/cpu/0/cpuid CPUID on CPU 0
1 = /dev/cpu/1/cpuid CPUID on CPU 1
@ -2747,11 +2771,26 @@ Your cooperation is appreciated.
46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0
...
47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5
50 = /dev/ttyIOC40 Altix serial card
50 = /dev/ttyIOC0 Altix serial card
...
81 = /dev/ttyIOC431 Altix serial card
82 = /dev/ttyVR0 NEC VR4100 series SIU
83 = /dev/ttyVR1 NEC VR4100 series DSIU
81 = /dev/ttyIOC31 Altix serial card
82 = /dev/ttyVR0 NEC VR4100 series SIU
83 = /dev/ttyVR1 NEC VR4100 series DSIU
84 = /dev/ttyIOC84 Altix ioc4 serial card
...
115 = /dev/ttyIOC115 Altix ioc4 serial card
116 = /dev/ttySIOC0 Altix ioc3 serial card
...
147 = /dev/ttySIOC31 Altix ioc3 serial card
148 = /dev/ttyPSC0 PPC PSC - port 0
...
153 = /dev/ttyPSC5 PPC PSC - port 5
154 = /dev/ttyAT0 ATMEL serial port 0
...
169 = /dev/ttyAT15 ATMEL serial port 15
170 = /dev/ttyNX0 Hilscher netX serial port 0
...
185 = /dev/ttyNX15 Hilscher netX serial port 15
205 char Low-density serial ports (alternate device)
0 = /dev/culu0 Callout device for ttyLU0
@ -2786,8 +2825,8 @@ Your cooperation is appreciated.
50 = /dev/cuioc40 Callout device for ttyIOC40
...
81 = /dev/cuioc431 Callout device for ttyIOC431
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1
206 char OnStream SC-x0 tape devices
@ -2897,7 +2936,6 @@ Your cooperation is appreciated.
...
196 = /dev/dvb/adapter3/video0 first video decoder of fourth card
216 char Bluetooth RFCOMM TTY devices
0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device
1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device
@ -3002,12 +3040,43 @@ Your cooperation is appreciated.
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.
231 char InfiniBand MAD
231 char InfiniBand
0 = /dev/infiniband/umad0
1 = /dev/infiniband/umad1
...
...
63 = /dev/infiniband/umad63 63rd InfiniBandMad device
64 = /dev/infiniband/issm0 First InfiniBand IsSM device
65 = /dev/infiniband/issm1 Second InfiniBand IsSM device
...
127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device
128 = /dev/infiniband/uverbs0 First InfiniBand verbs device
129 = /dev/infiniband/uverbs1 Second InfiniBand verbs device
...
159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device
232-239 UNASSIGNED
232 char Biometric Devices
0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device
1 = /dev/biometric/sensor0/iris first iris sensor on first device
2 = /dev/biometric/sensor0/retina first retina sensor on first device
3 = /dev/biometric/sensor0/voiceprint first voiceprint sensor on first device
4 = /dev/biometric/sensor0/facial first facial sensor on first device
5 = /dev/biometric/sensor0/hand first hand sensor on first device
...
10 = /dev/biometric/sensor1/fingerprint first fingerprint sensor on second device
...
20 = /dev/biometric/sensor2/fingerprint first fingerprint sensor on third device
...
233 char PathScale InfiniPath interconnect
0 = /dev/ipath Primary device for programs (any unit)
1 = /dev/ipath0 Access specifically to unit 0
2 = /dev/ipath1 Access specifically to unit 1
...
4 = /dev/ipath3 Access specifically to unit 3
129 = /dev/ipath_sma Device used by Subnet Management Agent
130 = /dev/ipath_diag Device used by diagnostics programs
234-239 UNASSIGNED
240-254 char LOCAL/EXPERIMENTAL USE
240-254 block LOCAL/EXPERIMENTAL USE
@ -3021,6 +3090,24 @@ Your cooperation is appreciated.
This major is reserved to assist the expansion to a
larger number space. No device nodes with this major
should ever be created on the filesystem.
(This is probaly not true anymore, but I'll leave it
for now /Torben)
---LARGE MAJORS!!!!!---
256 char Equinox SST multi-port serial boards
0 = /dev/ttyEQ0 First serial port on first Equinox SST board
127 = /dev/ttyEQ127 Last serial port on first Equinox SST board
128 = /dev/ttyEQ128 First serial port on second Equinox SST board
...
1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board
256 block Resident Flash Disk Flash Translation Layer
0 = /dev/rfda First RFD FTL layer
16 = /dev/rfdb Second RFD FTL layer
...
240 = /dev/rfdp 16th RFD FTL layer
**** ADDITIONAL /dev DIRECTORY ENTRIES

View File

@ -33,21 +33,6 @@ Who: Adrian Bunk <bunk@stusta.de>
---------------------------
What: RCU API moves to EXPORT_SYMBOL_GPL
When: April 2006
Files: include/linux/rcupdate.h, kernel/rcupdate.c
Why: Outside of Linux, the only implementations of anything even
vaguely resembling RCU that I am aware of are in DYNIX/ptx,
VM/XA, Tornado, and K42. I do not expect anyone to port binary
drivers or kernel modules from any of these, since the first two
are owned by IBM and the last two are open-source research OSes.
So these will move to GPL after a grace period to allow
people, who might be using implementations that I am not aware
of, to adjust to this upcoming change.
Who: Paul E. McKenney <paulmck@us.ibm.com>
---------------------------
What: raw1394: requests of type RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN
When: November 2006
Why: Deprecated in favour of the new ioctl-based rawiso interface, which is

View File

@ -99,7 +99,7 @@ prototypes:
int (*sync_fs)(struct super_block *sb, int wait);
void (*write_super_lockfs) (struct super_block *);
void (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct kstatfs *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
void (*umount_begin) (struct super_block *);
@ -142,15 +142,16 @@ see also dquot_operations section.
--------------------------- file_system_type ---------------------------
prototypes:
struct super_block *(*get_sb) (struct file_system_type *, int,
const char *, void *);
struct int (*get_sb) (struct file_system_type *, int,
const char *, void *, struct vfsmount *);
void (*kill_sb) (struct super_block *);
locking rules:
may block BKL
get_sb yes yes
kill_sb yes yes
->get_sb() returns error or a locked superblock (exclusive on ->s_umount).
->get_sb() returns error or 0 with locked superblock attached to the vfsmount
(exclusive on ->s_umount).
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.

View File

@ -50,10 +50,11 @@ Turn your foo_read_super() into a function that would return 0 in case of
success and negative number in case of error (-EINVAL unless you have more
informative error value to report). Call it foo_fill_super(). Now declare
struct super_block foo_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
int foo_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, ext2_fill_super);
return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
mnt);
}
(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of

View File

@ -113,8 +113,8 @@ members are defined:
struct file_system_type {
const char *name;
int fs_flags;
struct super_block *(*get_sb) (struct file_system_type *, int,
const char *, void *);
struct int (*get_sb) (struct file_system_type *, int,
const char *, void *, struct vfsmount *);
void (*kill_sb) (struct super_block *);
struct module *owner;
struct file_system_type * next;
@ -211,7 +211,7 @@ struct super_operations {
int (*sync_fs)(struct super_block *sb, int wait);
void (*write_super_lockfs) (struct super_block *);
void (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct kstatfs *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*clear_inode) (struct inode *);
void (*umount_begin) (struct super_block *);

View File

@ -0,0 +1,59 @@
Kernel driver abituguru
=======================
Supported chips:
* Abit uGuru (Hardware Monitor part only)
Prefix: 'abituguru'
Addresses scanned: ISA 0x0E0
Datasheet: Not available, this driver is based on reverse engineering.
A "Datasheet" has been written based on the reverse engineering it
should be available in the same dir as this file under the name
abituguru-datasheet.
Authors:
Hans de Goede <j.w.r.degoede@hhs.nl>,
(Initial reverse engineering done by Olle Sandberg
<ollebull@gmail.com>)
Module Parameters
-----------------
* force: bool Force detection. Note this parameter only causes the
detection to be skipped, if the uGuru can't be read
the module initialization (insmod) will still fail.
* fan_sensors: int Tell the driver how many fan speed sensors there are
on your motherboard. Default: 0 (autodetect).
* pwms: int Tell the driver how many fan speed controls (fan
pwms) your motherboard has. Default: 0 (autodetect).
* verbose: int How verbose should the driver be? (0-3):
0 normal output
1 + verbose error reporting
2 + sensors type probing info\n"
3 + retryable error reporting
Default: 2 (the driver is still in the testing phase)
Notice if you need any of the first three options above please insmod the
driver with verbose set to 3 and mail me <j.w.r.degoede@hhs.nl> the output of:
dmesg | grep abituguru
Description
-----------
This driver supports the hardware monitoring features of the Abit uGuru chip
found on Abit uGuru featuring motherboards (most modern Abit motherboards).
The uGuru chip in reality is a Winbond W83L950D in disguise (despite Abit
claiming it is "a new microprocessor designed by the ABIT Engineers").
Unfortunatly this doesn't help since the W83L950D is a generic
microcontroller with a custom Abit application running on it.
Despite Abit not releasing any information regarding the uGuru, Olle
Sandberg <ollebull@gmail.com> has managed to reverse engineer the sensor part
of the uGuru. Without his work this driver would not have been possible.
Known Issues
------------
The voltage and frequency control parts of the Abit uGuru are not supported.

View File

@ -0,0 +1,312 @@
uGuru datasheet
===============
First of all, what I know about uGuru is no fact based on any help, hints or
datasheet from Abit. The data I have got on uGuru have I assembled through
my weak knowledge in "backwards engineering".
And just for the record, you may have noticed uGuru isn't a chip developed by
Abit, as they claim it to be. It's realy just an microprocessor (uC) created by
Winbond (W83L950D). And no, reading the manual for this specific uC or
mailing Windbond for help won't give any usefull data about uGuru, as it is
the program inside the uC that is responding to calls.
Olle Sandberg <ollebull@gmail.com>, 2005-05-25
Original version by Olle Sandberg who did the heavy lifting of the initial
reverse engineering. This version has been almost fully rewritten for clarity
and extended with write support and info on more databanks, the write support
is once again reverse engineered by Olle the additional databanks have been
reverse engineered by me. I would like to express my thanks to Olle, this
document and the Linux driver could not have been written without his efforts.
Note: because of the lack of specs only the sensors part of the uGuru is
described here and not the CPU / RAM / etc voltage & frequency control.
Hans de Goede <j.w.r.degoede@hhs.nl>, 28-01-2006
Detection
=========
As far as known the uGuru is always placed at and using the (ISA) I/O-ports
0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two
ports are holding for detection. We will refer to 0xE0 as CMD (command-port)
and 0xE4 as DATA because Abit refers to them with these names.
If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be
present. We have to check for two different values at data-port, because
after a reboot uGuru will hold 0x00 here, but if the driver is removed and
later on attached again data-port will hold 0x08, more about this later.
After wider testing of the Linux kernel driver some variants of the uGuru have
turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also
have to test CMD for two different values. On these uGuru's DATA will initally
hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read
first!
To be really sure an uGuru is present a test read of one or more register
sets should be done.
Reading / Writing
=================
Addressing
----------
The uGuru has a number of different addressing levels. The first addressing
level we will call banks. A bank holds data for one or more sensors. The data
in a bank for a sensor is one or more bytes large.
The number of bytes is fixed for a given bank, you should always read or write
that many bytes, reading / writing more will fail, the results when writing
less then the number of bytes for a given bank are undetermined.
See below for all known bank addresses, numbers of sensors in that bank,
number of bytes data per sensor and contents/meaning of those bytes.
Although both this document and the kernel driver have kept the sensor
terminoligy for the addressing within a bank this is not 100% correct, in
bank 0x24 for example the addressing within the bank selects a PWM output not
a sensor.
Notice that some banks have both a read and a write address this is how the
uGuru determines if a read from or a write to the bank is taking place, thus
when reading you should always use the read address and when writing the
write address. The write address is always one (1) more then the read address.
uGuru ready
-----------
Before you can read from or write to the uGuru you must first put the uGuru
in "ready" mode.
To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA
to hold 0x09, DATA should read 0x09 within 250 read cycles.
Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the
first read but sometimes it takes a while before CMD holds 0xAC and thus it
has to be read a number of times (max 50).
After reading CMD, DATA should hold 0x08 which means that the uGuru is ready
for input. As above DATA will usually hold 0x08 the first read but not always.
This step can be skipped, but it is undetermined what happens if the uGuru has
not yet reported 0x08 at DATA and you proceed with writing a bank address.
Sending bank and sensor addresses to the uGuru
----------------------------------------------
First the uGuru must be in "ready" mode as described above, DATA should hold
0x08 indicating that the uGuru wants input, in this case the bank address.
Next write the bank address to DATA. After the bank address has been written
wait for to DATA to hold 0x08 again indicating that it wants / is ready for
more input (max 250 reads).
Once DATA holds 0x08 again write the sensor address to CMD.
Reading
-------
First send the bank and sensor addresses as described above.
Then for each byte of data you want to read wait for DATA to hold 0x01
which indicates that the uGuru is ready to be read (max 250 reads) and once
DATA holds 0x01 read the byte from CMD.
Once all bytes have been read data will hold 0x09, but there is no reason to
test for this. Notice that the number of bytes is bank address dependent see
above and below.
After completing a successfull read it is advised to put the uGuru back in
ready mode, so that it is ready for the next read / write cycle. This way
if your program / driver is unloaded and later loaded again the detection
algorithm described above will still work.
Writing
-------
First send the bank and sensor addresses as described above.
Then for each byte of data you want to write wait for DATA to hold 0x00
which indicates that the uGuru is ready to be written (max 250 reads) and
once DATA holds 0x00 write the byte to CMD.
Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads)
don't ask why this is the way it is.
Once DATA holds 0x01 read CMD it should hold 0xAC now.
After completing a successfull write it is advised to put the uGuru back in
ready mode, so that it is ready for the next read / write cycle. This way
if your program / driver is unloaded and later loaded again the detection
algorithm described above will still work.
Gotchas
-------
After wider testing of the Linux kernel driver some variants of the uGuru have
turned up which do not hold 0x08 at DATA within 250 reads after writing the
bank address. With these versions this happens quite frequent, using larger
timeouts doesn't help, they just go offline for a second or 2, doing some
internal callibration or whatever. Your code should be prepared to handle
this and in case of no response in this specific case just goto sleep for a
while and then retry.
Address Map
===========
Bank 0x20 Alarms (R)
--------------------
This bank contains 0 sensors, iow the sensor address is ignored (but must be
written) just use 0. Bank 0x20 contains 3 bytes:
Byte 0:
This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0
corresponding to sensor 0, 1 to 1, etc.
Byte 1:
This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0
corresponding to sensor 8, 1 to 9, etc.
Byte 2:
This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0
corresponding to sensor 0, 1 to 1, etc.
Bank 0x21 Sensor Bank1 Values / Readings (R)
--------------------------------------------
This bank contains 16 sensors, for each sensor it contains 1 byte.
So far the following sensors are known to be available on all motherboards:
Sensor 0 CPU temp
Sensor 1 SYS temp
Sensor 3 CPU core volt
Sensor 4 DDR volt
Sensor 10 DDR Vtt volt
Sensor 15 PWM temp
Byte 0:
This byte holds the reading from the sensor. Sensors in Bank1 can be both
volt and temp sensors, this is motherboard specific. The uGuru however does
seem to know (be programmed with) what kindoff sensor is attached see Sensor
Bank1 Settings description.
Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a
reading of 255 with 3494 mV. The sensors for higher voltages however are
connected through a division circuit. The currently known division circuits
in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources
use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV .
Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree
Celsius and a reading of 255 with a reading of 255 degrees Celsius.
Bank 0x22 Sensor Bank1 Settings (R)
Bank 0x23 Sensor Bank1 Settings (W)
-----------------------------------
This bank contains 16 sensors, for each sensor it contains 3 bytes. Each
set of 3 bytes contains the settings for the sensor with the same sensor
address in Bank 0x21 .
Byte 0:
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
Bit 0: Give an alarm if measured temp is over the warning threshold (RW) *
Bit 1: Give an alarm if measured volt is over the max threshold (RW) **
Bit 2: Give an alarm if measured volt is under the min threshold (RW) **
Bit 3: Beep if alarm (RW)
Bit 4: 1 if alarm cause measured temp is over the warning threshold (R)
Bit 5: 1 if alarm cause measured volt is over the max threshold (R)
Bit 6: 1 if alarm cause measured volt is under the min threshold (R)
Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW)
Temp sensor: Shutdown if temp is over the shutdown threshold (RW)
* This bit is only honored/used by the uGuru if a temp sensor is connected
** This bit is only honored/used by the uGuru if a volt sensor is connected
Note with some trickery this can be used to find out what kinda sensor is
detected see the Linux kernel driver for an example with many comments on
how todo this.
Byte 1:
Temp sensor: warning threshold (scale as bank 0x21)
Volt sensor: min threshold (scale as bank 0x21)
Byte 2:
Temp sensor: shutdown threshold (scale as bank 0x21)
Volt sensor: max threshold (scale as bank 0x21)
Bank 0x24 PWM outputs for FAN's (R)
Bank 0x25 PWM outputs for FAN's (W)
-----------------------------------
This bank contains 3 "sensors", for each sensor it contains 5 bytes.
Sensor 0 usually controls the CPU fan
Sensor 1 usually controls the NB (or chipset for single chip) fan
Sensor 2 usually controls the System fan
Byte 0:
Flag 0x80 to enable control, Fan runs at 100% when disabled.
low nibble (temp)sensor address at bank 0x21 used for control.
Byte 1:
0-255 = 0-12v (linear), specify voltage at which fan will rotate when under
low threshold temp (specified in byte 3)
Byte 2:
0-255 = 0-12v (linear), specify voltage at which fan will rotate when above
high threshold temp (specified in byte 4)
Byte 3:
Low threshold temp (scale as bank 0x21)
byte 4:
High threshold temp (scale as bank 0x21)
Bank 0x26 Sensors Bank2 Values / Readings (R)
---------------------------------------------
This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte.
So far the following sensors are known to be available on all motherboards:
Sensor 0: CPU fan speed
Sensor 1: NB (or chipset for single chip) fan speed
Sensor 2: SYS fan speed
Byte 0:
This byte holds the reading from the sensor. 0-255 = 0-15300 (linear)
Bank 0x27 Sensors Bank2 Settings (R)
Bank 0x28 Sensors Bank2 Settings (W)
------------------------------------
This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes.
Byte 0:
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
Bit 0: Give an alarm if measured rpm is under the min threshold (RW)
Bit 3: Beep if alarm (RW)
Bit 7: Shutdown if alarm persist for more then 4 seconds (RW)
Byte 1:
min threshold (scale as bank 0x26)
Warning for the adventerous
===========================
A word of caution to those who want to experiment and see if they can figure
the voltage / clock programming out, I tried reading and only reading banks
0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this
resulted in a _permanent_ reprogramming of the voltages, luckily I had the
sensors part configured so that it would shutdown my system on any out of spec
voltages which proprably safed my computer (after a reboot I managed to
immediatly enter the bios and reload the defaults). This probably means that
the read/write cycle for the non sensor part is different from the sensor part.

31
Documentation/hwmon/lm70 Normal file
View File

@ -0,0 +1,31 @@
Kernel driver lm70
==================
Supported chip:
* National Semiconductor LM70
Datasheet: http://www.national.com/pf/LM/LM70.html
Author:
Kaiwan N Billimoria <kaiwan@designergraphix.com>
Description
-----------
This driver implements support for the National Semiconductor LM70
temperature sensor.
The LM70 temperature sensor chip supports a single temperature sensor.
It communicates with a host processor (or microcontroller) via an
SPI/Microwire Bus interface.
Communication with the LM70 is simple: when the temperature is to be sensed,
the driver accesses the LM70 using SPI communication: 16 SCLK cycles
comprise the MOSI/MISO loop. At the end of the transfer, the 11-bit 2's
complement digital temperature (sent via the SIO line), is available in the
driver for interpretation. This driver makes use of the kernel's in-core
SPI support.
Thanks to
---------
Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver
development.

View File

@ -7,6 +7,10 @@ Supported chips:
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM83.html
* National Semiconductor LM82
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/pf/LM/LM82.html
Author: Jean Delvare <khali@linux-fr.org>
@ -15,10 +19,11 @@ Description
-----------
The LM83 is a digital temperature sensor. It senses its own temperature as
well as the temperature of up to three external diodes. It is compatible
with many other devices such as the LM84 and all other ADM1021 clones.
The main difference between the LM83 and the LM84 in that the later can
only sense the temperature of one external diode.
well as the temperature of up to three external diodes. The LM82 is
a stripped down version of the LM83 that only supports one external diode.
Both are compatible with many other devices such as the LM84 and all
other ADM1021 clones. The main difference between the LM83 and the LM84
in that the later can only sense the temperature of one external diode.
Using the adm1021 driver for a LM83 should work, but only two temperatures
will be reported instead of four.
@ -30,12 +35,16 @@ contact us. Note that the LM90 can easily be misdetected as a LM83.
Confirmed motherboards:
SBS P014
SBS PSL09
Unconfirmed motherboards:
Gigabyte GA-8IK1100
Iwill MPX2
Soltek SL-75DRV5
The LM82 is confirmed to have been found on most AMD Geode reference
designs and test platforms.
The driver has been successfully tested by Magnus Forsström, who I'd
like to thank here. More testers will be of course welcome.

View File

@ -0,0 +1,102 @@
Kernel driver smsc47m192
========================
Supported chips:
* SMSC LPC47M192 and LPC47M997
Prefix: 'smsc47m192'
Addresses scanned: I2C 0x2c - 0x2d
Datasheet: The datasheet for LPC47M192 is publicly available from
http://www.smsc.com/
The LPC47M997 is compatible for hardware monitoring.
Author: Hartmut Rick <linux@rick.claranet.de>
Special thanks to Jean Delvare for careful checking
of the code and many helpful comments and suggestions.
Description
-----------
This driver implements support for the hardware sensor capabilities
of the SMSC LPC47M192 and LPC47M997 Super-I/O chips.
These chips support 3 temperature channels and 8 voltage inputs
as well as CPU voltage VID input.
They do also have fan monitoring and control capabilities, but the
these features are accessed via ISA bus and are not supported by this
driver. Use the 'smsc47m1' driver for fan monitoring and control.
Voltages and temperatures are measured by an 8-bit ADC, the resolution
of the temperatures is 1 bit per degree C.
Voltages are scaled such that the nominal voltage corresponds to
192 counts, i.e. 3/4 of the full range. Thus the available range for
each voltage channel is 0V ... 255/192*(nominal voltage), the resolution
is 1 bit per (nominal voltage)/192.
Both voltage and temperature values are scaled by 1000, the sys files
show voltages in mV and temperatures in units of 0.001 degC.
The +12V analog voltage input channel (in4_input) is multiplexed with
bit 4 of the encoded CPU voltage. This means that you either get
a +12V voltage measurement or a 5 bit CPU VID, but not both.
The default setting is to use the pin as 12V input, and use only 4 bit VID.
This driver assumes that the information in the configuration register
is correct, i.e. that the BIOS has updated the configuration if
the motherboard has this input wired to VID4.
The temperature and voltage readings are updated once every 1.5 seconds.
Reading them more often repeats the same values.
sysfs interface
---------------
in0_input - +2.5V voltage input
in1_input - CPU voltage input (nominal 2.25V)
in2_input - +3.3V voltage input
in3_input - +5V voltage input
in4_input - +12V voltage input (may be missing if used as VID4)
in5_input - Vcc voltage input (nominal 3.3V)
This is the supply voltage of the sensor chip itself.
in6_input - +1.5V voltage input
in7_input - +1.8V voltage input
in[0-7]_min,
in[0-7]_max - lower and upper alarm thresholds for in[0-7]_input reading
All voltages are read and written in mV.
in[0-7]_alarm - alarm flags for voltage inputs
These files read '1' in case of alarm, '0' otherwise.
temp1_input - chip temperature measured by on-chip diode
temp[2-3]_input - temperature measured by external diodes (one of these would
typically be wired to the diode inside the CPU)
temp[1-3]_min,
temp[1-3]_max - lower and upper alarm thresholds for temperatures
temp[1-3]_offset - temperature offset registers
The chip adds the offsets stored in these registers to
the corresponding temperature readings.
Note that temp1 and temp2 offsets share the same register,
they cannot both be different from zero at the same time.
Writing a non-zero number to one of them will reset the other
offset to zero.
All temperatures and offsets are read and written in
units of 0.001 degC.
temp[1-3]_alarm - alarm flags for temperature inputs, '1' in case of alarm,
'0' otherwise.
temp[2-3]_input_fault - diode fault flags for temperature inputs 2 and 3.
A fault is detected if the two pins for the corresponding
sensor are open or shorted, or any of the two is shorted
to ground or Vcc. '1' indicates a diode fault.
cpu0_vid - CPU voltage as received from the CPU
vrm - CPU VID standard used for decoding CPU voltage
The *_min, *_max, *_offset and vrm files can be read and
written, all others are read-only.

View File

@ -3,15 +3,15 @@ Naming and data format standards for sysfs files
The libsensors library offers an interface to the raw sensors data
through the sysfs interface. See libsensors documentation and source for
more further information. As of writing this document, libsensors
(from lm_sensors 2.8.3) is heavily chip-dependant. Adding or updating
further information. As of writing this document, libsensors
(from lm_sensors 2.8.3) is heavily chip-dependent. Adding or updating
support for any given chip requires modifying the library's code.
This is because libsensors was written for the procfs interface
older kernel modules were using, which wasn't standardized enough.
Recent versions of libsensors (from lm_sensors 2.8.2 and later) have
support for the sysfs interface, though.
The new sysfs interface was designed to be as chip-independant as
The new sysfs interface was designed to be as chip-independent as
possible.
Note that motherboards vary widely in the connections to sensor chips.
@ -24,7 +24,7 @@ range using external resistors. Since the values of these resistors
can change from motherboard to motherboard, the conversions cannot be
hard coded into the driver and have to be done in user space.
For this reason, even if we aim at a chip-independant libsensors, it will
For this reason, even if we aim at a chip-independent libsensors, it will
still require a configuration file (e.g. /etc/sensors.conf) for proper
values conversion, labeling of inputs and hiding of unused inputs.
@ -39,15 +39,16 @@ If you are developing a userspace application please send us feedback on
this standard.
Note that this standard isn't completely established yet, so it is subject
to changes, even important ones. One more reason to use the library instead
of accessing sysfs files directly.
to changes. If you are writing a new hardware monitoring driver those
features can't seem to fit in this interface, please contact us with your
extension proposal. Keep in mind that backward compatibility must be
preserved.
Each chip gets its own directory in the sysfs /sys/devices tree. To
find all sensor chips, it is easier to follow the symlinks from
/sys/i2c/devices/
find all sensor chips, it is easier to follow the device symlinks from
/sys/class/hwmon/hwmon*.
All sysfs values are fixed point numbers. To get the true value of some
of the values, you should divide by the specified value.
All sysfs values are fixed point numbers.
There is only one value per file, unlike the older /proc specification.
The common scheme for files naming is: <type><number>_<item>. Usual
@ -69,28 +70,40 @@ to cause an alarm) is chip-dependent.
-------------------------------------------------------------------------
[0-*] denotes any positive number starting from 0
[1-*] denotes any positive number starting from 1
RO read only value
RW read/write value
Read/write values may be read-only for some chips, depending on the
hardware implementation.
All entries are optional, and should only be created in a given driver
if the chip has the feature.
************
* Voltages *
************
in[0-8]_min Voltage min value.
in[0-*]_min Voltage min value.
Unit: millivolt
Read/Write
RW
in[0-8]_max Voltage max value.
in[0-*]_max Voltage max value.
Unit: millivolt
Read/Write
RW
in[0-8]_input Voltage input value.
in[0-*]_input Voltage input value.
Unit: millivolt
Read only
RO
Voltage measured on the chip pin.
Actual voltage depends on the scaling resistors on the
motherboard, as recommended in the chip datasheet.
This varies by chip and by motherboard.
Because of this variation, values are generally NOT scaled
by the chip driver, and must be done by the application.
However, some drivers (notably lm87 and via686a)
do scale, with various degrees of success.
do scale, because of internal resistors built into a chip.
These drivers will output the actual voltage.
Typical usage:
@ -104,58 +117,72 @@ in[0-8]_input Voltage input value.
in7_* varies
in8_* varies
cpu[0-1]_vid CPU core reference voltage.
cpu[0-*]_vid CPU core reference voltage.
Unit: millivolt
Read only.
RO
Not always correct.
vrm Voltage Regulator Module version number.
Read only.
Two digit number, first is major version, second is
minor version.
RW (but changing it should no more be necessary)
Originally the VRM standard version multiplied by 10, but now
an arbitrary number, as not all standards have a version
number.
Affects the way the driver calculates the CPU core reference
voltage from the vid pins.
Also see the Alarms section for status flags associated with voltages.
********
* Fans *
********
fan[1-3]_min Fan minimum value
fan[1-*]_min Fan minimum value
Unit: revolution/min (RPM)
Read/Write.
RW
fan[1-3]_input Fan input value.
fan[1-*]_input Fan input value.
Unit: revolution/min (RPM)
Read only.
RO
fan[1-3]_div Fan divisor.
fan[1-*]_div Fan divisor.
Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).
RW
Some chips only support values 1, 2, 4 and 8.
Note that this is actually an internal clock divisor, which
affects the measurable speed range, not the read value.
Also see the Alarms section for status flags associated with fans.
*******
* PWM *
*******
pwm[1-3] Pulse width modulation fan control.
pwm[1-*] Pulse width modulation fan control.
Integer value in the range 0 to 255
Read/Write
RW
255 is max or 100%.
pwm[1-3]_enable
pwm[1-*]_enable
Switch PWM on and off.
Not always present even if fan*_pwm is.
0 to turn off
1 to turn on in manual mode
2 to turn on in automatic mode
Read/Write
0: turn off
1: turn on in manual mode
2+: turn on in automatic mode
Check individual chip documentation files for automatic mode details.
RW
pwm[1-*]_mode
0: DC mode
1: PWM mode
RW
pwm[1-*]_auto_channels_temp
Select which temperature channels affect this PWM output in
auto mode. Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
Which values are possible depend on the chip used.
RW
pwm[1-*]_auto_point[1-*]_pwm
pwm[1-*]_auto_point[1-*]_temp
@ -163,6 +190,7 @@ pwm[1-*]_auto_point[1-*]_temp_hyst
Define the PWM vs temperature curve. Number of trip points is
chip-dependent. Use this for chips which associate trip points
to PWM output channels.
RW
OR
@ -172,50 +200,57 @@ temp[1-*]_auto_point[1-*]_temp_hyst
Define the PWM vs temperature curve. Number of trip points is
chip-dependent. Use this for chips which associate trip points
to temperature channels.
RW
****************
* Temperatures *
****************
temp[1-3]_type Sensor type selection.
temp[1-*]_type Sensor type selection.
Integers 1 to 4 or thermistor Beta value (typically 3435)
Read/Write.
RW
1: PII/Celeron Diode
2: 3904 transistor
3: thermal diode
4: thermistor (default/unknown Beta)
Not all types are supported by all chips
temp[1-4]_max Temperature max value.
Unit: millidegree Celcius
Read/Write value.
temp[1-*]_max Temperature max value.
Unit: millidegree Celsius (or millivolt, see below)
RW
temp[1-3]_min Temperature min value.
Unit: millidegree Celcius
Read/Write value.
temp[1-*]_min Temperature min value.
Unit: millidegree Celsius
RW
temp[1-3]_max_hyst
temp[1-*]_max_hyst
Temperature hysteresis value for max limit.
Unit: millidegree Celcius
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a delta
from the max value.
Read/Write value.
RW
temp[1-4]_input Temperature input value.
Unit: millidegree Celcius
Read only value.
temp[1-*]_input Temperature input value.
Unit: millidegree Celsius
RO
temp[1-4]_crit Temperature critical value, typically greater than
temp[1-*]_crit Temperature critical value, typically greater than
corresponding temp_max values.
Unit: millidegree Celcius
Read/Write value.
Unit: millidegree Celsius
RW
temp[1-2]_crit_hyst
temp[1-*]_crit_hyst
Temperature hysteresis value for critical limit.
Unit: millidegree Celcius
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a delta
from the critical value.
RW
temp[1-4]_offset
Temperature offset which is added to the temperature reading
by the chip.
Unit: millidegree Celsius
Read/Write value.
If there are multiple temperature sensors, temp1_* is
@ -225,6 +260,17 @@ temp[1-2]_crit_hyst
itself, for example the thermal diode inside the CPU or
a thermistor nearby.
Some chips measure temperature using external thermistors and an ADC, and
report the temperature measurement as a voltage. Converting this voltage
back to a temperature (or the other way around for limits) requires
mathematical functions not available in the kernel, so the conversion
must occur in user space. For these chips, all temp* files described
above should contain values expressed in millivolt instead of millidegree
Celsius. In other words, such temperature channels are handled as voltage
channels by the driver.
Also see the Alarms section for status flags associated with temperatures.
************
* Currents *
@ -233,25 +279,88 @@ temp[1-2]_crit_hyst
Note that no known chip provides current measurements as of writing,
so this part is theoretical, so to say.
curr[1-n]_max Current max value
curr[1-*]_max Current max value
Unit: milliampere
Read/Write.
RW
curr[1-n]_min Current min value.
curr[1-*]_min Current min value.
Unit: milliampere
Read/Write.
RW
curr[1-n]_input Current input value
curr[1-*]_input Current input value
Unit: milliampere
Read only.
RO
*********
* Other *
*********
**********
* Alarms *
**********
Each channel or limit may have an associated alarm file, containing a
boolean value. 1 means than an alarm condition exists, 0 means no alarm.
Usually a given chip will either use channel-related alarms, or
limit-related alarms, not both. The driver should just reflect the hardware
implementation.
in[0-*]_alarm
fan[1-*]_alarm
temp[1-*]_alarm
Channel alarm
0: no alarm
1: alarm
RO
OR
in[0-*]_min_alarm
in[0-*]_max_alarm
fan[1-*]_min_alarm
temp[1-*]_min_alarm
temp[1-*]_max_alarm
temp[1-*]_crit_alarm
Limit alarm
0: no alarm
1: alarm
RO
Each input channel may have an associated fault file. This can be used
to notify open diodes, unconnected fans etc. where the hardware
supports it. When this boolean has value 1, the measurement for that
channel should not be trusted.
in[0-*]_input_fault
fan[1-*]_input_fault
temp[1-*]_input_fault
Input fault condition
0: no fault occured
1: fault condition
RO
Some chips also offer the possibility to get beeped when an alarm occurs:
beep_enable Master beep enable
0: no beeps
1: beeps
RW
in[0-*]_beep
fan[1-*]_beep
temp[1-*]_beep
Channel beep
0: disable
1: enable
RW
In theory, a chip could provide per-limit beep masking, but no such chip
was seen so far.
Old drivers provided a different, non-standard interface to alarms and
beeps. These interface files are deprecated, but will be kept around
for compatibility reasons:
alarms Alarm bitmask.
Read only.
RO
Integer representation of one to four bytes.
A '1' bit means an alarm.
Chips should be programmed for 'comparator' mode so that
@ -259,35 +368,26 @@ alarms Alarm bitmask.
if it is still valid.
Generally a direct representation of a chip's internal
alarm registers; there is no standard for the position
of individual bits.
of individual bits. For this reason, the use of this
interface file for new drivers is discouraged. Use
individual *_alarm and *_fault files instead.
Bits are defined in kernel/include/sensors.h.
alarms_in Alarm bitmask relative to in (voltage) channels
Read only
A '1' bit means an alarm, LSB corresponds to in0 and so on
Prefered to 'alarms' for newer chips
alarms_fan Alarm bitmask relative to fan channels
Read only
A '1' bit means an alarm, LSB corresponds to fan1 and so on
Prefered to 'alarms' for newer chips
alarms_temp Alarm bitmask relative to temp (temperature) channels
Read only
A '1' bit means an alarm, LSB corresponds to temp1 and so on
Prefered to 'alarms' for newer chips
beep_enable Beep/interrupt enable
0 to disable.
1 to enable.
Read/Write
beep_mask Bitmask for beep.
Same format as 'alarms' with the same bit locations.
Read/Write
Same format as 'alarms' with the same bit locations,
use discouraged for the same reason. Use individual
*_beep files instead.
RW
*********
* Other *
*********
eeprom Raw EEPROM data in binary form.
Read only.
RO
pec Enable or disable PEC (SMBus only)
Read/Write
0: disable
1: enable
RW

View File

@ -6,31 +6,32 @@ voltages, fans speed). They are often connected through an I2C bus, but some
are also connected directly through the ISA bus.
The kernel drivers make the data from the sensor chips available in the /sys
virtual filesystem. Userspace tools are then used to display or set or the
data in a more friendly manner.
virtual filesystem. Userspace tools are then used to display the measured
values or configure the chips in a more friendly manner.
Lm-sensors
----------
Core set of utilites that will allow you to obtain health information,
Core set of utilities that will allow you to obtain health information,
setup monitoring limits etc. You can get them on their homepage
http://www.lm-sensors.nu/ or as a package from your Linux distribution.
If from website:
Get lmsensors from project web site. Please note, you need only userspace
part, so compile with "make user_install" target.
Get lm-sensors from project web site. Please note, you need only userspace
part, so compile with "make user" and install with "make user_install".
General hints to get things working:
0) get lm-sensors userspace utils
1) compile all drivers in I2C section as modules in your kernel
1) compile all drivers in I2C and Hardware Monitoring sections as modules
in your kernel
2) run sensors-detect script, it will tell you what modules you need to load.
3) load them and run "sensors" command, you should see some results.
4) fix sensors.conf, labels, limits, fan divisors
5) if any more problems consult FAQ, or documentation
Other utilites
--------------
Other utilities
---------------
If you want some graphical indicators of system health look for applications
like: gkrellm, ksensors, xsensors, wmtemp, wmsensors, wmgtemp, ksysguardd,

113
Documentation/hwmon/w83791d Normal file
View File

@ -0,0 +1,113 @@
Kernel driver w83791d
=====================
Supported chips:
* Winbond W83791D
Prefix: 'w83791d'
Addresses scanned: I2C 0x2c - 0x2f
Datasheet: http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83791Da.pdf
Author: Charles Spirakis <bezaur@gmail.com>
This driver was derived from the w83781d.c and w83792d.c source files.
Credits:
w83781d.c:
Frodo Looijaard <frodol@dds.nl>,
Philip Edelbrock <phil@netroedge.com>,
and Mark Studebaker <mdsxyz123@yahoo.com>
w83792d.c:
Chunhao Huang <DZShen@Winbond.com.tw>,
Rudolf Marek <r.marek@sh.cvut.cz>
Module Parameters
-----------------
* init boolean
(default 0)
Use 'init=1' to have the driver do extra software initializations.
The default behavior is to do the minimum initialization possible
and depend on the BIOS to properly setup the chip. If you know you
have a w83791d and you're having problems, try init=1 before trying
reset=1.
* reset boolean
(default 0)
Use 'reset=1' to reset the chip (via index 0x40, bit 7). The default
behavior is no chip reset to preserve BIOS settings.
* force_subclients=bus,caddr,saddr,saddr
This is used to force the i2c addresses for subclients of
a certain chip. Example usage is `force_subclients=0,0x2f,0x4a,0x4b'
to force the subclients of chip 0x2f on bus 0 to i2c addresses
0x4a and 0x4b.
Description
-----------
This driver implements support for the Winbond W83791D chip.
Detection of the chip can sometimes be foiled because it can be in an
internal state that allows no clean access (Bank with ID register is not
currently selected). If you know the address of the chip, use a 'force'
parameter; this will put it into a more well-behaved state first.
The driver implements three temperature sensors, five fan rotation speed
sensors, and ten voltage sensors.
Temperatures are measured in degrees Celsius and measurement resolution is 1
degC for temp1 and 0.5 degC for temp2 and temp3. An alarm is triggered when
the temperature gets higher than the Overtemperature Shutdown value; it stays
on until the temperature falls below the Hysteresis value.
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
triggered if the rotation speed has dropped below a programmable limit. Fan
readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3
and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more
range or accuracy.
Voltage sensors (also known as IN sensors) report their values in millivolts.
An alarm is triggered if the voltage has crossed a programmable minimum
or maximum limit.
Alarms are provided as output from a "realtime status register". The
following bits are defined:
bit - alarm on:
0 - Vcore
1 - VINR0
2 - +3.3VIN
3 - 5VDD
4 - temp1
5 - temp2
6 - fan1
7 - fan2
8 - +12VIN
9 - -12VIN
10 - -5VIN
11 - fan3
12 - chassis
13 - temp3
14 - VINR1
15 - reserved
16 - tart1
17 - tart2
18 - tart3
19 - VSB
20 - VBAT
21 - fan4
22 - fan5
23 - reserved
When an alarm goes off, you can be warned by a beeping signal through your
computer speaker. It is possible to enable all beeping globally, or only
the beeping for some alarms.
The driver only reads the chip values each 3 seconds; reading them more
often will do no harm, but will return 'old' values.
W83791D TODO:
---------------
Provide a patch for per-file alarms as discussed on the mailing list
Provide a patch for smart-fan control (still need appropriate motherboard/fans)

View File

@ -21,8 +21,7 @@ Authors:
Module Parameters
-----------------
* force_addr: int
Forcibly enable the ICH at the given address. EXTREMELY DANGEROUS!
None.
Description

View File

@ -7,6 +7,8 @@ Supported adapters:
* nForce3 250Gb MCP 10de:00E4
* nForce4 MCP 10de:0052
* nForce4 MCP-04 10de:0034
* nForce4 MCP51 10de:0264
* nForce4 MCP55 10de:0368
Datasheet: not publically available, but seems to be similar to the
AMD-8111 SMBus 2.0 adapter.

View File

@ -0,0 +1,51 @@
Kernel driver i2c-ocores
Supported adapters:
* OpenCores.org I2C controller by Richard Herveille (see datasheet link)
Datasheet: http://www.opencores.org/projects.cgi/web/i2c/overview
Author: Peter Korsgaard <jacmet@sunsite.dk>
Description
-----------
i2c-ocores is an i2c bus driver for the OpenCores.org I2C controller
IP core by Richard Herveille.
Usage
-----
i2c-ocores uses the platform bus, so you need to provide a struct
platform_device with the base address and interrupt number. The
dev.platform_data of the device should also point to a struct
ocores_i2c_platform_data (see linux/i2c-ocores.h) describing the
distance between registers and the input clock speed.
E.G. something like:
static struct resource ocores_resources[] = {
[0] = {
.start = MYI2C_BASEADDR,
.end = MYI2C_BASEADDR + 8,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = MYI2C_IRQ,
.end = MYI2C_IRQ,
.flags = IORESOURCE_IRQ,
},
};
static struct ocores_i2c_platform_data myi2c_data = {
.regstep = 2, /* two bytes between registers */
.clock_khz = 50000, /* input clock of 50MHz */
};
static struct platform_device myi2c = {
.name = "ocores-i2c",
.dev = {
.platform_data = &myi2c_data,
},
.num_resources = ARRAY_SIZE(ocores_resources),
.resource = ocores_resources,
};

View File

@ -6,6 +6,8 @@ Supported adapters:
Datasheet: Publicly available at the Intel website
* ServerWorks OSB4, CSB5, CSB6 and HT-1000 southbridges
Datasheet: Only available via NDA from ServerWorks
* ATI IXP southbridges IXP200, IXP300, IXP400
Datasheet: Not publicly available
* Standard Microsystems (SMSC) SLC90E66 (Victory66) southbridge
Datasheet: Publicly available at the SMSC website http://www.smsc.com
@ -21,8 +23,6 @@ Module Parameters
Forcibly enable the PIIX4. DANGEROUS!
* force_addr: int
Forcibly enable the PIIX4 at the given address. EXTREMELY DANGEROUS!
* fix_hstcfg: int
Fix config register. Needed on some boards (Force CPCI735).
Description
@ -63,10 +63,36 @@ The PIIX4E is just an new version of the PIIX4; it is supported as well.
The PIIX/PIIX3 does not implement an SMBus or I2C bus, so you can't use
this driver on those mainboards.
The ServerWorks Southbridges, the Intel 440MX, and the Victory766 are
The ServerWorks Southbridges, the Intel 440MX, and the Victory66 are
identical to the PIIX4 in I2C/SMBus support.
A few OSB4 southbridges are known to be misconfigured by the BIOS. In this
case, you have you use the fix_hstcfg module parameter. Do not use it
unless you know you have to, because in some cases it also breaks
configuration on southbridges that don't need it.
If you own Force CPCI735 motherboard or other OSB4 based systems you may need
to change the SMBus Interrupt Select register so the SMBus controller uses
the SMI mode.
1) Use lspci command and locate the PCI device with the SMBus controller:
00:0f.0 ISA bridge: ServerWorks OSB4 South Bridge (rev 4f)
The line may vary for different chipsets. Please consult the driver source
for all possible PCI ids (and lspci -n to match them). Lets assume the
device is located at 00:0f.0.
2) Now you just need to change the value in 0xD2 register. Get it first with
command: lspci -xxx -s 00:0f.0
If the value is 0x3 then you need to change it to 0x1
setpci -s 00:0f.0 d2.b=1
Please note that you don't need to do that in all cases, just when the SMBus is
not working properly.
Hardware-specific issues
------------------------
This driver will refuse to load on IBM systems with an Intel PIIX4 SMBus.
Some of these machines have an RFID EEPROM (24RF08) connected to the SMBus,
which can easily get corrupted due to a state machine bug. These are mostly
Thinkpad laptops, but desktop systems may also be affected. We have no list
of all affected systems, so the only safe solution was to prevent access to
the SMBus on all IBM systems (detected using DMI data.)
For additional information, read:
http://www2.lm-sensors.nu/~lm78/cvs/lm_sensors2/README.thinkpad

View File

@ -2,14 +2,31 @@ Kernel driver scx200_acb
Author: Christer Weinigel <wingel@nano-system.com>
The driver supersedes the older, never merged driver named i2c-nscacb.
Module Parameters
-----------------
* base: int
* base: up to 4 ints
Base addresses for the ACCESS.bus controllers on SCx200 and SC1100 devices
By default the driver uses two base addresses 0x820 and 0x840.
If you want only one base address, specify the second as 0 so as to
override this default.
Description
-----------
Enable the use of the ACCESS.bus controller on the Geode SCx200 and
SC1100 processors and the CS5535 and CS5536 Geode companion devices.
Device-specific notes
---------------------
The SC1100 WRAP boards are known to use base addresses 0x810 and 0x820.
If the scx200_acb driver is built into the kernel, add the following
parameter to your boot command line:
scx200_acb.base=0x810,0x820
If the scx200_acb driver is built as a module, add the following line to
the file /etc/modprobe.conf instead:
options scx200_acb base=0x810,0x820

View File

@ -85,7 +85,9 @@ Code Seq# Include File Comments
<mailto:maassen@uni-freiburg.de>
'C' all linux/soundcard.h
'D' all asm-s390/dasd.h
'E' all linux/input.h
'F' all linux/fb.h
'H' all linux/hiddev.h
'I' all linux/isdn.h
'J' 00-1F drivers/scsi/gdth_ioctl.h
'K' all linux/kd.h

View File

@ -124,7 +124,8 @@ GigaSet 307x Device Driver
You can use some configuration tool of your distribution to configure this
"modem" or configure pppd/wvdial manually. There are some example ppp
configuration files and chat scripts in the gigaset-VERSION/ppp directory.
configuration files and chat scripts in the gigaset-VERSION/ppp directory
in the driver packages from http://sourceforge.net/projects/gigaset307x/.
Please note that the USB drivers are not able to change the state of the
control lines (the M105 driver can be configured to use some undocumented
control requests, if you really need the control lines, though). This means
@ -164,8 +165,8 @@ GigaSet 307x Device Driver
If you want both of these at once, you are out of luck.
You can also use /sys/module/<name>/parameters/cidmode for changing
the CID mode setting (<name> is usb_gigaset or bas_gigaset).
You can also use /sys/class/tty/ttyGxy/cidmode for changing the CID mode
setting (ttyGxy is ttyGU0 or ttyGB0).
3. Troubleshooting

View File

@ -147,6 +147,9 @@ running once the system is up.
acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA
Format: <irq>,<irq>...
acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
Format: To spoof as Windows 98: ="Microsoft Windows"
acpi_osi= [HW,ACPI] empty param disables _OSI
acpi_serialize [HW,ACPI] force serialization of AML methods

View File

@ -19,6 +19,7 @@ This document has the following sections:
- Key overview
- Key service overview
- Key access permissions
- SELinux support
- New procfs files
- Userspace system call interface
- Kernel services
@ -232,6 +233,34 @@ For changing the ownership, group ID or permissions mask, being the owner of
the key or having the sysadmin capability is sufficient.
===============
SELINUX SUPPORT
===============
The security class "key" has been added to SELinux so that mandatory access
controls can be applied to keys created within various contexts. This support
is preliminary, and is likely to change quite significantly in the near future.
Currently, all of the basic permissions explained above are provided in SELinux
as well; SE Linux is simply invoked after all basic permission checks have been
performed.
Each key is labeled with the same context as the task to which it belongs.
Typically, this is the same task that was running when the key was created.
The default keyrings are handled differently, but in a way that is very
intuitive:
(*) The user and user session keyrings that are created when the user logs in
are currently labeled with the context of the login manager.
(*) The keyrings associated with new threads are each labeled with the context
of their associated thread, and both session and process keyrings are
handled similarly.
Note, however, that the default keyrings associated with the root user are
labeled with the default kernel context, since they are created early in the
boot process, before root has a chance to log in.
================
NEW PROCFS FILES
================
@ -935,6 +964,16 @@ The structure has a number of fields, some of which are mandatory:
It is not safe to sleep in this method; the caller may hold spinlocks.
(*) void (*revoke)(struct key *key);
This method is optional. It is called to discard part of the payload
data upon a key being revoked. The caller will have the key semaphore
write-locked.
It is safe to sleep in this method, though care should be taken to avoid
a deadlock against the key semaphore.
(*) void (*destroy)(struct key *key);
This method is optional. It is called to discard the payload data on a key

View File

@ -39,10 +39,13 @@ Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com>
mknod /dev/net/tun c 10 200
Set permissions:
e.g. chmod 0700 /dev/net/tun
if you want the device only accessible by root. Giving regular users the
right to assign network devices is NOT a good idea. Users could assign
bogus network interfaces to trick firewalls or administrators.
e.g. chmod 0666 /dev/net/tun
There's no harm in allowing the device to be accessible by non-root users,
since CAP_NET_ADMIN is required for creating network devices or for
connecting to network devices which aren't owned by the user in question.
If you want to create persistent devices and give ownership of them to
unprivileged users, then you need the /dev/net/tun device to be usable by
those users.
Driver module autoloading

View File

@ -213,9 +213,17 @@ have been remapped by the kernel.
See Documentation/IO-mapping.txt for how to access device memory.
You still need to call request_region() for I/O regions and
request_mem_region() for memory regions to make sure nobody else is using the
same device.
The device driver needs to call pci_request_region() to make sure
no other device is already using the same resource. The driver is expected
to determine MMIO and IO Port resource availability _before_ calling
pci_enable_device(). Conversely, drivers should call pci_release_region()
_after_ calling pci_disable_device(). The idea is to prevent two devices
colliding on the same address range.
Generic flavors of pci_request_region() are request_mem_region()
(for MMIO ranges) and request_region() (for IO Port ranges).
Use these for address resources that are not described by "normal" PCI
interfaces (e.g. BAR).
All interrupt handlers should be registered with SA_SHIRQ and use the devid
to map IRQs to devices (remember that all PCI interrupts are shared).

View File

@ -118,96 +118,6 @@ will fail.
There is currently no way to know what states a device or driver
supports a priori. This will change in the future.
pm_message_t meaning
pm_message_t has two fields. event ("major"), and flags. If driver
does not know event code, it aborts the request, returning error. Some
drivers may need to deal with special cases based on the actual type
of suspend operation being done at the system level. This is why
there are flags.
Event codes are:
ON -- no need to do anything except special cases like broken
HW.
# NOTIFICATION -- pretty much same as ON?
FREEZE -- stop DMA and interrupts, and be prepared to reinit HW from
scratch. That probably means stop accepting upstream requests, the
actual policy of what to do with them beeing specific to a given
driver. It's acceptable for a network driver to just drop packets
while a block driver is expected to block the queue so no request is
lost. (Use IDE as an example on how to do that). FREEZE requires no
power state change, and it's expected for drivers to be able to
quickly transition back to operating state.
SUSPEND -- like FREEZE, but also put hardware into low-power state. If
there's need to distinguish several levels of sleep, additional flag
is probably best way to do that.
Transitions are only from a resumed state to a suspended state, never
between 2 suspended states. (ON -> FREEZE or ON -> SUSPEND can happen,
FREEZE -> SUSPEND or SUSPEND -> FREEZE can not).
All events are:
[NOTE NOTE NOTE: If you are driver author, you should not care; you
should only look at event, and ignore flags.]
#Prepare for suspend -- userland is still running but we are going to
#enter suspend state. This gives drivers chance to load firmware from
#disk and store it in memory, or do other activities taht require
#operating userland, ability to kmalloc GFP_KERNEL, etc... All of these
#are forbiden once the suspend dance is started.. event = ON, flags =
#PREPARE_TO_SUSPEND
Apm standby -- prepare for APM event. Quiesce devices to make life
easier for APM BIOS. event = FREEZE, flags = APM_STANDBY
Apm suspend -- same as APM_STANDBY, but it we should probably avoid
spinning down disks. event = FREEZE, flags = APM_SUSPEND
System halt, reboot -- quiesce devices to make life easier for BIOS. event
= FREEZE, flags = SYSTEM_HALT or SYSTEM_REBOOT
System shutdown -- at least disks need to be spun down, or data may be
lost. Quiesce devices, just to make life easier for BIOS. event =
FREEZE, flags = SYSTEM_SHUTDOWN
Kexec -- turn off DMAs and put hardware into some state where new
kernel can take over. event = FREEZE, flags = KEXEC
Powerdown at end of swsusp -- very similar to SYSTEM_SHUTDOWN, except wake
may need to be enabled on some devices. This actually has at least 3
subtypes, system can reboot, enter S4 and enter S5 at the end of
swsusp. event = FREEZE, flags = SWSUSP and one of SYSTEM_REBOOT,
SYSTEM_SHUTDOWN, SYSTEM_S4
Suspend to ram -- put devices into low power state. event = SUSPEND,
flags = SUSPEND_TO_RAM
Freeze for swsusp snapshot -- stop DMA and interrupts. No need to put
devices into low power mode, but you must be able to reinitialize
device from scratch in resume method. This has two flavors, its done
once on suspending kernel, once on resuming kernel. event = FREEZE,
flags = DURING_SUSPEND or DURING_RESUME
Device detach requested from /sys -- deinitialize device; proably same as
SYSTEM_SHUTDOWN, I do not understand this one too much. probably event
= FREEZE, flags = DEV_DETACH.
#These are not really events sent:
#
#System fully on -- device is working normally; this is probably never
#passed to suspend() method... event = ON, flags = 0
#
#Ready after resume -- userland is now running, again. Time to free any
#memory you ate during prepare to suspend... event = ON, flags =
#READY_AFTER_RESUME
#
pm_message_t meaning
pm_message_t has two fields. event ("major"), and flags. If driver

View File

@ -18,10 +18,11 @@ Some warnings, first.
*
* (*) suspend/resume support is needed to make it safe.
*
* If you have any filesystems on USB devices mounted before suspend,
* If you have any filesystems on USB devices mounted before software suspend,
* they won't be accessible after resume and you may lose data, as though
* you have unplugged the USB devices with mounted filesystems on them
* (see the FAQ below for details).
* you have unplugged the USB devices with mounted filesystems on them;
* see the FAQ below for details. (This is not true for more traditional
* power states like "standby", which normally don't turn USB off.)
You need to append resume=/dev/your_swap_partition to kernel command
line. Then you suspend by
@ -204,7 +205,7 @@ Q: There don't seem to be any generally useful behavioral
distinctions between SUSPEND and FREEZE.
A: Doing SUSPEND when you are asked to do FREEZE is always correct,
but it may be unneccessarily slow. If you want USB to stay simple,
but it may be unneccessarily slow. If you want your driver to stay simple,
slowness may not matter to you. It can always be fixed later.
For devices like disk it does matter, you do not want to spindown for
@ -349,25 +350,72 @@ Q: How do I make suspend more verbose?
A: If you want to see any non-error kernel messages on the virtual
terminal the kernel switches to during suspend, you have to set the
kernel console loglevel to at least 5, for example by doing
kernel console loglevel to at least 4 (KERN_WARNING), for example by
doing
echo 5 > /proc/sys/kernel/printk
# save the old loglevel
read LOGLEVEL DUMMY < /proc/sys/kernel/printk
# set the loglevel so we see the progress bar.
# if the level is higher than needed, we leave it alone.
if [ $LOGLEVEL -lt 5 ]; then
echo 5 > /proc/sys/kernel/printk
fi
IMG_SZ=0
read IMG_SZ < /sys/power/image_size
echo -n disk > /sys/power/state
RET=$?
#
# the logic here is:
# if image_size > 0 (without kernel support, IMG_SZ will be zero),
# then try again with image_size set to zero.
if [ $RET -ne 0 -a $IMG_SZ -ne 0 ]; then # try again with minimal image size
echo 0 > /sys/power/image_size
echo -n disk > /sys/power/state
RET=$?
fi
# restore previous loglevel
echo $LOGLEVEL > /proc/sys/kernel/printk
exit $RET
Q: Is this true that if I have a mounted filesystem on a USB device and
I suspend to disk, I can lose data unless the filesystem has been mounted
with "sync"?
A: That's right. It depends on your hardware, and it could be true even for
suspend-to-RAM. In fact, even with "-o sync" you can lose data if your
programs have information in buffers they haven't written out to disk.
A: That's right ... if you disconnect that device, you may lose data.
In fact, even with "-o sync" you can lose data if your programs have
information in buffers they haven't written out to a disk you disconnect,
or if you disconnect before the device finished saving data you wrote.
If you're lucky, your hardware will support low-power modes for USB
controllers while the system is asleep. Lots of hardware doesn't,
however. Shutting off the power to a USB controller is equivalent to
unplugging all the attached devices.
Software suspend normally powers down USB controllers, which is equivalent
to disconnecting all USB devices attached to your system.
Your system might well support low-power modes for its USB controllers
while the system is asleep, maintaining the connection, using true sleep
modes like "suspend-to-RAM" or "standby". (Don't write "disk" to the
/sys/power/state file; write "standby" or "mem".) We've not seen any
hardware that can use these modes through software suspend, although in
theory some systems might support "platform" or "firmware" modes that
won't break the USB connections.
Remember that it's always a bad idea to unplug a disk drive containing a
mounted filesystem. With USB that's true even when your system is asleep!
The safest thing is to unmount all USB-based filesystems before suspending
and remount them after resuming.
mounted filesystem. That's true even when your system is asleep! The
safest thing is to unmount all filesystems on removable media (such USB,
Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays)
before suspending; then remount them after resuming.
Q: I upgraded the kernel from 2.6.15 to 2.6.16. Both kernels were
compiled with the similar configuration files. Anyway I found that
suspend to disk (and resume) is much slower on 2.6.16 compared to
2.6.15. Any idea for why that might happen or how can I speed it up?
A: This is because the size of the suspend image is now greater than
for 2.6.15 (by saving more data we can get more responsive system
after resume).
There's the /sys/power/image_size knob that controls the size of the
image. If you set it to 0 (eg. by echo 0 > /sys/power/image_size as
root), the 2.6.15 behavior should be restored. If it is still too
slow, take a look at suspend.sf.net -- userland suspend is faster and
supports LZF compression to speed it up further.

View File

@ -90,6 +90,7 @@ Table of known working notebooks:
Model hack (or "how to do it")
------------------------------------------------------------------------------
Acer Aspire 1406LC ole's late BIOS init (7), turn off DRI
Acer TM 230 s3_bios (2)
Acer TM 242FX vbetool (6)
Acer TM C110 video_post (8)
Acer TM C300 vga=normal (only suspend on console, not in X), vbetool (6) or video_post (8)
@ -115,6 +116,7 @@ Dell D610 vga=normal and X (possibly vbestate (6) too, but not tested)
Dell Inspiron 4000 ??? (*)
Dell Inspiron 500m ??? (*)
Dell Inspiron 510m ???
Dell Inspiron 5150 vbetool needed (6)
Dell Inspiron 600m ??? (*)
Dell Inspiron 8200 ??? (*)
Dell Inspiron 8500 ??? (*)
@ -125,6 +127,7 @@ HP NX7000 ??? (*)
HP Pavilion ZD7000 vbetool post needed, need open-source nv driver for X
HP Omnibook XE3 athlon version none (1)
HP Omnibook XE3GC none (1), video is S3 Savage/IX-MV
HP Omnibook XE3L-GF vbetool (6)
HP Omnibook 5150 none (1), (S1 also works OK)
IBM TP T20, model 2647-44G none (1), video is S3 Inc. 86C270-294 Savage/IX-MV, vesafb gets "interesting" but X work.
IBM TP A31 / Type 2652-M5G s3_mode (3) [works ok with BIOS 1.04 2002-08-23, but not at all with BIOS 1.11 2004-11-05 :-(]
@ -157,6 +160,7 @@ Sony Vaio vgn-s260 X or boot-radeon can init it (5)
Sony Vaio vgn-S580BH vga=normal, but suspend from X. Console will be blank unless you return to X.
Sony Vaio vgn-FS115B s3_bios (2),s3_mode (4)
Toshiba Libretto L5 none (1)
Toshiba Libretto 100CT/110CT vbetool (6)
Toshiba Portege 3020CT s3_mode (3)
Toshiba Satellite 4030CDT s3_mode (3) (S1 also works OK)
Toshiba Satellite 4080XCDT s3_mode (3) (S1 also works OK)

View File

@ -366,7 +366,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module for C-Media CMI8338 and 8738 PCI sound cards.
mpu_port - 0x300,0x310,0x320,0x330, 0 = disable (default)
mpu_port - 0x300,0x310,0x320,0x330 = legacy port,
1 = integrated PCI port,
0 = disable (default)
fm_port - 0x388 (default), 0 = disable (default)
soft_ac3 - Software-conversion of raw SPDIF packets (model 033 only)
(default = 1)
@ -468,7 +470,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module for multifunction CS5535 companion PCI device
This module supports multiple cards.
The power-management is supported.
Module snd-dt019x
-----------------
@ -707,8 +709,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module snd-hda-intel
--------------------
Module for Intel HD Audio (ICH6, ICH6M, ICH7), ATI SB450,
VIA VT8251/VT8237A
Module for Intel HD Audio (ICH6, ICH6M, ESB2, ICH7, ICH8),
ATI SB450, SB600, RS600,
VIA VT8251/VT8237A,
SIS966, ULI M5461
model - force the model name
position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size)
@ -778,6 +782,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
AD1981
basic 3-jack (default)
hp HP nx6320
thinkpad Lenovo Thinkpad T60/X60/Z60
AD1986A
6stack 6-jack, separate surrounds (default)
@ -1633,9 +1638,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
About capture IBL, see the description of snd-vx222 module.
Note: the driver is build only when CONFIG_ISA is set.
Note2: snd-vxp440 driver is merged to snd-vxpocket driver since
Note: snd-vxp440 driver is merged to snd-vxpocket driver since
ALSA 1.0.10.
The power-management is supported.
@ -1662,8 +1665,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module for Sound Core PDAudioCF sound card.
Note: the driver is build only when CONFIG_ISA is set.
The power-management is supported.

View File

@ -4215,7 +4215,7 @@ struct _snd_pcm_runtime {
<programlisting>
<![CDATA[
struct snd_rawmidi *rmidi;
snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated,
snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
irq, irq_flags, &rmidi);
]]>
</programlisting>
@ -4242,15 +4242,36 @@ struct _snd_pcm_runtime {
</para>
<para>
The 5th argument is bitflags for additional information.
When the i/o port address above is a part of the PCI i/o
region, the MPU401 i/o port might have been already allocated
(reserved) by the driver itself. In such a case, pass non-zero
to the 5th argument
(<parameter>integrated</parameter>). Otherwise, pass 0 to it,
(reserved) by the driver itself. In such a case, pass a bit flag
<constant>MPU401_INFO_INTEGRATED</constant>,
and
the mpu401-uart layer will allocate the i/o ports by itself.
</para>
<para>
When the controller supports only the input or output MIDI stream,
pass <constant>MPU401_INFO_INPUT</constant> or
<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
Then the rawmidi instance is created as a single stream.
</para>
<para>
<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
the access method to MMIO (via readb and writeb) instead of
iob and outb. In this case, you have to pass the iomapped address
to <function>snd_mpu401_uart_new()</function>.
</para>
<para>
When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
stream isn't checked in the default interrupt handler. The driver
needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
by itself to start processing the output stream in irq handler.
</para>
<para>
Usually, the port address corresponds to the command port and
port + 1 corresponds to the data port. If not, you may change
@ -5333,7 +5354,7 @@ struct _snd_pcm_runtime {
<informalexample>
<programlisting>
<![CDATA[
snd_info_set_text_ops(entry, chip, read_size, my_proc_read);
snd_info_set_text_ops(entry, chip, my_proc_read);
]]>
</programlisting>
</informalexample>
@ -5394,29 +5415,12 @@ struct _snd_pcm_runtime {
<informalexample>
<programlisting>
<![CDATA[
entry->c.text.write_size = 256;
entry->c.text.write = my_proc_write;
]]>
</programlisting>
</informalexample>
</para>
<para>
The buffer size for read is set to 1024 implicitly by
<function>snd_info_set_text_ops()</function>. It should suffice
in most cases (the size will be aligned to
<constant>PAGE_SIZE</constant> anyway), but if you need to handle
very large text files, you can set it explicitly, too.
<informalexample>
<programlisting>
<![CDATA[
entry->c.text.read_size = 65536;
]]>
</programlisting>
</informalexample>
</para>
<para>
For the write callback, you can use
<function>snd_info_get_line()</function> to get a text line, and
@ -5562,7 +5566,7 @@ struct _snd_pcm_runtime {
power status.</para></listitem>
<listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
<listitem><para>If AC97 codecs are used, call
<function>snd_ac97_resume()</function> for each codec.</para></listitem>
<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
<listitem><para>Save the register values if necessary.</para></listitem>
<listitem><para>Stop the hardware if necessary.</para></listitem>
<listitem><para>Disable the PCI device by calling

View File

@ -1,5 +1,6 @@
Copyright 2004 Linus Torvalds
Copyright 2004 Pavel Machek <pavel@suse.cz>
Copyright 2006 Bob Copeland <me@bobcopeland.com>
Using sparse for typechecking
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@ -41,15 +42,8 @@ sure that bitwise types don't get mixed up (little-endian vs big-endian
vs cpu-endian vs whatever), and there the constant "0" really _is_
special.
Use
make C=[12] CF=-Wbitwise
or you don't get any checking at all.
Where to get sparse
~~~~~~~~~~~~~~~~~~~
Getting sparse
~~~~~~~~~~~~~~
With git, you can just get it from
@ -57,7 +51,7 @@ With git, you can just get it from
and DaveJ has tar-balls at
http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
Once you have it, just do
@ -65,8 +59,20 @@ Once you have it, just do
make
make install
as your regular user, and it will install sparse in your ~/bin directory.
After that, doing a kernel make with "make C=1" will run sparse on all the
C files that get recompiled, or with "make C=2" will run sparse on the
files whether they need to be recompiled or not (ie the latter is fast way
to check the whole tree if you have already built it).
as a regular user, and it will install sparse in your ~/bin directory.
Using sparse
~~~~~~~~~~~~
Do a kernel make with "make C=1" to run sparse on all the C files that get
recompiled, or use "make C=2" to run sparse on the files whether they need to
be recompiled or not. The latter is a fast way to check the whole tree if you
have already built it.
The optional make variable CF can be used to pass arguments to sparse. The
build system passes -Wbitwise to sparse automatically. To perform endianness
checks, you may define __CHECK_ENDIAN__:
make C=2 CF="-D__CHECK_ENDIAN__"
These checks are disabled by default as they generate a host of warnings.

View File

@ -29,6 +29,7 @@ Currently, these files are in /proc/sys/vm:
- drop-caches
- zone_reclaim_mode
- zone_reclaim_interval
- panic_on_oom
==============================================================
@ -178,3 +179,15 @@ Time is set in seconds and set by default to 30 seconds.
Reduce the interval if undesired off node allocations occur. However, too
frequent scans will have a negative impact onoff node allocation performance.
=============================================================
panic_on_oom
This enables or disables panic on out-of-memory feature. If this is set to 1,
the kernel panics when out-of-memory happens. If this is set to 0, the kernel
will kill some rogue process, called oom_killer. Usually, oom_killer can kill
rogue processes and system will survive. If you want to panic the system
rather than killing rogue processes, set this to 1.
The default value is 0.

View File

@ -29,14 +29,13 @@ if usbmon is built into the kernel.
# mount -t debugfs none_debugs /sys/kernel/debug
# modprobe usbmon
#
Verify that bus sockets are present.
[root@lembas zaitcev]# ls /sys/kernel/debug/usbmon
# ls /sys/kernel/debug/usbmon
1s 1t 2s 2t 3s 3t 4s 4t
[root@lembas zaitcev]#
# ls /sys/kernel
#
2. Find which bus connects to the desired device
@ -76,7 +75,7 @@ that the file size is not excessive for your favourite editor.
* Raw text data format
The '0t' type data consists of a stream of events, such as URB submission,
The '1t' type data consists of a stream of events, such as URB submission,
URB callback, submission error. Every event is a text line, which consists
of whitespace separated words. The number of position of words may depend
on the event type, but there is a set of words, common for all types.
@ -97,20 +96,25 @@ Here is the list of words, from left to right:
Zi Zo Isochronous input and output
Ii Io Interrupt input and output
Bi Bo Bulk input and output
Device address and Endpoint number are decimal numbers with leading zeroes
or 3 and 2 positions, correspondingly.
- URB Status. This field makes no sense for submissions, but is present
to help scripts with parsing. In error case, it contains the error code.
In case of a setup packet, it contains a Setup Tag. If scripts read a number
in this field, they proceed to read Data Length. Otherwise, they read
the setup packet before reading the Data Length.
Device address and Endpoint number are 3-digit and 2-digit (respectively)
decimal numbers, with leading zeroes.
- URB Status. In most cases, this field contains a number, sometimes negative,
which represents a "status" field of the URB. This field makes no sense for
submissions, but is present anyway to help scripts with parsing. When an
error occurs, the field contains the error code. In case of a submission of
a Control packet, this field contains a Setup Tag instead of an error code.
It is easy to tell whether the Setup Tag is present because it is never a
number. Thus if scripts find a number in this field, they proceed to read
Data Length. If they find something else, like a letter, they read the setup
packet before reading the Data Length.
- Setup packet, if present, consists of 5 words: one of each for bmRequestType,
bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.
These words are safe to decode if Setup Tag was 's'. Otherwise, the setup
packet was present, but not captured, and the fields contain filler.
- Data Length. This is the actual length in the URB.
- Data Length. For submissions, this is the requested length. For callbacks,
this is the actual length.
- Data tag. The usbmon may not always capture data, even if length is nonzero.
Only if tag is '=', the data words are present.
The data words are present only if this tag is '='.
- Data words follow, in big endian hexadecimal format. Notice that they are
not machine words, but really just a byte stream split into words to make
it easier to read. Thus, the last word may contain from one to four bytes.

View File

@ -26,8 +26,13 @@ a process are located. See also the numa_maps manpage in the numactl package.
Manual migration is useful if for example the scheduler has relocated
a process to a processor on a distant node. A batch scheduler or an
administrator may detect the situation and move the pages of the process
nearer to the new processor. At some point in the future we may have
some mechanism in the scheduler that will automatically move the pages.
nearer to the new processor. The kernel itself does only provide
manual page migration support. Automatic page migration may be implemented
through user space processes that move pages. A special function call
"move_pages" allows the moving of individual pages within a process.
A NUMA profiler may f.e. obtain a log showing frequent off node
accesses and may use the result to move pages to more advantageous
locations.
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
@ -62,22 +67,14 @@ A. In kernel use of migrate_pages()
It also prevents the swapper or other scans to encounter
the page.
2. Generate a list of newly allocates page. These pages will contain the
contents of the pages from the first list after page migration is
complete.
2. We need to have a function of type new_page_t that can be
passed to migrate_pages(). This function should figure out
how to allocate the correct new page given the old page.
3. The migrate_pages() function is called which attempts
to do the migration. It returns the moved pages in the
list specified as the third parameter and the failed
migrations in the fourth parameter. The first parameter
will contain the pages that could still be retried.
4. The leftover pages of various types are returned
to the LRU using putback_to_lru_pages() or otherwise
disposed of. The pages will still have the refcount as
increased by isolate_lru_pages() if putback_to_lru_pages() is not
used! The kernel may want to handle the various cases of failures in
different ways.
to do the migration. It will call the function to allocate
the new page for each page that is considered for
moving.
B. How migrate_pages() works
----------------------------
@ -93,83 +90,58 @@ Steps:
2. Insure that writeback is complete.
3. Make sure that the page has assigned swap cache entry if
it is an anonyous page. The swap cache reference is necessary
to preserve the information contain in the page table maps while
page migration occurs.
4. Prep the new page that we want to move to. It is locked
3. Prep the new page that we want to move to. It is locked
and set to not being uptodate so that all accesses to the new
page immediately lock while the move is in progress.
5. All the page table references to the page are either dropped (file
backed pages) or converted to swap references (anonymous pages).
This should decrease the reference count.
4. The new page is prepped with some settings from the old page so that
accesses to the new page will discover a page with the correct settings.
5. All the page table references to the page are converted
to migration entries or dropped (nonlinear vmas).
This decrease the mapcount of a page. If the resulting
mapcount is not zero then we do not migrate the page.
All user space processes that attempt to access the page
will now wait on the page lock.
6. The radix tree lock is taken. This will cause all processes trying
to reestablish a pte to block on the radix tree spinlock.
to access the page via the mapping to block on the radix tree spinlock.
7. The refcount of the page is examined and we back out if references remain
otherwise we know that we are the only one referencing this page.
8. The radix tree is checked and if it does not contain the pointer to this
page then we back out because someone else modified the mapping first.
page then we back out because someone else modified the radix tree.
9. The mapping is checked. If the mapping is gone then a truncate action may
be in progress and we back out.
9. The radix tree is changed to point to the new page.
10. The new page is prepped with some settings from the old page so that
accesses to the new page will be discovered to have the correct settings.
10. The reference count of the old page is dropped because the radix tree
reference is gone. A reference to the new page is established because
the new page is referenced to by the radix tree.
11. The radix tree is changed to point to the new page.
11. The radix tree lock is dropped. With that lookups in the mapping
become possible again. Processes will move from spinning on the tree_lock
to sleeping on the locked new page.
12. The reference count of the old page is dropped because the radix tree
reference is gone.
12. The page contents are copied to the new page.
13. The radix tree lock is dropped. With that lookups become possible again
and other processes will move from spinning on the tree lock to sleeping on
the locked new page.
13. The remaining page flags are copied to the new page.
14. The page contents are copied to the new page.
14. The old page flags are cleared to indicate that the page does
not provide any information anymore.
15. The remaining page flags are copied to the new page.
15. Queued up writeback on the new page is triggered.
16. The old page flags are cleared to indicate that the page does
not use any information anymore.
17. Queued up writeback on the new page is triggered.
18. If swap pte's were generated for the page then replace them with real
ptes. This will reenable access for processes not blocked by the page lock.
16. If migration entries were page then replace them with real ptes. Doing
so will enable access for user space processes not already waiting for
the page lock.
19. The page locks are dropped from the old and new page.
Processes waiting on the page lock can continue.
Processes waiting on the page lock will redo their page faults
and will reach the new page.
20. The new page is moved to the LRU and can be scanned by the swapper
etc again.
TODO list
---------
- Page migration requires the use of swap handles to preserve the
information of the anonymous page table entries. This means that swap
space is reserved but never used. The maximum number of swap handles used
is determined by CHUNK_SIZE (see mm/mempolicy.c) per ongoing migration.
Reservation of pages could be avoided by having a special type of swap
handle that does not require swap space and that would only track the page
references. Something like that was proposed by Marcelo Tosatti in the
past (search for migration cache on lkml or linux-mm@kvack.org).
- Page migration unmaps ptes for file backed pages and requires page
faults to reestablish these ptes. This could be optimized by somehow
recording the references before migration and then reestablish them later.
However, there are several locking challenges that have to be overcome
before this is possible.
- Page migration generates read ptes for anonymous pages. Dirty page
faults are required to make the pages writable again. It may be possible
to generate a pte marked dirty if it is known that the page is dirty and
that this process has the only reference to that page.
Christoph Lameter, March 8, 2006.
Christoph Lameter, May 8, 2006.

View File

@ -0,0 +1,18 @@
Kernel driver ds2490
====================
Supported chips:
* Maxim DS2490 based
Author: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Description
-----------
The Maixm/Dallas Semiconductor DS2490 is a chip
which allows to build USB <-> W1 bridges.
DS9490(R) is a USB <-> W1 bus master device
which has 0x81 family ID integrated chip and DS2490
low-level operational chip.

View File

@ -27,8 +27,19 @@ When a w1 master driver registers with the w1 subsystem, the following occurs:
When a device is found on the bus, w1 core checks if driver for it's family is
loaded. If so, the family driver is attached to the slave.
If there is no driver for the family, a simple sysfs entry is created
for the slave device.
If there is no driver for the family, default one is assigned, which allows to perform
almost any kind of operations. Each logical operation is a transaction
in nature, which can contain several (two or one) low-level operations.
Let's see how one can read EEPROM context:
1. one must write control buffer, i.e. buffer containing command byte
and two byte address. At this step bus is reset and appropriate device
is selected using either W1_SKIP_ROM or W1_MATCH_ROM command.
Then provided control buffer is being written to the wire.
2. reading. This will issue reading eeprom response.
It is possible that between 1. and 2. w1 master thread will reset bus for searching
and slave device will be even removed, but in this case 0xff will
be read, since no device was selected.
W1 device families
@ -89,4 +100,5 @@ driver - (standard) symlink to the w1 driver
name - the device name, usually the same as the directory name
w1_slave - (optional) a binary file whose meaning depends on the
family driver
rw - (optional) created for slave devices which do not have
appropriate family driver. Allows to read/write binary data.

View File

@ -0,0 +1,98 @@
Userspace communication protocol over connector [1].
Message types.
=============
There are three types of messages between w1 core and userspace:
1. Events. They are generated each time new master or slave device found
either due to automatic or requested search.
2. Userspace commands. Includes read/write and search/alarm search comamnds.
3. Replies to userspace commands.
Protocol.
========
[struct cn_msg] - connector header. It's length field is equal to size of the attached data.
[struct w1_netlink_msg] - w1 netlink header.
__u8 type - message type.
W1_SLAVE_ADD/W1_SLAVE_REMOVE - slave add/remove events.
W1_MASTER_ADD/W1_MASTER_REMOVE - master add/remove events.
W1_MASTER_CMD - userspace command for bus master device (search/alarm search).
W1_SLAVE_CMD - userspace command for slave device (read/write/ search/alarm search
for bus master device where given slave device found).
__u8 res - reserved
__u16 len - size of attached to this header data.
union {
__u8 id; - slave unique device id
struct w1_mst {
__u32 id; - master's id.
__u32 res; - reserved
} mst;
} id;
[strucrt w1_netlink_cmd] - command for gived master or slave device.
__u8 cmd - command opcode.
W1_CMD_READ - read command.
W1_CMD_WRITE - write command.
W1_CMD_SEARCH - search command.
W1_CMD_ALARM_SEARCH - alarm search command.
__u8 res - reserved
__u16 len - length of data for this command.
For read command data must be allocated like for write command.
__u8 data[0] - data for this command.
Each connector message can include one or more w1_netlink_msg with zero of more attached w1_netlink_cmd messages.
For event messages there are no w1_netlink_cmd embedded structures, only connector header
and w1_netlink_msg strucutre with "len" field being zero and filled type (one of event types)
and id - either 8 bytes of slave unique id in host order, or master's id, which is assigned
to bus master device when it is added to w1 core.
Currently replies to userspace commands are only generated for read command request.
One reply is generated exactly for one w1_netlink_cmd read request.
Replies are not combined when sent - i.e. typical reply messages looks like the following:
[cn_msg][w1_netlink_msg][w1_netlink_cmd]
cn_msg.len = sizeof(struct w1_netlink_msg) + sizeof(struct w1_netlink_cmd) + cmd->len;
w1_netlink_msg.len = sizeof(struct w1_netlink_cmd) + cmd->len;
w1_netlink_cmd.len = cmd->len;
Operation steps in w1 core when new command is received.
=======================================================
When new message (w1_netlink_msg) is received w1 core detects if it is master of slave request,
according to w1_netlink_msg.type field.
Then master or slave device is searched for.
When found, master device (requested or those one on where slave device is found) is locked.
If slave command is requested, then reset/select procedure is started to select given device.
Then all requested in w1_netlink_msg operations are performed one by one.
If command requires reply (like read command) it is sent on command completion.
When all commands (w1_netlink_cmd) are processed muster device is unlocked
and next w1_netlink_msg header processing started.
Connector [1] specific documentation.
====================================
Each connector message includes two u32 fields as "address".
w1 uses CN_W1_IDX and CN_W1_VAL defined in include/linux/connector.h header.
Each message also includes sequence and acknowledge numbers.
Sequence number for event messages is appropriate bus master sequence number increased with
each event message sent "through" this master.
Sequence number for userspace requests is set by userspace application.
Sequence number for reply is the same as was in request, and
acknowledge number is set to seq+1.
Additional documantion, source code examples.
============================================
1. Documentation/connector
2. http://tservice.net.ru/~s0mbre/archive/w1
This archive includes userspace application w1d.c which
uses read/write/search commands for all master/slave devices found on the bus.

View File

@ -181,6 +181,12 @@ M: bcrl@kvack.org
L: linux-aio@kvack.org
S: Supported
ABIT UGURU HARDWARE MONITOR DRIVER
P: Hans de Goede
M: j.w.r.degoede@hhs.nl
L: lm-sensors@lm-sensors.org
S: Maintained
ACENIC DRIVER
P: Jes Sorensen
M: jes@trained-monkey.org
@ -568,6 +574,12 @@ L: linuxppc-dev@ozlabs.org
W: http://www.penguinppc.org/ppc64/
S: Supported
BROADCOM B44 10/100 ETHERNET DRIVER
P: Gary Zambrano
M: zambrano@broadcom.com
L: netdev@vger.kernel.org
S: Supported
BROADCOM BNX2 GIGABIT ETHERNET DRIVER
P: Michael Chan
M: mchan@broadcom.com
@ -2057,6 +2069,12 @@ M: adaplas@pol.net
L: linux-fbdev-devel@lists.sourceforge.net
S: Maintained
OPENCORES I2C BUS DRIVER
P: Peter Korsgaard
M: jacmet@sunsite.dk
L: lm-sensors@lm-sensors.org
S: Maintained
ORACLE CLUSTER FILESYSTEM 2 (OCFS2)
P: Mark Fasheh
M: mark.fasheh@oracle.com
@ -2528,12 +2546,6 @@ M: thomas@winischhofer.net
W: http://www.winischhofer.at/linuxsisusbvga.shtml
S: Maintained
SMSC47M1 HARDWARE MONITOR DRIVER
P: Jean Delvare
M: khali@linux-fr.org
L: lm-sensors@lm-sensors.org
S: Odd Fixes
SMB FILESYSTEM
P: Urban Widmark
M: urban@teststation.com
@ -3146,12 +3158,6 @@ L: wbsd-devel@list.drzeus.cx
W: http://projects.drzeus.cx/wbsd
S: Maintained
W83L785TS HARDWARE MONITOR DRIVER
P: Jean Delvare
M: khali@linux-fr.org
L: lm-sensors@lm-sensors.org
S: Odd Fixes
WATCHDOG DEVICE DRIVERS
P: Wim Van Sebroeck
M: wim@iguana.be
@ -3191,7 +3197,7 @@ XFS FILESYSTEM
P: Silicon Graphics Inc
M: xfs-masters@oss.sgi.com
M: nathans@sgi.com
L: linux-xfs@oss.sgi.com
L: xfs@oss.sgi.com
W: http://oss.sgi.com/projects/xfs
S: Supported

View File

@ -53,10 +53,6 @@ extern void __divqu (void);
extern void __remqu (void);
EXPORT_SYMBOL(alpha_mv);
EXPORT_SYMBOL(enable_irq);
EXPORT_SYMBOL(disable_irq);
EXPORT_SYMBOL(disable_irq_nosync);
EXPORT_SYMBOL(probe_irq_mask);
EXPORT_SYMBOL(screen_info);
EXPORT_SYMBOL(perf_irq);
EXPORT_SYMBOL(callback_getenv);
@ -68,19 +64,13 @@ EXPORT_SYMBOL(alpha_using_srm);
/* platform dependent support */
EXPORT_SYMBOL(strcat);
EXPORT_SYMBOL(strcmp);
EXPORT_SYMBOL(strcpy);
EXPORT_SYMBOL(strlen);
EXPORT_SYMBOL(strncmp);
EXPORT_SYMBOL(strncpy);
EXPORT_SYMBOL(strnlen);
EXPORT_SYMBOL(strncat);
EXPORT_SYMBOL(strstr);
EXPORT_SYMBOL(strchr);
EXPORT_SYMBOL(strrchr);
EXPORT_SYMBOL(memcmp);
EXPORT_SYMBOL(memmove);
EXPORT_SYMBOL(memscan);
EXPORT_SYMBOL(__memcpy);
EXPORT_SYMBOL(__memset);
EXPORT_SYMBOL(__memsetw);
@ -122,11 +112,9 @@ EXPORT_SYMBOL(alpha_write_fp_reg_s);
/* In-kernel system calls. */
EXPORT_SYMBOL(kernel_thread);
EXPORT_SYMBOL(sys_open);
EXPORT_SYMBOL(sys_dup);
EXPORT_SYMBOL(sys_exit);
EXPORT_SYMBOL(sys_write);
EXPORT_SYMBOL(sys_read);
EXPORT_SYMBOL(sys_lseek);
EXPORT_SYMBOL(execve);
EXPORT_SYMBOL(sys_setsid);

View File

@ -244,7 +244,7 @@ do_osf_statfs(struct dentry * dentry, struct osf_statfs __user *buffer,
unsigned long bufsiz)
{
struct kstatfs linux_stat;
int error = vfs_statfs(dentry->d_inode->i_sb, &linux_stat);
int error = vfs_statfs(dentry, &linux_stat);
if (!error)
error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz);
return error;

View File

@ -375,7 +375,7 @@ give_sigsegv:
static inline void __user *
get_sigframe(struct k_sigaction *ka, unsigned long sp, size_t frame_size)
{
if ((ka->sa.sa_flags & SA_ONSTACK) != 0 && ! on_sig_stack(sp))
if ((ka->sa.sa_flags & SA_ONSTACK) != 0 && ! sas_ss_flags(sp))
sp = current->sas_ss_sp + current->sas_ss_size;
return (void __user *)((sp - frame_size) & -32ul);

View File

@ -16,3 +16,4 @@ obj-$(CONFIG_SHARP_PARAM) += sharpsl_param.o
obj-$(CONFIG_SHARPSL_PM) += sharpsl_pm.o
obj-$(CONFIG_SHARP_SCOOP) += scoop.o
obj-$(CONFIG_ARCH_IXP2000) += uengine.o
obj-$(CONFIG_ARCH_IXP23XX) += uengine.o

View File

@ -77,6 +77,8 @@ struct dmabounce_device_info {
#endif
struct dmabounce_pool small;
struct dmabounce_pool large;
rwlock_t lock;
};
static LIST_HEAD(dmabounce_devs);
@ -116,6 +118,7 @@ alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
struct safe_buffer *buf;
struct dmabounce_pool *pool;
struct device *dev = device_info->dev;
unsigned long flags;
dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
__func__, ptr, size, dir);
@ -163,8 +166,12 @@ alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
print_alloc_stats(device_info);
#endif
write_lock_irqsave(&device_info->lock, flags);
list_add(&buf->node, &device_info->safe_buffers);
write_unlock_irqrestore(&device_info->lock, flags);
return buf;
}
@ -172,22 +179,32 @@ alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
static inline struct safe_buffer *
find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
{
struct safe_buffer *b;
struct safe_buffer *b = NULL;
unsigned long flags;
read_lock_irqsave(&device_info->lock, flags);
list_for_each_entry(b, &device_info->safe_buffers, node)
if (b->safe_dma_addr == safe_dma_addr)
return b;
break;
return NULL;
read_unlock_irqrestore(&device_info->lock, flags);
return b;
}
static inline void
free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
{
unsigned long flags;
dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
write_lock_irqsave(&device_info->lock, flags);
list_del(&buf->node);
write_unlock_irqrestore(&device_info->lock, flags);
if (buf->pool)
dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
else
@ -396,7 +413,6 @@ dma_addr_t
dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction dir)
{
unsigned long flags;
dma_addr_t dma_addr;
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
@ -404,12 +420,8 @@ dma_map_single(struct device *dev, void *ptr, size_t size,
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
dma_addr = map_single(dev, ptr, size, dir);
local_irq_restore(flags);
return dma_addr;
}
@ -424,25 +436,18 @@ void
dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir)
{
unsigned long flags;
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
__func__, (void *) dma_addr, size, dir);
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
unmap_single(dev, dma_addr, size, dir);
local_irq_restore(flags);
}
int
dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
unsigned long flags;
int i;
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
@ -450,8 +455,6 @@ dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
for (i = 0; i < nents; i++, sg++) {
struct page *page = sg->page;
unsigned int offset = sg->offset;
@ -462,8 +465,6 @@ dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
map_single(dev, ptr, length, dir);
}
local_irq_restore(flags);
return nents;
}
@ -471,7 +472,6 @@ void
dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
unsigned long flags;
int i;
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
@ -479,55 +479,38 @@ dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
for (i = 0; i < nents; i++, sg++) {
dma_addr_t dma_addr = sg->dma_address;
unsigned int length = sg->length;
unmap_single(dev, dma_addr, length, dir);
}
local_irq_restore(flags);
}
void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir)
{
unsigned long flags;
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
__func__, (void *) dma_addr, size, dir);
local_irq_save(flags);
sync_single(dev, dma_addr, size, dir);
local_irq_restore(flags);
}
void
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction dir)
{
unsigned long flags;
dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
__func__, (void *) dma_addr, size, dir);
local_irq_save(flags);
sync_single(dev, dma_addr, size, dir);
local_irq_restore(flags);
}
void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
unsigned long flags;
int i;
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
@ -535,23 +518,18 @@ dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
for (i = 0; i < nents; i++, sg++) {
dma_addr_t dma_addr = sg->dma_address;
unsigned int length = sg->length;
sync_single(dev, dma_addr, length, dir);
}
local_irq_restore(flags);
}
void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
unsigned long flags;
int i;
dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
@ -559,16 +537,12 @@ dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
BUG_ON(dir == DMA_NONE);
local_irq_save(flags);
for (i = 0; i < nents; i++, sg++) {
dma_addr_t dma_addr = sg->dma_address;
unsigned int length = sg->length;
sync_single(dev, dma_addr, length, dir);
}
local_irq_restore(flags);
}
static int
@ -622,6 +596,7 @@ dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
device_info->dev = dev;
INIT_LIST_HEAD(&device_info->safe_buffers);
rwlock_init(&device_info->lock);
#ifdef STATS
device_info->total_allocs = 0;

View File

@ -18,10 +18,26 @@
#include <linux/module.h>
#include <linux/string.h>
#include <asm/hardware.h>
#include <asm/arch/ixp2000-regs.h>
#include <asm/arch/hardware.h>
#include <asm/hardware/uengine.h>
#include <asm/io.h>
#if defined(CONFIG_ARCH_IXP2000)
#define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
#define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
#define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
#define IXP_RESET1 IXP2000_RESET1
#else
#if defined(CONFIG_ARCH_IXP23XX)
#define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
#define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
#define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
#define IXP_RESET1 IXP23XX_RESET1
#else
#error unknown platform
#endif
#endif
#define USTORE_ADDRESS 0x000
#define USTORE_DATA_LOWER 0x004
#define USTORE_DATA_UPPER 0x008
@ -43,7 +59,7 @@ u32 ixp2000_uengine_mask;
static void *ixp2000_uengine_csr_area(int uengine)
{
return ((void *)IXP2000_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
}
/*
@ -91,8 +107,13 @@ EXPORT_SYMBOL(ixp2000_uengine_csr_write);
void ixp2000_uengine_reset(u32 uengine_mask)
{
ixp2000_reg_wrb(IXP2000_RESET1, uengine_mask & ixp2000_uengine_mask);
ixp2000_reg_wrb(IXP2000_RESET1, 0);
u32 value;
value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
uengine_mask &= ixp2000_uengine_mask;
ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
ixp2000_reg_wrb(IXP_RESET1, value);
}
EXPORT_SYMBOL(ixp2000_uengine_reset);
@ -235,11 +256,12 @@ static int check_ixp_type(struct ixp2000_uengine_code *c)
u32 product_id;
u32 rev;
product_id = ixp2000_reg_read(IXP2000_PRODUCT_ID);
product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
if (((product_id >> 16) & 0x1f) != 0)
return 0;
switch ((product_id >> 8) & 0xff) {
#ifdef CONFIG_ARCH_IXP2000
case 0: /* IXP2800 */
if (!(c->cpu_model_bitmask & 4))
return 0;
@ -254,6 +276,14 @@ static int check_ixp_type(struct ixp2000_uengine_code *c)
if (!(c->cpu_model_bitmask & 2))
return 0;
break;
#endif
#ifdef CONFIG_ARCH_IXP23XX
case 4: /* IXP23xx */
if (!(c->cpu_model_bitmask & 0x3f0))
return 0;
break;
#endif
default:
return 0;
@ -432,7 +462,8 @@ static int __init ixp2000_uengine_init(void)
/*
* Determine number of microengines present.
*/
switch ((ixp2000_reg_read(IXP2000_PRODUCT_ID) >> 8) & 0x1fff) {
switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
#ifdef CONFIG_ARCH_IXP2000
case 0: /* IXP2800 */
case 1: /* IXP2850 */
ixp2000_uengine_mask = 0x00ff00ff;
@ -441,10 +472,17 @@ static int __init ixp2000_uengine_init(void)
case 2: /* IXP2400 */
ixp2000_uengine_mask = 0x000f000f;
break;
#endif
#ifdef CONFIG_ARCH_IXP23XX
case 4: /* IXP23xx */
ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
break;
#endif
default:
printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
(unsigned int)ixp2000_reg_read(IXP2000_PRODUCT_ID));
(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
ixp2000_uengine_mask = 0x00000000;
break;
}
@ -457,15 +495,15 @@ static int __init ixp2000_uengine_init(void)
/*
* Synchronise timestamp counters across all microengines.
*/
value = ixp2000_reg_read(IXP2000_MISC_CONTROL);
ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value & ~0x80);
value = ixp2000_reg_read(IXP_MISC_CONTROL);
ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
for (uengine = 0; uengine < 32; uengine++) {
if (ixp2000_uengine_mask & (1 << uengine)) {
ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
}
}
ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value | 0x80);
ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
return 0;
}

View File

@ -0,0 +1,963 @@
#
# Automatically generated make config: don't edit
# Linux kernel version: 2.6.17-git2
# Wed Jun 21 22:20:18 2006
#
CONFIG_ARM=y
CONFIG_MMU=y
CONFIG_RWSEM_GENERIC_SPINLOCK=y
CONFIG_GENERIC_HWEIGHT=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_ARCH_MTD_XIP=y
CONFIG_VECTORS_BASE=0xffff0000
#
# Code maturity level options
#
CONFIG_EXPERIMENTAL=y
CONFIG_BROKEN_ON_SMP=y
CONFIG_INIT_ENV_ARG_LIMIT=32
#
# General setup
#
CONFIG_LOCALVERSION=""
CONFIG_LOCALVERSION_AUTO=y
CONFIG_SWAP=y
CONFIG_SYSVIPC=y
# CONFIG_POSIX_MQUEUE is not set
# CONFIG_BSD_PROCESS_ACCT is not set
CONFIG_SYSCTL=y
# CONFIG_AUDIT is not set
# CONFIG_IKCONFIG is not set
# CONFIG_RELAY is not set
CONFIG_INITRAMFS_SOURCE=""
CONFIG_UID16=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
# CONFIG_EMBEDDED is not set
CONFIG_KALLSYMS=y
# CONFIG_KALLSYMS_ALL is not set
# CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_EPOLL=y
CONFIG_SHMEM=y
CONFIG_SLAB=y
# CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
# CONFIG_SLOB is not set
#
# Loadable module support
#
CONFIG_MODULES=y
# CONFIG_MODULE_UNLOAD is not set
# CONFIG_MODVERSIONS is not set
# CONFIG_MODULE_SRCVERSION_ALL is not set
# CONFIG_KMOD is not set
#
# Block layer
#
# CONFIG_BLK_DEV_IO_TRACE is not set
#
# IO Schedulers
#
CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_IOSCHED_DEADLINE=y
CONFIG_IOSCHED_CFQ=y
CONFIG_DEFAULT_AS=y
# CONFIG_DEFAULT_DEADLINE is not set
# CONFIG_DEFAULT_CFQ is not set
# CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED="anticipatory"
#
# System Type
#
# CONFIG_ARCH_AAEC2000 is not set
# CONFIG_ARCH_INTEGRATOR is not set
# CONFIG_ARCH_REALVIEW is not set
# CONFIG_ARCH_VERSATILE is not set
# CONFIG_ARCH_AT91RM9200 is not set
# CONFIG_ARCH_CLPS7500 is not set
# CONFIG_ARCH_CLPS711X is not set
# CONFIG_ARCH_CO285 is not set
# CONFIG_ARCH_EBSA110 is not set
# CONFIG_ARCH_EP93XX is not set
# CONFIG_ARCH_FOOTBRIDGE is not set
# CONFIG_ARCH_NETX is not set
# CONFIG_ARCH_H720X is not set
# CONFIG_ARCH_IMX is not set
# CONFIG_ARCH_IOP3XX is not set
# CONFIG_ARCH_IXP4XX is not set
# CONFIG_ARCH_IXP2000 is not set
# CONFIG_ARCH_IXP23XX is not set
# CONFIG_ARCH_L7200 is not set
# CONFIG_ARCH_PNX4008 is not set
CONFIG_ARCH_PXA=y
# CONFIG_ARCH_RPC is not set
# CONFIG_ARCH_SA1100 is not set
# CONFIG_ARCH_S3C2410 is not set
# CONFIG_ARCH_SHARK is not set
# CONFIG_ARCH_LH7A40X is not set
# CONFIG_ARCH_OMAP is not set
#
# Intel PXA2xx Implementations
#
# CONFIG_ARCH_LUBBOCK is not set
CONFIG_MACH_LOGICPD_PXA270=y
# CONFIG_MACH_MAINSTONE is not set
# CONFIG_ARCH_PXA_IDP is not set
# CONFIG_PXA_SHARPSL is not set
CONFIG_PXA27x=y
CONFIG_IWMMXT=y
#
# Processor Type
#
CONFIG_CPU_32=y
CONFIG_CPU_XSCALE=y
CONFIG_CPU_32v5=y
CONFIG_CPU_ABRT_EV5T=y
CONFIG_CPU_CACHE_VIVT=y
CONFIG_CPU_TLB_V4WBI=y
#
# Processor Features
#
# CONFIG_ARM_THUMB is not set
CONFIG_XSCALE_PMU=y
#
# Bus support
#
#
# PCCARD (PCMCIA/CardBus) support
#
# CONFIG_PCCARD is not set
#
# Kernel Features
#
# CONFIG_PREEMPT is not set
# CONFIG_NO_IDLE_HZ is not set
CONFIG_HZ=100
# CONFIG_AEABI is not set
# CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
CONFIG_SELECT_MEMORY_MODEL=y
CONFIG_FLATMEM_MANUAL=y
# CONFIG_DISCONTIGMEM_MANUAL is not set
# CONFIG_SPARSEMEM_MANUAL is not set
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
# CONFIG_SPARSEMEM_STATIC is not set
CONFIG_SPLIT_PTLOCK_CPUS=4096
CONFIG_ALIGNMENT_TRAP=y
#
# Boot options
#
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_CMDLINE="root=/dev/nfs ip=bootp console=ttyS0,115200 mem=64M"
# CONFIG_XIP_KERNEL is not set
#
# Floating point emulation
#
#
# At least one emulation must be selected
#
CONFIG_FPE_NWFPE=y
# CONFIG_FPE_NWFPE_XP is not set
# CONFIG_FPE_FASTFPE is not set
#
# Userspace binary formats
#
CONFIG_BINFMT_ELF=y
# CONFIG_BINFMT_AOUT is not set
# CONFIG_BINFMT_MISC is not set
# CONFIG_ARTHUR is not set
#
# Power management options
#
# CONFIG_PM is not set
# CONFIG_PM_LEGACY is not set
# CONFIG_PM_DEBUG is not set
# CONFIG_APM is not set
#
# Networking
#
CONFIG_NET=y
#
# Networking options
#
# CONFIG_NETDEBUG is not set
# CONFIG_PACKET is not set
CONFIG_UNIX=y
CONFIG_XFRM=y
# CONFIG_XFRM_USER is not set
# CONFIG_NET_KEY is not set
CONFIG_INET=y
# CONFIG_IP_MULTICAST is not set
# CONFIG_IP_ADVANCED_ROUTER is not set
CONFIG_IP_FIB_HASH=y
CONFIG_IP_PNP=y
# CONFIG_IP_PNP_DHCP is not set
CONFIG_IP_PNP_BOOTP=y
# CONFIG_IP_PNP_RARP is not set
# CONFIG_NET_IPIP is not set
# CONFIG_NET_IPGRE is not set
# CONFIG_ARPD is not set
# CONFIG_SYN_COOKIES is not set
# CONFIG_INET_AH is not set
# CONFIG_INET_ESP is not set
# CONFIG_INET_IPCOMP is not set
# CONFIG_INET_XFRM_TUNNEL is not set
# CONFIG_INET_TUNNEL is not set
CONFIG_INET_XFRM_MODE_TRANSPORT=y
CONFIG_INET_XFRM_MODE_TUNNEL=y
CONFIG_INET_DIAG=y
CONFIG_INET_TCP_DIAG=y
# CONFIG_TCP_CONG_ADVANCED is not set
CONFIG_TCP_CONG_BIC=y
# CONFIG_IPV6 is not set
# CONFIG_INET6_XFRM_TUNNEL is not set
# CONFIG_INET6_TUNNEL is not set
# CONFIG_NETWORK_SECMARK is not set
# CONFIG_NETFILTER is not set
#
# DCCP Configuration (EXPERIMENTAL)
#
# CONFIG_IP_DCCP is not set
#
# SCTP Configuration (EXPERIMENTAL)
#
# CONFIG_IP_SCTP is not set
#
# TIPC Configuration (EXPERIMENTAL)
#
# CONFIG_TIPC is not set
# CONFIG_ATM is not set
# CONFIG_BRIDGE is not set
# CONFIG_VLAN_8021Q is not set
# CONFIG_DECNET is not set
# CONFIG_LLC2 is not set
# CONFIG_IPX is not set
# CONFIG_ATALK is not set
# CONFIG_X25 is not set
# CONFIG_LAPB is not set
# CONFIG_NET_DIVERT is not set
# CONFIG_ECONET is not set
# CONFIG_WAN_ROUTER is not set
#
# QoS and/or fair queueing
#
# CONFIG_NET_SCHED is not set
#
# Network testing
#
# CONFIG_NET_PKTGEN is not set
# CONFIG_HAMRADIO is not set
# CONFIG_IRDA is not set
# CONFIG_BT is not set
# CONFIG_IEEE80211 is not set
#
# Device Drivers
#
#
# Generic Driver Options
#
CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
# CONFIG_FW_LOADER is not set
# CONFIG_DEBUG_DRIVER is not set
#
# Connector - unified userspace <-> kernelspace linker
#
# CONFIG_CONNECTOR is not set
#
# Memory Technology Devices (MTD)
#
CONFIG_MTD=y
# CONFIG_MTD_DEBUG is not set
# CONFIG_MTD_CONCAT is not set
CONFIG_MTD_PARTITIONS=y
CONFIG_MTD_REDBOOT_PARTS=y
CONFIG_MTD_REDBOOT_DIRECTORY_BLOCK=-1
# CONFIG_MTD_REDBOOT_PARTS_UNALLOCATED is not set
# CONFIG_MTD_REDBOOT_PARTS_READONLY is not set
# CONFIG_MTD_CMDLINE_PARTS is not set
# CONFIG_MTD_AFS_PARTS is not set
#
# User Modules And Translation Layers
#
CONFIG_MTD_CHAR=y
CONFIG_MTD_BLOCK=y
# CONFIG_FTL is not set
# CONFIG_NFTL is not set
# CONFIG_INFTL is not set
# CONFIG_RFD_FTL is not set
#
# RAM/ROM/Flash chip drivers
#
CONFIG_MTD_CFI=y
# CONFIG_MTD_JEDECPROBE is not set
CONFIG_MTD_GEN_PROBE=y
CONFIG_MTD_CFI_ADV_OPTIONS=y
CONFIG_MTD_CFI_NOSWAP=y
# CONFIG_MTD_CFI_BE_BYTE_SWAP is not set
# CONFIG_MTD_CFI_LE_BYTE_SWAP is not set
CONFIG_MTD_CFI_GEOMETRY=y
CONFIG_MTD_MAP_BANK_WIDTH_1=y
CONFIG_MTD_MAP_BANK_WIDTH_2=y
CONFIG_MTD_MAP_BANK_WIDTH_4=y
# CONFIG_MTD_MAP_BANK_WIDTH_8 is not set
# CONFIG_MTD_MAP_BANK_WIDTH_16 is not set
# CONFIG_MTD_MAP_BANK_WIDTH_32 is not set
# CONFIG_MTD_CFI_I1 is not set
CONFIG_MTD_CFI_I2=y
# CONFIG_MTD_CFI_I4 is not set
# CONFIG_MTD_CFI_I8 is not set
# CONFIG_MTD_OTP is not set
CONFIG_MTD_CFI_INTELEXT=y
# CONFIG_MTD_CFI_AMDSTD is not set
# CONFIG_MTD_CFI_STAA is not set
CONFIG_MTD_CFI_UTIL=y
# CONFIG_MTD_RAM is not set
# CONFIG_MTD_ROM is not set
# CONFIG_MTD_ABSENT is not set
# CONFIG_MTD_OBSOLETE_CHIPS is not set
# CONFIG_MTD_XIP is not set
#
# Mapping drivers for chip access
#
# CONFIG_MTD_COMPLEX_MAPPINGS is not set
# CONFIG_MTD_PHYSMAP is not set
# CONFIG_MTD_ARM_INTEGRATOR is not set
# CONFIG_MTD_SHARP_SL is not set
# CONFIG_MTD_PLATRAM is not set
#
# Self-contained MTD device drivers
#
# CONFIG_MTD_SLRAM is not set
# CONFIG_MTD_PHRAM is not set
# CONFIG_MTD_MTDRAM is not set
# CONFIG_MTD_BLOCK2MTD is not set
#
# Disk-On-Chip Device Drivers
#
# CONFIG_MTD_DOC2000 is not set
# CONFIG_MTD_DOC2001 is not set
# CONFIG_MTD_DOC2001PLUS is not set
#
# NAND Flash Device Drivers
#
# CONFIG_MTD_NAND is not set
#
# OneNAND Flash Device Drivers
#
# CONFIG_MTD_ONENAND is not set
#
# Parallel port support
#
# CONFIG_PARPORT is not set
#
# Plug and Play support
#
#
# Block devices
#
# CONFIG_BLK_DEV_COW_COMMON is not set
# CONFIG_BLK_DEV_LOOP is not set
# CONFIG_BLK_DEV_NBD is not set
# CONFIG_BLK_DEV_RAM is not set
# CONFIG_BLK_DEV_INITRD is not set
# CONFIG_CDROM_PKTCDVD is not set
# CONFIG_ATA_OVER_ETH is not set
#
# ATA/ATAPI/MFM/RLL support
#
CONFIG_IDE=y
CONFIG_BLK_DEV_IDE=y
#
# Please see Documentation/ide.txt for help/info on IDE drives
#
# CONFIG_BLK_DEV_IDE_SATA is not set
CONFIG_BLK_DEV_IDEDISK=y
# CONFIG_IDEDISK_MULTI_MODE is not set
# CONFIG_BLK_DEV_IDECD is not set
# CONFIG_BLK_DEV_IDETAPE is not set
# CONFIG_BLK_DEV_IDEFLOPPY is not set
# CONFIG_IDE_TASK_IOCTL is not set
#
# IDE chipset support/bugfixes
#
# CONFIG_IDE_GENERIC is not set
# CONFIG_IDE_ARM is not set
# CONFIG_BLK_DEV_IDEDMA is not set
# CONFIG_IDEDMA_AUTO is not set
# CONFIG_BLK_DEV_HD is not set
#
# SCSI device support
#
# CONFIG_RAID_ATTRS is not set
# CONFIG_SCSI is not set
#
# Multi-device support (RAID and LVM)
#
# CONFIG_MD is not set
#
# Fusion MPT device support
#
# CONFIG_FUSION is not set
#
# IEEE 1394 (FireWire) support
#
#
# I2O device support
#
#
# Network device support
#
CONFIG_NETDEVICES=y
# CONFIG_DUMMY is not set
# CONFIG_BONDING is not set
# CONFIG_EQUALIZER is not set
# CONFIG_TUN is not set
#
# PHY device support
#
# CONFIG_PHYLIB is not set
#
# Ethernet (10 or 100Mbit)
#
CONFIG_NET_ETHERNET=y
CONFIG_MII=y
CONFIG_SMC91X=y
# CONFIG_DM9000 is not set
# CONFIG_SMC911X is not set
#
# Ethernet (1000 Mbit)
#
#
# Ethernet (10000 Mbit)
#
#
# Token Ring devices
#
#
# Wireless LAN (non-hamradio)
#
# CONFIG_NET_RADIO is not set
#
# Wan interfaces
#
# CONFIG_WAN is not set
# CONFIG_PPP is not set
# CONFIG_SLIP is not set
# CONFIG_SHAPER is not set
# CONFIG_NETCONSOLE is not set
# CONFIG_NETPOLL is not set
# CONFIG_NET_POLL_CONTROLLER is not set
#
# ISDN subsystem
#
# CONFIG_ISDN is not set
#
# Input device support
#
CONFIG_INPUT=y
#
# Userland interfaces
#
CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
# CONFIG_INPUT_JOYDEV is not set
# CONFIG_INPUT_TSDEV is not set
CONFIG_INPUT_EVDEV=y
# CONFIG_INPUT_EVBUG is not set
#
# Input Device Drivers
#
CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y
# CONFIG_KEYBOARD_SUNKBD is not set
# CONFIG_KEYBOARD_LKKBD is not set
# CONFIG_KEYBOARD_XTKBD is not set
# CONFIG_KEYBOARD_NEWTON is not set
# CONFIG_INPUT_MOUSE is not set
# CONFIG_INPUT_JOYSTICK is not set
# CONFIG_INPUT_TOUCHSCREEN is not set
# CONFIG_INPUT_MISC is not set
#
# Hardware I/O ports
#
CONFIG_SERIO=y
# CONFIG_SERIO_SERPORT is not set
CONFIG_SERIO_LIBPS2=y
# CONFIG_SERIO_RAW is not set
# CONFIG_GAMEPORT is not set
#
# Character devices
#
CONFIG_VT=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
# CONFIG_SERIAL_NONSTANDARD is not set
#
# Serial drivers
#
# CONFIG_SERIAL_8250 is not set
#
# Non-8250 serial port support
#
CONFIG_SERIAL_PXA=y
CONFIG_SERIAL_PXA_CONSOLE=y
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256
#
# IPMI
#
# CONFIG_IPMI_HANDLER is not set
#
# Watchdog Cards
#
# CONFIG_WATCHDOG is not set
# CONFIG_NVRAM is not set
# CONFIG_DTLK is not set
# CONFIG_R3964 is not set
#
# Ftape, the floppy tape device driver
#
# CONFIG_RAW_DRIVER is not set
#
# TPM devices
#
# CONFIG_TCG_TPM is not set
# CONFIG_TELCLOCK is not set
#
# I2C support
#
# CONFIG_I2C is not set
#
# SPI support
#
# CONFIG_SPI is not set
# CONFIG_SPI_MASTER is not set
#
# Dallas's 1-wire bus
#
# CONFIG_W1 is not set
#
# Hardware Monitoring support
#
CONFIG_HWMON=y
# CONFIG_HWMON_VID is not set
# CONFIG_SENSORS_F71805F is not set
# CONFIG_HWMON_DEBUG_CHIP is not set
#
# Misc devices
#
#
# LED devices
#
# CONFIG_NEW_LEDS is not set
#
# LED drivers
#
#
# LED Triggers
#
#
# Multimedia devices
#
# CONFIG_VIDEO_DEV is not set
CONFIG_VIDEO_V4L2=y
#
# Digital Video Broadcasting Devices
#
# CONFIG_DVB is not set
#
# Graphics support
#
CONFIG_FB=y
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
# CONFIG_FB_MACMODES is not set
CONFIG_FB_FIRMWARE_EDID=y
# CONFIG_FB_MODE_HELPERS is not set
# CONFIG_FB_TILEBLITTING is not set
# CONFIG_FB_S1D13XXX is not set
CONFIG_FB_PXA=y
# CONFIG_FB_PXA_PARAMETERS is not set
# CONFIG_FB_VIRTUAL is not set
#
# Console display driver support
#
# CONFIG_VGA_CONSOLE is not set
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
# CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set
# CONFIG_FONTS is not set
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y
#
# Logo configuration
#
CONFIG_LOGO=y
CONFIG_LOGO_LINUX_MONO=y
CONFIG_LOGO_LINUX_VGA16=y
CONFIG_LOGO_LINUX_CLUT224=y
# CONFIG_BACKLIGHT_LCD_SUPPORT is not set
#
# Sound
#
CONFIG_SOUND=y
#
# Advanced Linux Sound Architecture
#
CONFIG_SND=y
CONFIG_SND_TIMER=y
CONFIG_SND_PCM=y
# CONFIG_SND_SEQUENCER is not set
# CONFIG_SND_MIXER_OSS is not set
# CONFIG_SND_PCM_OSS is not set
# CONFIG_SND_DYNAMIC_MINORS is not set
# CONFIG_SND_SUPPORT_OLD_API is not set
CONFIG_SND_VERBOSE_PROCFS=y
# CONFIG_SND_VERBOSE_PRINTK is not set
# CONFIG_SND_DEBUG is not set
#
# Generic devices
#
CONFIG_SND_AC97_CODEC=y
CONFIG_SND_AC97_BUS=y
# CONFIG_SND_DUMMY is not set
# CONFIG_SND_MTPAV is not set
# CONFIG_SND_SERIAL_U16550 is not set
# CONFIG_SND_MPU401 is not set
#
# ALSA ARM devices
#
CONFIG_SND_PXA2XX_PCM=y
CONFIG_SND_PXA2XX_AC97=y
#
# Open Sound System
#
# CONFIG_SOUND_PRIME is not set
#
# USB support
#
CONFIG_USB_ARCH_HAS_HCD=y
CONFIG_USB_ARCH_HAS_OHCI=y
# CONFIG_USB_ARCH_HAS_EHCI is not set
# CONFIG_USB is not set
#
# NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support'
#
#
# USB Gadget Support
#
# CONFIG_USB_GADGET is not set
#
# MMC/SD Card support
#
# CONFIG_MMC is not set
#
# Real Time Clock
#
CONFIG_RTC_LIB=y
# CONFIG_RTC_CLASS is not set
#
# File systems
#
CONFIG_EXT2_FS=y
# CONFIG_EXT2_FS_XATTR is not set
# CONFIG_EXT2_FS_XIP is not set
# CONFIG_EXT3_FS is not set
# CONFIG_REISERFS_FS is not set
# CONFIG_JFS_FS is not set
# CONFIG_FS_POSIX_ACL is not set
# CONFIG_XFS_FS is not set
# CONFIG_OCFS2_FS is not set
# CONFIG_MINIX_FS is not set
# CONFIG_ROMFS_FS is not set
CONFIG_INOTIFY=y
CONFIG_INOTIFY_USER=y
# CONFIG_QUOTA is not set
CONFIG_DNOTIFY=y
# CONFIG_AUTOFS_FS is not set
# CONFIG_AUTOFS4_FS is not set
# CONFIG_FUSE_FS is not set
#
# CD-ROM/DVD Filesystems
#
# CONFIG_ISO9660_FS is not set
# CONFIG_UDF_FS is not set
#
# DOS/FAT/NT Filesystems
#
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
# CONFIG_VFAT_FS is not set
CONFIG_FAT_DEFAULT_CODEPAGE=437
# CONFIG_NTFS_FS is not set
#
# Pseudo filesystems
#
CONFIG_PROC_FS=y
CONFIG_SYSFS=y
# CONFIG_TMPFS is not set
# CONFIG_HUGETLB_PAGE is not set
CONFIG_RAMFS=y
# CONFIG_CONFIGFS_FS is not set
#
# Miscellaneous filesystems
#
# CONFIG_ADFS_FS is not set
# CONFIG_AFFS_FS is not set
# CONFIG_HFS_FS is not set
# CONFIG_HFSPLUS_FS is not set
# CONFIG_BEFS_FS is not set
# CONFIG_BFS_FS is not set
# CONFIG_EFS_FS is not set
# CONFIG_JFFS_FS is not set
CONFIG_JFFS2_FS=y
CONFIG_JFFS2_FS_DEBUG=0
CONFIG_JFFS2_FS_WRITEBUFFER=y
# CONFIG_JFFS2_SUMMARY is not set
# CONFIG_JFFS2_COMPRESSION_OPTIONS is not set
CONFIG_JFFS2_ZLIB=y
CONFIG_JFFS2_RTIME=y
# CONFIG_JFFS2_RUBIN is not set
# CONFIG_CRAMFS is not set
# CONFIG_VXFS_FS is not set
# CONFIG_HPFS_FS is not set
# CONFIG_QNX4FS_FS is not set
# CONFIG_SYSV_FS is not set
# CONFIG_UFS_FS is not set
#
# Network File Systems
#
CONFIG_NFS_FS=y
# CONFIG_NFS_V3 is not set
# CONFIG_NFS_V4 is not set
# CONFIG_NFS_DIRECTIO is not set
# CONFIG_NFSD is not set
CONFIG_ROOT_NFS=y
CONFIG_LOCKD=y
CONFIG_NFS_COMMON=y
CONFIG_SUNRPC=y
# CONFIG_RPCSEC_GSS_KRB5 is not set
# CONFIG_RPCSEC_GSS_SPKM3 is not set
# CONFIG_SMB_FS is not set
# CONFIG_CIFS is not set
# CONFIG_NCP_FS is not set
# CONFIG_CODA_FS is not set
# CONFIG_AFS_FS is not set
# CONFIG_9P_FS is not set
#
# Partition Types
#
# CONFIG_PARTITION_ADVANCED is not set
CONFIG_MSDOS_PARTITION=y
#
# Native Language Support
#
CONFIG_NLS=y
CONFIG_NLS_DEFAULT="iso8859-1"
# CONFIG_NLS_CODEPAGE_437 is not set
# CONFIG_NLS_CODEPAGE_737 is not set
# CONFIG_NLS_CODEPAGE_775 is not set
# CONFIG_NLS_CODEPAGE_850 is not set
# CONFIG_NLS_CODEPAGE_852 is not set
# CONFIG_NLS_CODEPAGE_855 is not set
# CONFIG_NLS_CODEPAGE_857 is not set
# CONFIG_NLS_CODEPAGE_860 is not set
# CONFIG_NLS_CODEPAGE_861 is not set
# CONFIG_NLS_CODEPAGE_862 is not set
# CONFIG_NLS_CODEPAGE_863 is not set
# CONFIG_NLS_CODEPAGE_864 is not set
# CONFIG_NLS_CODEPAGE_865 is not set
# CONFIG_NLS_CODEPAGE_866 is not set
# CONFIG_NLS_CODEPAGE_869 is not set
# CONFIG_NLS_CODEPAGE_936 is not set
# CONFIG_NLS_CODEPAGE_950 is not set
# CONFIG_NLS_CODEPAGE_932 is not set
# CONFIG_NLS_CODEPAGE_949 is not set
# CONFIG_NLS_CODEPAGE_874 is not set
# CONFIG_NLS_ISO8859_8 is not set
# CONFIG_NLS_CODEPAGE_1250 is not set
# CONFIG_NLS_CODEPAGE_1251 is not set
# CONFIG_NLS_ASCII is not set
CONFIG_NLS_ISO8859_1=y
# CONFIG_NLS_ISO8859_2 is not set
# CONFIG_NLS_ISO8859_3 is not set
# CONFIG_NLS_ISO8859_4 is not set
# CONFIG_NLS_ISO8859_5 is not set
# CONFIG_NLS_ISO8859_6 is not set
# CONFIG_NLS_ISO8859_7 is not set
# CONFIG_NLS_ISO8859_9 is not set
# CONFIG_NLS_ISO8859_13 is not set
# CONFIG_NLS_ISO8859_14 is not set
# CONFIG_NLS_ISO8859_15 is not set
# CONFIG_NLS_KOI8_R is not set
# CONFIG_NLS_KOI8_U is not set
# CONFIG_NLS_UTF8 is not set
#
# Profiling support
#
# CONFIG_PROFILING is not set
#
# Kernel hacking
#
# CONFIG_PRINTK_TIME is not set
CONFIG_MAGIC_SYSRQ=y
CONFIG_DEBUG_KERNEL=y
CONFIG_LOG_BUF_SHIFT=14
CONFIG_DETECT_SOFTLOCKUP=y
# CONFIG_SCHEDSTATS is not set
# CONFIG_DEBUG_SLAB is not set
# CONFIG_DEBUG_MUTEXES is not set
# CONFIG_DEBUG_SPINLOCK is not set
# CONFIG_DEBUG_SPINLOCK_SLEEP is not set
# CONFIG_DEBUG_KOBJECT is not set
CONFIG_DEBUG_BUGVERBOSE=y
CONFIG_DEBUG_INFO=y
# CONFIG_DEBUG_FS is not set
# CONFIG_DEBUG_VM is not set
CONFIG_FRAME_POINTER=y
# CONFIG_UNWIND_INFO is not set
CONFIG_FORCED_INLINING=y
# CONFIG_RCU_TORTURE_TEST is not set
CONFIG_DEBUG_USER=y
# CONFIG_DEBUG_WAITQ is not set
CONFIG_DEBUG_ERRORS=y
CONFIG_DEBUG_LL=y
# CONFIG_DEBUG_ICEDCC is not set
#
# Security options
#
# CONFIG_KEYS is not set
# CONFIG_SECURITY is not set
#
# Cryptographic options
#
# CONFIG_CRYPTO is not set
#
# Hardware crypto devices
#
#
# Library routines
#
# CONFIG_CRC_CCITT is not set
# CONFIG_CRC16 is not set
CONFIG_CRC32=y
# CONFIG_LIBCRC32C is not set
CONFIG_ZLIB_INFLATE=y
CONFIG_ZLIB_DEFLATE=y

View File

@ -20,6 +20,7 @@
#include <asm/glue.h>
#include <asm/vfpmacros.h>
#include <asm/arch/entry-macro.S>
#include <asm/thread_notify.h>
#include "entry-header.S"
@ -560,10 +561,8 @@ ENTRY(__switch_to)
add ip, r1, #TI_CPU_SAVE
ldr r3, [r2, #TI_TP_VALUE]
stmia ip!, {r4 - sl, fp, sp, lr} @ Store most regs on stack
#ifndef CONFIG_MMU
add r2, r2, #TI_CPU_DOMAIN
#else
ldr r6, [r2, #TI_CPU_DOMAIN]!
#ifdef CONFIG_MMU
ldr r6, [r2, #TI_CPU_DOMAIN]
#endif
#if __LINUX_ARM_ARCH__ >= 6
#ifdef CONFIG_CPU_32v6K
@ -585,21 +584,20 @@ ENTRY(__switch_to)
#ifdef CONFIG_MMU
mcr p15, 0, r6, c3, c0, 0 @ Set domain register
#endif
#ifdef CONFIG_VFP
@ Always disable VFP so we can lazily save/restore the old
@ state. This occurs in the context of the previous thread.
VFPFMRX r4, FPEXC
bic r4, r4, #FPEXC_ENABLE
VFPFMXR FPEXC, r4
#endif
#if defined(CONFIG_IWMMXT)
bl iwmmxt_task_switch
#elif defined(CONFIG_CPU_XSCALE)
add r4, r2, #40 @ cpu_context_save->extra
add r4, r2, #TI_CPU_DOMAIN + 40 @ cpu_context_save->extra
ldmib r4, {r4, r5}
mar acc0, r4, r5
#endif
ldmib r2, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
mov r5, r0
add r4, r2, #TI_CPU_SAVE
ldr r0, =thread_notify_head
mov r1, #THREAD_NOTIFY_SWITCH
bl atomic_notifier_call_chain
mov r0, r5
ldmia r4, {r4 - sl, fp, sp, pc} @ Load all regs saved previously
__INIT

View File

@ -52,7 +52,7 @@
*/
#define MAX_IRQ_CNT 100000
static int noirqdebug;
static int noirqdebug __read_mostly;
static volatile unsigned long irq_err_count;
static DEFINE_SPINLOCK(irq_controller_lock);
static LIST_HEAD(irq_pending);
@ -81,7 +81,7 @@ irqreturn_t no_action(int irq, void *dev_id, struct pt_regs *regs)
void do_bad_IRQ(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
{
irq_err_count += 1;
irq_err_count++;
printk(KERN_ERR "IRQ: spurious interrupt %d\n", irq);
}

View File

@ -285,7 +285,7 @@ ENTRY(iwmmxt_task_switch)
bne 1f @ yes: block them for next task
ldr r5, =concan_owner
add r6, r2, #(TI_IWMMXT_STATE - TI_CPU_DOMAIN) @ get next task Concan save area
add r6, r2, #TI_IWMMXT_STATE @ get next task Concan save area
ldr r5, [r5] @ get current Concan owner
teq r5, r6 @ next task owns it?
movne pc, lr @ no: leave Concan disabled

View File

@ -33,6 +33,7 @@
#include <asm/leds.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/thread_notify.h>
#include <asm/uaccess.h>
#include <asm/mach/time.h>
@ -338,13 +339,9 @@ void exit_thread(void)
{
}
static void default_fp_init(union fp_state *fp)
{
memset(fp, 0, sizeof(union fp_state));
}
ATOMIC_NOTIFIER_HEAD(thread_notify_head);
void (*fp_init)(union fp_state *) = default_fp_init;
EXPORT_SYMBOL(fp_init);
EXPORT_SYMBOL_GPL(thread_notify_head);
void flush_thread(void)
{
@ -353,22 +350,21 @@ void flush_thread(void)
memset(thread->used_cp, 0, sizeof(thread->used_cp));
memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
memset(&thread->fpstate, 0, sizeof(union fp_state));
thread_notify(THREAD_NOTIFY_FLUSH, thread);
#if defined(CONFIG_IWMMXT)
iwmmxt_task_release(thread);
#endif
fp_init(&thread->fpstate);
#if defined(CONFIG_VFP)
vfp_flush_thread(&thread->vfpstate);
#endif
}
void release_thread(struct task_struct *dead_task)
{
#if defined(CONFIG_VFP)
vfp_release_thread(&task_thread_info(dead_task)->vfpstate);
#endif
struct thread_info *thread = task_thread_info(dead_task);
thread_notify(THREAD_NOTIFY_RELEASE, thread);
#if defined(CONFIG_IWMMXT)
iwmmxt_task_release(task_thread_info(dead_task));
iwmmxt_task_release(thread);
#endif
}

View File

@ -665,17 +665,33 @@ static int do_signal(sigset_t *oldset, struct pt_regs *regs, int syscall)
if (syscall) {
if (regs->ARM_r0 == -ERESTART_RESTARTBLOCK) {
if (thumb_mode(regs)) {
regs->ARM_r7 = __NR_restart_syscall;
regs->ARM_r7 = __NR_restart_syscall - __NR_SYSCALL_BASE;
regs->ARM_pc -= 2;
} else {
#if defined(CONFIG_AEABI) && !defined(CONFIG_OABI_COMPAT)
regs->ARM_r7 = __NR_restart_syscall;
regs->ARM_pc -= 4;
#else
u32 __user *usp;
u32 swival = __NR_restart_syscall;
regs->ARM_sp -= 12;
usp = (u32 __user *)regs->ARM_sp;
/*
* Either we supports OABI only, or we have
* EABI with the OABI compat layer enabled.
* In the later case we don't know if user
* space is EABI or not, and if not we must
* not clobber r7. Always using the OABI
* syscall solves that issue and works for
* all those cases.
*/
swival = swival - __NR_SYSCALL_BASE + __NR_OABI_SYSCALL_BASE;
put_user(regs->ARM_pc, &usp[0]);
/* swi __NR_restart_syscall */
put_user(0xef000000 | __NR_restart_syscall, &usp[1]);
put_user(0xef000000 | swival, &usp[1]);
/* ldr pc, [sp], #12 */
put_user(0xe49df00c, &usp[2]);
@ -683,6 +699,7 @@ static int do_signal(sigset_t *oldset, struct pt_regs *regs, int syscall)
(unsigned long)(usp + 3));
regs->ARM_pc = regs->ARM_sp + 4;
#endif
}
}
if (regs->ARM_r0 == -ERESTARTNOHAND ||

View File

@ -103,7 +103,8 @@ static int ep93xx_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
write_seqlock(&xtime_lock);
__raw_writel(1, EP93XX_TIMER1_CLEAR);
while (__raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time
while ((signed long)
(__raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time)
>= TIMER4_TICKS_PER_JIFFY) {
last_jiffy_time += TIMER4_TICKS_PER_JIFFY;
timer_tick(regs);
@ -124,7 +125,7 @@ static void __init ep93xx_timer_init(void)
{
/* Enable periodic HZ timer. */
__raw_writel(0x48, EP93XX_TIMER1_CONTROL);
__raw_writel((508000 / HZ) - 1, EP93XX_TIMER1_LOAD);
__raw_writel((508469 / HZ) - 1, EP93XX_TIMER1_LOAD);
__raw_writel(0xc8, EP93XX_TIMER1_CONTROL);
/* Enable lost jiffy timer. */

View File

@ -16,16 +16,38 @@
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mtd/physmap.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
static struct physmap_flash_data gesbc9312_flash_data = {
.width = 4,
};
static struct resource gesbc9312_flash_resource = {
.start = 0x60000000,
.end = 0x60800000,
.flags = IORESOURCE_MEM,
};
static struct platform_device gesbc9312_flash = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &gesbc9312_flash_data,
},
.num_resources = 1,
.resource = &gesbc9312_flash_resource,
};
static void __init gesbc9312_init_machine(void)
{
ep93xx_init_devices();
physmap_configure(0x60000000, 0x00800000, 4, NULL);
platform_device_register(&gesbc9312_flash);
}
MACHINE_START(GESBC9312, "Glomation GESBC-9312-sx")

View File

@ -16,6 +16,7 @@
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/mtd/physmap.h>
#include <linux/platform_device.h>
#include <linux/m48t86.h>
@ -111,6 +112,26 @@ static void __init ts72xx_map_io(void)
}
}
static struct physmap_flash_data ts72xx_flash_data = {
.width = 1,
};
static struct resource ts72xx_flash_resource = {
.start = TS72XX_NOR_PHYS_BASE,
.end = TS72XX_NOR_PHYS_BASE + 0x01000000,
.flags = IORESOURCE_MEM,
};
static struct platform_device ts72xx_flash = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &ts72xx_flash_data,
},
.num_resources = 1,
.resource = &ts72xx_flash_resource,
};
static unsigned char ts72xx_rtc_readbyte(unsigned long addr)
{
__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
@ -141,7 +162,7 @@ static void __init ts72xx_init_machine(void)
{
ep93xx_init_devices();
if (board_is_ts7200())
physmap_configure(TS72XX_NOR_PHYS_BASE, 0x01000000, 1, NULL);
platform_device_register(&ts72xx_flash);
platform_device_register(&ts72xx_rtc_device);
}

View File

@ -15,6 +15,9 @@
* Changed to support scatter gather DMA
* by taking Russell's code from RiscPC
*
* 2006-05-31 Pavel Pisa <pisa@cmp.felk.cvut.cz>
* Corrected error handling code.
*
*/
#undef DEBUG
@ -277,7 +280,7 @@ imx_dma_setup_sg(imx_dmach_t dma_ch,
int
imx_dma_setup_handlers(imx_dmach_t dma_ch,
void (*irq_handler) (int, void *, struct pt_regs *),
void (*err_handler) (int, void *, struct pt_regs *),
void (*err_handler) (int, void *, struct pt_regs *, int),
void *data)
{
struct imx_dma_channel *imxdma = &imx_dma_channels[dma_ch];
@ -463,43 +466,53 @@ static irqreturn_t dma_err_handler(int irq, void *dev_id, struct pt_regs *regs)
int i, disr = DISR;
struct imx_dma_channel *channel;
unsigned int err_mask = DBTOSR | DRTOSR | DSESR | DBOSR;
int errcode;
DISR = disr;
DISR = disr & err_mask;
for (i = 0; i < IMX_DMA_CHANNELS; i++) {
if(!(err_mask & (1 << i)))
continue;
channel = &imx_dma_channels[i];
errcode = 0;
if ((err_mask & 1 << i) && channel->name
&& channel->err_handler) {
channel->err_handler(i, channel->data, regs);
if (DBTOSR & (1 << i)) {
DBTOSR = (1 << i);
errcode |= IMX_DMA_ERR_BURST;
}
if (DRTOSR & (1 << i)) {
DRTOSR = (1 << i);
errcode |= IMX_DMA_ERR_REQUEST;
}
if (DSESR & (1 << i)) {
DSESR = (1 << i);
errcode |= IMX_DMA_ERR_TRANSFER;
}
if (DBOSR & (1 << i)) {
DBOSR = (1 << i);
errcode |= IMX_DMA_ERR_BUFFER;
}
/*
* The cleaning of @sg field would be questionable
* there, because its value can help to compute
* remaining/transfered bytes count in the handler
*/
/*imx_dma_channels[i].sg = NULL;*/
if (channel->name && channel->err_handler) {
channel->err_handler(i, channel->data, regs, errcode);
continue;
}
imx_dma_channels[i].sg = NULL;
if (DBTOSR & (1 << i)) {
printk(KERN_WARNING
"Burst timeout on channel %d (%s)\n",
i, channel->name);
DBTOSR |= (1 << i);
}
if (DRTOSR & (1 << i)) {
printk(KERN_WARNING
"Request timeout on channel %d (%s)\n",
i, channel->name);
DRTOSR |= (1 << i);
}
if (DSESR & (1 << i)) {
printk(KERN_WARNING
"Transfer timeout on channel %d (%s)\n",
i, channel->name);
DSESR |= (1 << i);
}
if (DBOSR & (1 << i)) {
printk(KERN_WARNING
"Buffer overflow timeout on channel %d (%s)\n",
i, channel->name);
DBOSR |= (1 << i);
}
printk(KERN_WARNING
"DMA timeout on channel %d (%s) -%s%s%s%s\n",
i, channel->name,
errcode&IMX_DMA_ERR_BURST? " burst":"",
errcode&IMX_DMA_ERR_REQUEST? " request":"",
errcode&IMX_DMA_ERR_TRANSFER? " transfer":"",
errcode&IMX_DMA_ERR_BUFFER? " buffer":"");
}
return IRQ_HANDLED;
}

View File

@ -211,7 +211,8 @@ static int ixp2000_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
/* clear timer 1 */
ixp2000_reg_wrb(IXP2000_T1_CLR, 1);
while ((next_jiffy_time - *missing_jiffy_timer_csr) > ticks_per_jiffy) {
while ((signed long)(next_jiffy_time - *missing_jiffy_timer_csr)
>= ticks_per_jiffy) {
timer_tick(regs);
next_jiffy_time -= ticks_per_jiffy;
}

View File

@ -334,7 +334,7 @@ void __init ixp23xx_init_irq(void)
/*************************************************************************
* Timer-tick functions for IXP23xx
*************************************************************************/
#define CLOCK_TICKS_PER_USEC CLOCK_TICK_RATE / (USEC_PER_SEC)
#define CLOCK_TICKS_PER_USEC (CLOCK_TICK_RATE / USEC_PER_SEC)
static unsigned long next_jiffy_time;
@ -353,7 +353,7 @@ ixp23xx_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* Clear Pending Interrupt by writing '1' to it */
*IXP23XX_TIMER_STATUS = IXP23XX_TIMER1_INT_PEND;
while ((*IXP23XX_TIMER_CONT - next_jiffy_time) > LATCH) {
while ((signed long)(*IXP23XX_TIMER_CONT - next_jiffy_time) >= LATCH) {
timer_tick(regs);
next_jiffy_time += LATCH;
}
@ -439,5 +439,6 @@ static struct platform_device *ixp23xx_devices[] __initdata = {
void __init ixp23xx_sys_init(void)
{
*IXP23XX_EXP_UNIT_FUSE |= 0xf;
platform_add_devices(ixp23xx_devices, ARRAY_SIZE(ixp23xx_devices));
}

View File

@ -53,9 +53,29 @@ static int __init espresso_pci_init(void)
};
subsys_initcall(espresso_pci_init);
static struct physmap_flash_data espresso_flash_data = {
.width = 2,
};
static struct resource espresso_flash_resource = {
.start = 0x90000000,
.end = 0x92000000,
.flags = IORESOURCE_MEM,
};
static struct platform_device espresso_flash = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &espresso_flash_data,
},
.num_resources = 1,
.resource = &espresso_flash_resource,
};
static void __init espresso_init(void)
{
physmap_configure(0x90000000, 0x02000000, 2, NULL);
platform_device_register(&espresso_flash);
/*
* Mark flash as writeable.

View File

@ -298,9 +298,29 @@ static void __init ixdp2351_map_io(void)
iotable_init(ixdp2351_io_desc, ARRAY_SIZE(ixdp2351_io_desc));
}
static struct physmap_flash_data ixdp2351_flash_data = {
.width = 1,
};
static struct resource ixdp2351_flash_resource = {
.start = 0x90000000,
.end = 0x94000000,
.flags = IORESOURCE_MEM,
};
static struct platform_device ixdp2351_flash = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &ixdp2351_flash_data,
},
.num_resources = 1,
.resource = &ixdp2351_flash_resource,
};
static void __init ixdp2351_init(void)
{
physmap_configure(0x90000000, 0x04000000, 1, NULL);
platform_device_register(&ixdp2351_flash);
/*
* Mark flash as writeable

View File

@ -137,9 +137,29 @@ static int __init roadrunner_pci_init(void)
subsys_initcall(roadrunner_pci_init);
static struct physmap_flash_data roadrunner_flash_data = {
.width = 2,
};
static struct resource roadrunner_flash_resource = {
.start = 0x90000000,
.end = 0x94000000,
.flags = IORESOURCE_MEM,
};
static struct platform_device roadrunner_flash = {
.name = "physmap-flash",
.id = 0,
.dev = {
.platform_data = &roadrunner_flash_data,
},
.num_resources = 1,
.resource = &roadrunner_flash_resource,
};
static void __init roadrunner_init(void)
{
physmap_configure(0x90000000, 0x04000000, 2, NULL);
platform_device_register(&roadrunner_flash);
/*
* Mark flash as writeable

View File

@ -276,7 +276,7 @@ static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id, struct pt_regs
/*
* Catch up with the real idea of time
*/
while ((*IXP4XX_OSTS - last_jiffy_time) > LATCH) {
while ((signed long)(*IXP4XX_OSTS - last_jiffy_time) >= LATCH) {
timer_tick(regs);
last_jiffy_time += LATCH;
}

View File

@ -15,6 +15,7 @@
#include <linux/kernel.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/leds.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
@ -37,6 +38,36 @@ static struct platform_device nas100d_flash = {
.resource = &nas100d_flash_resource,
};
#ifdef CONFIG_LEDS_IXP4XX
static struct resource nas100d_led_resources[] = {
{
.name = "wlan", /* green led */
.start = 0,
.end = 0,
.flags = IXP4XX_GPIO_LOW,
},
{
.name = "ready", /* blue power led (off is flashing!) */
.start = 15,
.end = 15,
.flags = IXP4XX_GPIO_LOW,
},
{
.name = "disk", /* yellow led */
.start = 3,
.end = 3,
.flags = IXP4XX_GPIO_LOW,
},
};
static struct platform_device nas100d_leds = {
.name = "IXP4XX-GPIO-LED",
.id = -1,
.num_resources = ARRAY_SIZE(nas100d_led_resources),
.resource = nas100d_led_resources,
};
#endif
static struct ixp4xx_i2c_pins nas100d_i2c_gpio_pins = {
.sda_pin = NAS100D_SDA_PIN,
.scl_pin = NAS100D_SCL_PIN,
@ -95,7 +126,9 @@ static struct platform_device nas100d_uart = {
static struct platform_device *nas100d_devices[] __initdata = {
&nas100d_i2c_controller,
&nas100d_flash,
&nas100d_uart,
#ifdef CONFIG_LEDS_IXP4XX
&nas100d_leds,
#endif
};
static void nas100d_power_off(void)
@ -122,6 +155,12 @@ static void __init nas100d_init(void)
pm_power_off = nas100d_power_off;
/* This is only useful on a modified machine, but it is valuable
* to have it first in order to see debug messages, and so that
* it does *not* get removed if platform_add_devices fails!
*/
(void)platform_device_register(&nas100d_uart);
platform_add_devices(nas100d_devices, ARRAY_SIZE(nas100d_devices));
}

View File

@ -7,6 +7,7 @@
* Copyright (C) 2003-2004 MontaVista Software, Inc.
*
* Author: Mark Rakes <mrakes at mac.com>
* Author: Rod Whitby <rod@whitby.id.au>
* Maintainers: http://www.nslu2-linux.org/
*
* Fixed missing init_time in MACHINE_START kas11 10/22/04
@ -16,6 +17,7 @@
#include <linux/kernel.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/leds.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
@ -43,6 +45,42 @@ static struct ixp4xx_i2c_pins nslu2_i2c_gpio_pins = {
.scl_pin = NSLU2_SCL_PIN,
};
#ifdef CONFIG_LEDS_IXP4XX
static struct resource nslu2_led_resources[] = {
{
.name = "ready", /* green led */
.start = NSLU2_LED_GRN,
.end = NSLU2_LED_GRN,
.flags = IXP4XX_GPIO_HIGH,
},
{
.name = "status", /* red led */
.start = NSLU2_LED_RED,
.end = NSLU2_LED_RED,
.flags = IXP4XX_GPIO_HIGH,
},
{
.name = "disk-1",
.start = NSLU2_LED_DISK1,
.end = NSLU2_LED_DISK1,
.flags = IXP4XX_GPIO_LOW,
},
{
.name = "disk-2",
.start = NSLU2_LED_DISK2,
.end = NSLU2_LED_DISK2,
.flags = IXP4XX_GPIO_LOW,
},
};
static struct platform_device nslu2_leds = {
.name = "IXP4XX-GPIO-LED",
.id = -1,
.num_resources = ARRAY_SIZE(nslu2_led_resources),
.resource = nslu2_led_resources,
};
#endif
static struct platform_device nslu2_i2c_controller = {
.name = "IXP4XX-I2C",
.id = 0,
@ -102,8 +140,10 @@ static struct platform_device nslu2_uart = {
static struct platform_device *nslu2_devices[] __initdata = {
&nslu2_i2c_controller,
&nslu2_flash,
&nslu2_uart,
&nslu2_beeper,
#ifdef CONFIG_LEDS_IXP4XX
&nslu2_leds,
#endif
};
static void nslu2_power_off(void)
@ -127,6 +167,12 @@ static void __init nslu2_init(void)
pm_power_off = nslu2_power_off;
/* This is only useful on a modified machine, but it is valuable
* to have it first in order to see debug messages, and so that
* it does *not* get removed if platform_add_devices fails!
*/
(void)platform_device_register(&nslu2_uart);
platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));
}

View File

@ -84,6 +84,15 @@ static struct omap_board_config_kernel ams_delta_config[] = {
{ OMAP_TAG_UART, &ams_delta_uart_config },
};
static struct platform_device ams_delta_led_device = {
.name = "ams-delta-led",
.id = -1
};
static struct platform_device *ams_delta_devices[] __initdata = {
&ams_delta_led_device,
};
static void __init ams_delta_init(void)
{
iotable_init(ams_delta_io_desc, ARRAY_SIZE(ams_delta_io_desc));
@ -94,6 +103,8 @@ static void __init ams_delta_init(void)
/* Clear latch2 (NAND, LCD, modem enable) */
ams_delta_latch2_write(~0, 0);
platform_add_devices(ams_delta_devices, ARRAY_SIZE(ams_delta_devices));
}
static void __init ams_delta_map_io(void)

View File

@ -767,6 +767,54 @@ static struct clk *onchip_clks[] = {
&uart6_ck,
};
static int local_clk_enable(struct clk *clk)
{
int ret = 0;
if (!(clk->flags & FIXED_RATE) && !clk->rate && clk->set_rate
&& clk->user_rate)
ret = clk->set_rate(clk, clk->user_rate);
return ret;
}
static void local_clk_disable(struct clk *clk)
{
if (!(clk->flags & FIXED_RATE) && clk->rate && clk->set_rate)
clk->set_rate(clk, 0);
}
static void local_clk_unuse(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
local_clk_disable(clk);
if (clk->parent)
local_clk_unuse(clk->parent);
}
}
static int local_clk_use(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (clk->parent)
ret = local_clk_use(clk->parent);
if (ret != 0) {
clk->usecount--;
goto out;
}
ret = local_clk_enable(clk);
if (ret != 0 && clk->parent) {
local_clk_unuse(clk->parent);
clk->usecount--;
}
}
out:
return ret;
}
static int local_set_rate(struct clk *clk, u32 rate)
{
int ret = -EINVAL;
@ -847,28 +895,12 @@ unsigned long clk_get_rate(struct clk *clk)
}
EXPORT_SYMBOL(clk_get_rate);
static int local_clk_enable(struct clk *clk)
{
int ret = 0;
if (!(clk->flags & FIXED_RATE) && !clk->rate && clk->set_rate
&& clk->user_rate)
ret = clk->set_rate(clk, clk->user_rate);
return ret;
}
static void local_clk_disable(struct clk *clk)
{
if (!(clk->flags & FIXED_RATE) && clk->rate && clk->set_rate)
clk->set_rate(clk, 0);
}
int clk_enable(struct clk *clk)
{
int ret = 0;
clock_lock();
ret = local_clk_enable(clk);
ret = local_clk_use(clk);
clock_unlock();
return ret;
}
@ -877,71 +909,12 @@ EXPORT_SYMBOL(clk_enable);
void clk_disable(struct clk *clk)
{
clock_lock();
local_clk_disable(clk);
clock_unlock();
}
EXPORT_SYMBOL(clk_disable);
static void local_clk_unuse(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
local_clk_disable(clk);
if (clk->parent)
local_clk_unuse(clk->parent);
}
}
static int local_clk_use(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (clk->parent)
ret = local_clk_use(clk->parent);
if (ret != 0) {
clk->usecount--;
goto out;
}
ret = local_clk_enable(clk);
if (ret != 0 && clk->parent) {
local_clk_unuse(clk->parent);
clk->usecount--;
}
}
out:
return ret;
}
/* The main purpose of clk_use ans clk_unuse functions
* is to control switching 13MHz oscillator and PLL1 (13'MHz),
* so that they are disabled whenever none of PLL2-5 is using them.
* Although in theory these functions should work with any clock,
* please use them only on PLL2 - PLL5 to avoid confusion.
*/
int clk_use(struct clk *clk)
{
int ret = 0;
clock_lock();
ret = local_clk_use(clk);
clock_unlock();
return ret;
}
EXPORT_SYMBOL(clk_use);
void clk_unuse(struct clk *clk)
{
clock_lock();
local_clk_unuse(clk);
clock_unlock();
}
EXPORT_SYMBOL(clk_unuse);
EXPORT_SYMBOL(clk_disable);
long clk_round_rate(struct clk *clk, unsigned long rate)
{
@ -995,7 +968,7 @@ static int __init clk_init(void)
__FUNCTION__, (*clkp)->name, (*clkp)->rate);
}
clk_use(&ck_pll4);
local_clk_use(&ck_pll4);
/* if ck_13MHz is not used, disable it. */
if (ck_13MHz.usecount == 0)

View File

@ -20,7 +20,7 @@
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <asm/arch/pm.h>
#include <asm/arch/gpio.h>
#include <asm/arch/clock.h>

View File

@ -114,9 +114,15 @@ config MACH_NEXCODER_2440
endmenu
config S3C2410_CLOCK
bool
help
Clock code for the S3C2410, and similar processors
config CPU_S3C2410
bool
depends on ARCH_S3C2410
select S3C2410_CLOCK
help
Support for S3C2410 and S3C2410A family from the S3C24XX line
of Samsung Mobile CPUs.
@ -130,6 +136,7 @@ config CPU_S3C244X
config CPU_S3C2440
bool
depends on ARCH_S3C2410
select S3C2410_CLOCK
select CPU_S3C244X
help
Support for S3C2440 Samsung Mobile CPU based systems.
@ -137,6 +144,7 @@ config CPU_S3C2440
config CPU_S3C2442
bool
depends on ARCH_S3C2420
select S3C2410_CLOCK
select CPU_S3C244X
help
Support for S3C2442 Samsung Mobile CPU based systems.

View File

@ -29,6 +29,10 @@ obj-$(CONFIG_PM_SIMTEC) += pm-simtec.o
obj-$(CONFIG_CPU_S3C244X) += s3c244x.o
obj-$(CONFIG_CPU_S3C244X) += s3c244x-irq.o
# Clock control
obj-$(CONFIG_S3C2410_CLOCK) += s3c2410-clock.o
# S3C2440 support
obj-$(CONFIG_CPU_S3C2440) += s3c2440.o s3c2440-dsc.o

View File

@ -3,7 +3,7 @@
* Copyright (c) 2004-2005 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* S3C2410 Clock control support
* S3C24XX Core clock control support
*
* Based on, and code from linux/arch/arm/mach-versatile/clock.c
**
@ -56,25 +56,6 @@ static LIST_HEAD(clocks);
DEFINE_MUTEX(clocks_mutex);
/* old functions */
void inline s3c24xx_clk_enable(unsigned int clocks, unsigned int enable)
{
unsigned long clkcon;
clkcon = __raw_readl(S3C2410_CLKCON);
if (enable)
clkcon |= clocks;
else
clkcon &= ~clocks;
/* ensure none of the special function bits set */
clkcon &= ~(S3C2410_CLKCON_IDLE|S3C2410_CLKCON_POWER | 3);
__raw_writel(clkcon, S3C2410_CLKCON);
}
/* enable and disable calls for use with the clk struct */
static int clk_null_enable(struct clk *clk, int enable)
@ -82,12 +63,6 @@ static int clk_null_enable(struct clk *clk, int enable)
return 0;
}
int s3c24xx_clkcon_enable(struct clk *clk, int enable)
{
s3c24xx_clk_enable(clk->ctrlbit, enable);
return 0;
}
/* Clock API calls */
struct clk *clk_get(struct device *dev, const char *id)
@ -173,8 +148,11 @@ unsigned long clk_get_rate(struct clk *clk)
if (clk->rate != 0)
return clk->rate;
while (clk->parent != NULL && clk->rate == 0)
clk = clk->parent;
if (clk->get_rate != NULL)
return (clk->get_rate)(clk);
if (clk->parent != NULL)
return clk_get_rate(clk->parent);
return clk->rate;
}
@ -233,28 +211,6 @@ EXPORT_SYMBOL(clk_set_rate);
EXPORT_SYMBOL(clk_get_parent);
EXPORT_SYMBOL(clk_set_parent);
/* base clock enable */
static int s3c24xx_upll_enable(struct clk *clk, int enable)
{
unsigned long clkslow = __raw_readl(S3C2410_CLKSLOW);
unsigned long orig = clkslow;
if (enable)
clkslow &= ~S3C2410_CLKSLOW_UCLK_OFF;
else
clkslow |= S3C2410_CLKSLOW_UCLK_OFF;
__raw_writel(clkslow, S3C2410_CLKSLOW);
/* if we started the UPLL, then allow to settle */
if (enable && (orig & S3C2410_CLKSLOW_UCLK_OFF))
udelay(200);
return 0;
}
/* base clocks */
static struct clk clk_xtal = {
@ -265,15 +221,14 @@ static struct clk clk_xtal = {
.ctrlbit = 0,
};
static struct clk clk_upll = {
struct clk clk_upll = {
.name = "upll",
.id = -1,
.parent = NULL,
.enable = s3c24xx_upll_enable,
.ctrlbit = 0,
};
static struct clk clk_f = {
struct clk clk_f = {
.name = "fclk",
.id = -1,
.rate = 0,
@ -281,7 +236,7 @@ static struct clk clk_f = {
.ctrlbit = 0,
};
static struct clk clk_h = {
struct clk clk_h = {
.name = "hclk",
.id = -1,
.rate = 0,
@ -289,7 +244,7 @@ static struct clk clk_h = {
.ctrlbit = 0,
};
static struct clk clk_p = {
struct clk clk_p = {
.name = "pclk",
.id = -1,
.rate = 0,
@ -426,108 +381,6 @@ struct clk s3c24xx_uclk = {
.id = -1,
};
/* standard clock definitions */
static struct clk init_clocks[] = {
{
.name = "nand",
.id = -1,
.parent = &clk_h,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_NAND,
}, {
.name = "lcd",
.id = -1,
.parent = &clk_h,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_LCDC,
}, {
.name = "usb-host",
.id = -1,
.parent = &clk_h,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_USBH,
}, {
.name = "usb-device",
.id = -1,
.parent = &clk_h,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_USBD,
}, {
.name = "timers",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_PWMT,
}, {
.name = "sdi",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_SDI,
}, {
.name = "uart",
.id = 0,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART0,
}, {
.name = "uart",
.id = 1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART1,
}, {
.name = "uart",
.id = 2,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART2,
}, {
.name = "gpio",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_GPIO,
}, {
.name = "rtc",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_RTC,
}, {
.name = "adc",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_ADC,
}, {
.name = "i2c",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_IIC,
}, {
.name = "iis",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_IIS,
}, {
.name = "spi",
.id = -1,
.parent = &clk_p,
.enable = s3c24xx_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_SPI,
}, {
.name = "watchdog",
.id = -1,
.parent = &clk_p,
.ctrlbit = 0,
}
};
/* initialise the clock system */
int s3c24xx_register_clock(struct clk *clk)
@ -537,14 +390,6 @@ int s3c24xx_register_clock(struct clk *clk)
if (clk->enable == NULL)
clk->enable = clk_null_enable;
/* if this is a standard clock, set the usage state */
if (clk->ctrlbit && clk->enable == s3c24xx_clkcon_enable) {
unsigned long clkcon = __raw_readl(S3C2410_CLKCON);
clk->usage = (clkcon & clk->ctrlbit) ? 1 : 0;
}
/* add to the list of available clocks */
mutex_lock(&clocks_mutex);
@ -561,44 +406,17 @@ int __init s3c24xx_setup_clocks(unsigned long xtal,
unsigned long hclk,
unsigned long pclk)
{
unsigned long upllcon = __raw_readl(S3C2410_UPLLCON);
unsigned long clkslow = __raw_readl(S3C2410_CLKSLOW);
struct clk *clkp = init_clocks;
int ptr;
int ret;
printk(KERN_INFO "S3C2410 Clocks, (c) 2004 Simtec Electronics\n");
printk(KERN_INFO "S3C24XX Clocks, (c) 2004 Simtec Electronics\n");
/* initialise the main system clocks */
clk_xtal.rate = xtal;
clk_upll.rate = s3c2410_get_pll(upllcon, xtal);
clk_upll.rate = s3c2410_get_pll(__raw_readl(S3C2410_UPLLCON), xtal);
clk_h.rate = hclk;
clk_p.rate = pclk;
clk_f.rate = fclk;
/* We must be careful disabling the clocks we are not intending to
* be using at boot time, as subsytems such as the LCD which do
* their own DMA requests to the bus can cause the system to lockup
* if they where in the middle of requesting bus access.
*
* Disabling the LCD clock if the LCD is active is very dangerous,
* and therefore the bootloader should be careful to not enable
* the LCD clock if it is not needed.
*/
mutex_lock(&clocks_mutex);
s3c24xx_clk_enable(S3C2410_CLKCON_NAND, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_USBH, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_USBD, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_ADC, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_IIC, 0);
s3c24xx_clk_enable(S3C2410_CLKCON_SPI, 0);
mutex_unlock(&clocks_mutex);
/* assume uart clocks are correctly setup */
/* register our clocks */
@ -618,27 +436,5 @@ int __init s3c24xx_setup_clocks(unsigned long xtal,
if (s3c24xx_register_clock(&clk_p) < 0)
printk(KERN_ERR "failed to register cpu pclk\n");
if (s3c24xx_register_clock(&clk_usb_bus) < 0)
printk(KERN_ERR "failed to register usb bus clock\n");
/* register clocks from clock array */
for (ptr = 0; ptr < ARRAY_SIZE(init_clocks); ptr++, clkp++) {
ret = s3c24xx_register_clock(clkp);
if (ret < 0) {
printk(KERN_ERR "Failed to register clock %s (%d)\n",
clkp->name, ret);
}
}
/* show the clock-slow value */
printk("CLOCK: Slow mode (%ld.%ld MHz), %s, MPLL %s, UPLL %s\n",
print_mhz(xtal / ( 2 * S3C2410_CLKSLOW_GET_SLOWVAL(clkslow))),
(clkslow & S3C2410_CLKSLOW_SLOW) ? "slow" : "fast",
(clkslow & S3C2410_CLKSLOW_MPLL_OFF) ? "off" : "on",
(clkslow & S3C2410_CLKSLOW_UCLK_OFF) ? "off" : "on");
return 0;
}

View File

@ -22,6 +22,7 @@ struct clk {
int (*enable)(struct clk *, int enable);
int (*set_rate)(struct clk *c, unsigned long rate);
unsigned long (*get_rate)(struct clk *c);
unsigned long (*round_rate)(struct clk *c, unsigned long rate);
int (*set_parent)(struct clk *c, struct clk *parent);
};
@ -36,6 +37,13 @@ extern struct clk s3c24xx_uclk;
extern struct clk clk_usb_bus;
/* core clock support */
extern struct clk clk_f;
extern struct clk clk_h;
extern struct clk clk_p;
extern struct clk clk_upll;
/* exports for arch/arm/mach-s3c2410
*
* Please DO NOT use these outside of arch/arm/mach-s3c2410
@ -43,7 +51,8 @@ extern struct clk clk_usb_bus;
extern struct mutex clocks_mutex;
extern int s3c24xx_clkcon_enable(struct clk *clk, int enable);
extern int s3c2410_clkcon_enable(struct clk *clk, int enable);
extern int s3c24xx_register_clock(struct clk *clk);
extern int s3c24xx_setup_clocks(unsigned long xtal,

View File

@ -73,5 +73,6 @@ extern struct sys_timer s3c24xx_timer;
/* system device classes */
extern struct sysdev_class s3c2410_sysclass;
extern struct sysdev_class s3c2440_sysclass;
extern struct sysdev_class s3c2442_sysclass;

View File

@ -0,0 +1,263 @@
/* linux/arch/arm/mach-s3c2410/clock.c
*
* Copyright (c) 2006 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* S3C2410,S3C2440,S3C2442 Clock control support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sysdev.h>
#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/arch/regs-clock.h>
#include <asm/arch/regs-gpio.h>
#include "clock.h"
#include "cpu.h"
int s3c2410_clkcon_enable(struct clk *clk, int enable)
{
unsigned int clocks = clk->ctrlbit;
unsigned long clkcon;
clkcon = __raw_readl(S3C2410_CLKCON);
if (enable)
clkcon |= clocks;
else
clkcon &= ~clocks;
/* ensure none of the special function bits set */
clkcon &= ~(S3C2410_CLKCON_IDLE|S3C2410_CLKCON_POWER);
__raw_writel(clkcon, S3C2410_CLKCON);
return 0;
}
static int s3c2410_upll_enable(struct clk *clk, int enable)
{
unsigned long clkslow = __raw_readl(S3C2410_CLKSLOW);
unsigned long orig = clkslow;
if (enable)
clkslow &= ~S3C2410_CLKSLOW_UCLK_OFF;
else
clkslow |= S3C2410_CLKSLOW_UCLK_OFF;
__raw_writel(clkslow, S3C2410_CLKSLOW);
/* if we started the UPLL, then allow to settle */
if (enable && (orig & S3C2410_CLKSLOW_UCLK_OFF))
udelay(200);
return 0;
}
/* standard clock definitions */
static struct clk init_clocks_disable[] = {
{
.name = "nand",
.id = -1,
.parent = &clk_h,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_NAND,
}, {
.name = "sdi",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_SDI,
}, {
.name = "adc",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_ADC,
}, {
.name = "i2c",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_IIC,
}, {
.name = "iis",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_IIS,
}, {
.name = "spi",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_SPI,
}
};
static struct clk init_clocks[] = {
{
.name = "lcd",
.id = -1,
.parent = &clk_h,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_LCDC,
}, {
.name = "gpio",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_GPIO,
}, {
.name = "usb-host",
.id = -1,
.parent = &clk_h,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_USBH,
}, {
.name = "usb-device",
.id = -1,
.parent = &clk_h,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_USBD,
}, {
.name = "timers",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_PWMT,
}, {
.name = "uart",
.id = 0,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART0,
}, {
.name = "uart",
.id = 1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART1,
}, {
.name = "uart",
.id = 2,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_UART2,
}, {
.name = "rtc",
.id = -1,
.parent = &clk_p,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2410_CLKCON_RTC,
}, {
.name = "watchdog",
.id = -1,
.parent = &clk_p,
.ctrlbit = 0,
}
};
/* s3c2410_baseclk_add()
*
* Add all the clocks used by the s3c2410 or compatible CPUs
* such as the S3C2440 and S3C2442.
*
* We cannot use a system device as we are needed before any
* of the init-calls that initialise the devices are actually
* done.
*/
int __init s3c2410_baseclk_add(void)
{
unsigned long clkslow = __raw_readl(S3C2410_CLKSLOW);
unsigned long clkcon = __raw_readl(S3C2410_CLKCON);
struct clk *clkp;
struct clk *xtal;
int ret;
int ptr;
clk_upll.enable = s3c2410_upll_enable;
if (s3c24xx_register_clock(&clk_usb_bus) < 0)
printk(KERN_ERR "failed to register usb bus clock\n");
/* register clocks from clock array */
clkp = init_clocks;
for (ptr = 0; ptr < ARRAY_SIZE(init_clocks); ptr++, clkp++) {
/* ensure that we note the clock state */
clkp->usage = clkcon & clkp->ctrlbit ? 1 : 0;
ret = s3c24xx_register_clock(clkp);
if (ret < 0) {
printk(KERN_ERR "Failed to register clock %s (%d)\n",
clkp->name, ret);
}
}
/* We must be careful disabling the clocks we are not intending to
* be using at boot time, as subsytems such as the LCD which do
* their own DMA requests to the bus can cause the system to lockup
* if they where in the middle of requesting bus access.
*
* Disabling the LCD clock if the LCD is active is very dangerous,
* and therefore the bootloader should be careful to not enable
* the LCD clock if it is not needed.
*/
/* install (and disable) the clocks we do not need immediately */
clkp = init_clocks_disable;
for (ptr = 0; ptr < ARRAY_SIZE(init_clocks_disable); ptr++, clkp++) {
ret = s3c24xx_register_clock(clkp);
if (ret < 0) {
printk(KERN_ERR "Failed to register clock %s (%d)\n",
clkp->name, ret);
}
s3c2410_clkcon_enable(clkp, 0);
}
/* show the clock-slow value */
xtal = clk_get(NULL, "xtal");
printk("CLOCK: Slow mode (%ld.%ld MHz), %s, MPLL %s, UPLL %s\n",
print_mhz(clk_get_rate(xtal) /
( 2 * S3C2410_CLKSLOW_GET_SLOWVAL(clkslow))),
(clkslow & S3C2410_CLKSLOW_SLOW) ? "slow" : "fast",
(clkslow & S3C2410_CLKSLOW_MPLL_OFF) ? "off" : "on",
(clkslow & S3C2410_CLKSLOW_UCLK_OFF) ? "off" : "on");
return 0;
}

View File

@ -27,6 +27,7 @@
#include <linux/list.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/sysdev.h>
#include <linux/platform_device.h>
#include <asm/mach/arch.h>
@ -108,11 +109,33 @@ void __init s3c2410_init_clocks(int xtal)
*/
s3c24xx_setup_clocks(xtal, fclk, hclk, pclk);
s3c2410_baseclk_add();
}
struct sysdev_class s3c2410_sysclass = {
set_kset_name("s3c2410-core"),
};
static struct sys_device s3c2410_sysdev = {
.cls = &s3c2410_sysclass,
};
/* need to register class before we actually register the device, and
* we also need to ensure that it has been initialised before any of the
* drivers even try to use it (even if not on an s3c2440 based system)
* as a driver which may support both 2410 and 2440 may try and use it.
*/
static int __init s3c2410_core_init(void)
{
return sysdev_class_register(&s3c2410_sysclass);
}
core_initcall(s3c2410_core_init);
int __init s3c2410_init(void)
{
printk("S3C2410: Initialising architecture\n");
return 0;
return sysdev_register(&s3c2410_sysdev);
}

View File

@ -29,6 +29,8 @@ extern void s3c2410_init_uarts(struct s3c2410_uartcfg *cfg, int no);
extern void s3c2410_init_clocks(int xtal);
extern int s3c2410_baseclk_add(void);
#else
#define s3c2410_init_clocks NULL
#define s3c2410_init_uarts NULL

View File

@ -91,7 +91,7 @@ static int s3c2440_camif_upll_setrate(struct clk *clk, unsigned long rate)
static struct clk s3c2440_clk_cam = {
.name = "camif",
.id = -1,
.enable = s3c24xx_clkcon_enable,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2440_CLKCON_CAMERA,
};
@ -105,7 +105,7 @@ static struct clk s3c2440_clk_cam_upll = {
static struct clk s3c2440_clk_ac97 = {
.name = "ac97",
.id = -1,
.enable = s3c24xx_clkcon_enable,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2440_CLKCON_CAMERA,
};

View File

@ -102,7 +102,7 @@ static int s3c2442_camif_upll_setrate(struct clk *clk, unsigned long rate)
static struct clk s3c2442_clk_cam = {
.name = "camif",
.id = -1,
.enable = s3c24xx_clkcon_enable,
.enable = s3c2410_clkcon_enable,
.ctrlbit = S3C2440_CLKCON_CAMERA,
};

View File

@ -34,6 +34,7 @@
#include <asm/arch/regs-gpioj.h>
#include <asm/arch/regs-dsc.h>
#include "s3c2410.h"
#include "s3c2440.h"
#include "s3c244x.h"
#include "clock.h"
@ -118,6 +119,7 @@ void __init s3c244x_init_clocks(int xtal)
*/
s3c24xx_setup_clocks(xtal, fclk, hclk, pclk);
s3c2410_baseclk_add();
}
#ifdef CONFIG_PM

View File

@ -33,7 +33,8 @@
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/init.h>
/* XXX */
#include <asm/thread_notify.h>
#include "softfloat.h"
#include "fpopcode.h"
@ -56,16 +57,28 @@ void fp_send_sig(unsigned long sig, struct task_struct *p, int priv);
extern char fpe_type[];
#endif
static int nwfpe_notify(struct notifier_block *self, unsigned long cmd, void *v)
{
struct thread_info *thread = v;
if (cmd == THREAD_NOTIFY_FLUSH)
nwfpe_init_fpa(&thread->fpstate);
return NOTIFY_DONE;
}
static struct notifier_block nwfpe_notifier_block = {
.notifier_call = nwfpe_notify,
};
/* kernel function prototypes required */
void fp_setup(void);
/* external declarations for saved kernel symbols */
extern void (*kern_fp_enter)(void);
extern void (*fp_init)(union fp_state *);
/* Original value of fp_enter from kernel before patched by fpe_init. */
static void (*orig_fp_enter)(void);
static void (*orig_fp_init)(union fp_state *);
/* forward declarations */
extern void nwfpe_enter(void);
@ -88,20 +101,20 @@ static int __init fpe_init(void)
printk(KERN_WARNING "NetWinder Floating Point Emulator V0.97 ("
NWFPE_BITS " precision)\n");
thread_register_notifier(&nwfpe_notifier_block);
/* Save pointer to the old FP handler and then patch ourselves in */
orig_fp_enter = kern_fp_enter;
orig_fp_init = fp_init;
kern_fp_enter = nwfpe_enter;
fp_init = nwfpe_init_fpa;
return 0;
}
static void __exit fpe_exit(void)
{
thread_unregister_notifier(&nwfpe_notifier_block);
/* Restore the values we saved earlier. */
kern_fp_enter = orig_fp_enter;
fp_init = orig_fp_init;
}
/*

View File

@ -210,7 +210,8 @@ static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
now = omap_32k_sync_timer_read();
while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
while ((signed long)(now - omap_32k_last_tick)
>= OMAP_32K_TICKS_PER_HZ) {
omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
timer_tick(regs);
}

View File

@ -7,6 +7,9 @@
# EXTRA_CFLAGS := -DDEBUG
# EXTRA_AFLAGS := -DDEBUG
AFLAGS :=$(AFLAGS:-msoft-float=-Wa,-mfpu=softvfp+vfp)
LDFLAGS +=--no-warn-mismatch
obj-y += vfp.o
vfp-$(CONFIG_VFP) += entry.o vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o
vfp-$(CONFIG_VFP) += vfpmodule.o entry.o vfphw.o vfpsingle.o vfpdouble.o

View File

@ -192,7 +192,7 @@ vfp_get_double:
add pc, pc, r0, lsl #3
mov r0, r0
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
mrrc p11, 1, r0, r1, c\dr @ fmrrd r0, r1, d\dr
fmrrd r0, r1, d\dr
mov pc, lr
.endr
@ -206,6 +206,6 @@ vfp_put_double:
add pc, pc, r0, lsl #3
mov r0, r0
.irp dr,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
mcrr p11, 1, r1, r2, c\dr @ fmdrr r1, r2, d\dr
fmdrr d\dr, r1, r2
mov pc, lr
.endr

View File

@ -15,6 +15,8 @@
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/thread_notify.h>
#include <asm/vfp.h>
#include "vfpinstr.h"
@ -36,37 +38,54 @@ union vfp_state *last_VFP_context;
*/
unsigned int VFP_arch;
/*
* Per-thread VFP initialisation.
*/
void vfp_flush_thread(union vfp_state *vfp)
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
{
memset(vfp, 0, sizeof(union vfp_state));
struct thread_info *thread = v;
union vfp_state *vfp = &thread->vfpstate;
vfp->hard.fpexc = FPEXC_ENABLE;
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
switch (cmd) {
case THREAD_NOTIFY_FLUSH:
/*
* Per-thread VFP initialisation.
*/
memset(vfp, 0, sizeof(union vfp_state));
/*
* Disable VFP to ensure we initialise it first.
*/
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
vfp->hard.fpexc = FPEXC_ENABLE;
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
/*
* Ensure we don't try to overwrite our newly initialised
* state information on the first fault.
*/
if (last_VFP_context == vfp)
last_VFP_context = NULL;
/*
* Disable VFP to ensure we initialise it first.
*/
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
/*
* FALLTHROUGH: Ensure we don't try to overwrite our newly
* initialised state information on the first fault.
*/
case THREAD_NOTIFY_RELEASE:
/*
* Per-thread VFP cleanup.
*/
if (last_VFP_context == vfp)
last_VFP_context = NULL;
break;
case THREAD_NOTIFY_SWITCH:
/*
* Always disable VFP so we can lazily save/restore the
* old state.
*/
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
break;
}
return NOTIFY_DONE;
}
/*
* Per-thread VFP cleanup.
*/
void vfp_release_thread(union vfp_state *vfp)
{
if (last_VFP_context == vfp)
last_VFP_context = NULL;
}
static struct notifier_block vfp_notifier_block = {
.notifier_call = vfp_notifier,
};
/*
* Raise a SIGFPE for the current process.
@ -281,6 +300,8 @@ static int __init vfp_init(void)
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
vfp_vector = vfp_support_entry;
thread_register_notifier(&vfp_notifier_block);
}
return 0;
}

View File

@ -1474,7 +1474,7 @@ sys_call_table:
.long sys_mknodat
.long sys_fchownat
.long sys_futimesat
.long sys_newfstatat /* 300 */
.long sys_fstatat64 /* 300 */
.long sys_unlinkat
.long sys_renameat
.long sys_linkat

View File

@ -26,16 +26,6 @@ extern long __memset_user(void *dst, const void *src, size_t count);
EXPORT_SYMBOL(__ioremap);
EXPORT_SYMBOL(iounmap);
EXPORT_SYMBOL(strnlen);
EXPORT_SYMBOL(strrchr);
EXPORT_SYMBOL(strstr);
EXPORT_SYMBOL(strchr);
EXPORT_SYMBOL(strcat);
EXPORT_SYMBOL(strlen);
EXPORT_SYMBOL(strcmp);
EXPORT_SYMBOL(strncmp);
EXPORT_SYMBOL(strncpy);
EXPORT_SYMBOL(ip_fast_csum);
#if 0
@ -44,8 +34,6 @@ EXPORT_SYMBOL(local_bh_count);
#endif
EXPORT_SYMBOL(kernel_thread);
EXPORT_SYMBOL(enable_irq);
EXPORT_SYMBOL(disable_irq);
EXPORT_SYMBOL(__res_bus_clock_speed_HZ);
EXPORT_SYMBOL(__page_offset);
EXPORT_SYMBOL(__memcpy_user);
@ -62,18 +50,12 @@ EXPORT_SYMBOL(memory_end);
EXPORT_SYMBOL(__debug_bug_trap);
/* Networking helper routines. */
EXPORT_SYMBOL(csum_partial_copy);
/* The following are special because they're not called
explicitly (the C compiler generates them). Fortunately,
their interface isn't gonna change any time soon now, so
it's OK to leave it out of version control. */
EXPORT_SYMBOL(memcpy);
EXPORT_SYMBOL(memset);
EXPORT_SYMBOL(memcmp);
EXPORT_SYMBOL(memscan);
EXPORT_SYMBOL(memmove);
EXPORT_SYMBOL(__outsl_ns);
EXPORT_SYMBOL(__insl_ns);

View File

@ -112,7 +112,7 @@ struct irq_source frv_cpuuart[2] = {
#define __CPUUART(X, A) \
[X] = { \
.muxname = "uart", \
.muxdata = (volatile void __iomem *) A, \
.muxdata = (volatile void __iomem *)(unsigned long)A,\
.irqmask = 1 << IRQ_CPU_UART##X, \
.doirq = frv_cpuuart_doirq, \
}
@ -136,7 +136,7 @@ struct irq_source frv_cpudma[8] = {
#define __CPUDMA(X, A) \
[X] = { \
.muxname = "dma", \
.muxdata = (volatile void __iomem *) A, \
.muxdata = (volatile void __iomem *)(unsigned long)A,\
.irqmask = 1 << IRQ_CPU_DMA##X, \
.doirq = frv_cpudma_doirq, \
}
@ -164,7 +164,7 @@ struct irq_source frv_cputimer[3] = {
#define __CPUTIMER(X) \
[X] = { \
.muxname = "timer", \
.muxdata = 0, \
.muxdata = NULL, \
.irqmask = 1 << IRQ_CPU_TIMER##X, \
.doirq = frv_cputimer_doirq, \
}
@ -187,7 +187,7 @@ struct irq_source frv_cpuexternal[8] = {
#define __CPUEXTERNAL(X) \
[X] = { \
.muxname = "ext", \
.muxdata = 0, \
.muxdata = NULL, \
.irqmask = 1 << IRQ_CPU_EXTERNAL##X, \
.doirq = frv_cpuexternal_doirq, \
}

View File

@ -625,7 +625,7 @@ static struct proc_dir_entry * irq_dir [NR_IRQS];
#define HEX_DIGITS 8
static unsigned int parse_hex_value (const char *buffer,
static unsigned int parse_hex_value (const char __user *buffer,
unsigned long count, unsigned long *ret)
{
unsigned char hexnum [HEX_DIGITS];
@ -672,7 +672,7 @@ static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
return sprintf (page, "%08lx\n", *mask);
}
static int prof_cpu_mask_write_proc (struct file *file, const char *buffer,
static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
unsigned long *mask = (unsigned long *) data, full_count = count, err;
@ -711,7 +711,7 @@ void init_irq_proc (void)
int i;
/* create /proc/irq */
root_irq_dir = proc_mkdir("irq", 0);
root_irq_dir = proc_mkdir("irq", NULL);
/* create /proc/irq/prof_cpu_mask */
entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);

View File

@ -137,7 +137,7 @@ unsigned long sleep_phys_sp(void *sp)
#define CTL_PM_P0 4
#define CTL_PM_CM 5
static int user_atoi(char *ubuf, size_t len)
static int user_atoi(char __user *ubuf, size_t len)
{
char buf[16];
unsigned long ret;
@ -159,7 +159,7 @@ static int user_atoi(char *ubuf, size_t len)
* Send us to sleep.
*/
static int sysctl_pm_do_suspend(ctl_table *ctl, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *fpos)
void __user *buffer, size_t *lenp, loff_t *fpos)
{
int retval, mode;
@ -215,7 +215,7 @@ static int try_set_cmode(int new_cmode)
static int cmode_procctl(ctl_table *ctl, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *fpos)
void __user *buffer, size_t *lenp, loff_t *fpos)
{
int new_cmode;
@ -227,9 +227,9 @@ static int cmode_procctl(ctl_table *ctl, int write, struct file *filp,
return try_set_cmode(new_cmode)?:*lenp;
}
static int cmode_sysctl(ctl_table *table, int *name, int nlen,
void *oldval, size_t *oldlenp,
void *newval, size_t newlen, void **context)
static int cmode_sysctl(ctl_table *table, int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen, void **context)
{
if (oldval && oldlenp) {
size_t oldlen;
@ -240,7 +240,7 @@ static int cmode_sysctl(ctl_table *table, int *name, int nlen,
if (oldlen != sizeof(int))
return -EINVAL;
if (put_user(clock_cmode_current, (unsigned int *)oldval) ||
if (put_user(clock_cmode_current, (unsigned __user *)oldval) ||
put_user(sizeof(int), oldlenp))
return -EFAULT;
}
@ -250,7 +250,7 @@ static int cmode_sysctl(ctl_table *table, int *name, int nlen,
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new_cmode, (int *)newval))
if (get_user(new_cmode, (int __user *)newval))
return -EFAULT;
return try_set_cmode(new_cmode)?:1;
@ -318,7 +318,7 @@ static int try_set_cm(int new_cm)
}
static int p0_procctl(ctl_table *ctl, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *fpos)
void __user *buffer, size_t *lenp, loff_t *fpos)
{
int new_p0;
@ -330,9 +330,9 @@ static int p0_procctl(ctl_table *ctl, int write, struct file *filp,
return try_set_p0(new_p0)?:*lenp;
}
static int p0_sysctl(ctl_table *table, int *name, int nlen,
void *oldval, size_t *oldlenp,
void *newval, size_t newlen, void **context)
static int p0_sysctl(ctl_table *table, int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen, void **context)
{
if (oldval && oldlenp) {
size_t oldlen;
@ -343,7 +343,7 @@ static int p0_sysctl(ctl_table *table, int *name, int nlen,
if (oldlen != sizeof(int))
return -EINVAL;
if (put_user(clock_p0_current, (unsigned int *)oldval) ||
if (put_user(clock_p0_current, (unsigned __user *)oldval) ||
put_user(sizeof(int), oldlenp))
return -EFAULT;
}
@ -353,7 +353,7 @@ static int p0_sysctl(ctl_table *table, int *name, int nlen,
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new_p0, (int *)newval))
if (get_user(new_p0, (int __user *)newval))
return -EFAULT;
return try_set_p0(new_p0)?:1;
@ -362,7 +362,7 @@ static int p0_sysctl(ctl_table *table, int *name, int nlen,
}
static int cm_procctl(ctl_table *ctl, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *fpos)
void __user *buffer, size_t *lenp, loff_t *fpos)
{
int new_cm;
@ -374,9 +374,9 @@ static int cm_procctl(ctl_table *ctl, int write, struct file *filp,
return try_set_cm(new_cm)?:*lenp;
}
static int cm_sysctl(ctl_table *table, int *name, int nlen,
void *oldval, size_t *oldlenp,
void *newval, size_t newlen, void **context)
static int cm_sysctl(ctl_table *table, int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen, void **context)
{
if (oldval && oldlenp) {
size_t oldlen;
@ -387,7 +387,7 @@ static int cm_sysctl(ctl_table *table, int *name, int nlen,
if (oldlen != sizeof(int))
return -EINVAL;
if (put_user(clock_cm_current, (unsigned int *)oldval) ||
if (put_user(clock_cm_current, (unsigned __user *)oldval) ||
put_user(sizeof(int), oldlenp))
return -EFAULT;
}
@ -397,7 +397,7 @@ static int cm_sysctl(ctl_table *table, int *name, int nlen,
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new_cm, (int *)newval))
if (get_user(new_cm, (int __user *)newval))
return -EFAULT;
return try_set_cm(new_cm)?:1;

View File

@ -246,7 +246,7 @@ int copy_thread(int nr, unsigned long clone_flags,
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(char *name, char **argv, char **envp)
asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp)
{
int error;
char * filename;

View File

@ -814,7 +814,7 @@ void __init setup_arch(char **cmdline_p)
* - by now the stack is part of the init task */
printk("Memory %08lx-%08lx\n", memory_start, memory_end);
if (memory_start == memory_end) BUG();
BUG_ON(memory_start == memory_end);
init_mm.start_code = (unsigned long) &_stext;
init_mm.end_code = (unsigned long) &_etext;

View File

@ -98,7 +98,7 @@ int sys_sigaltstack(const stack_t __user *uss, stack_t __user *uoss)
struct sigframe
{
void (*pretcode)(void);
__sigrestore_t pretcode;
int sig;
struct sigcontext sc;
unsigned long extramask[_NSIG_WORDS-1];
@ -107,10 +107,10 @@ struct sigframe
struct rt_sigframe
{
void (*pretcode)(void);
__sigrestore_t pretcode;
int sig;
struct siginfo *pinfo;
void *puc;
struct siginfo __user *pinfo;
void __user *puc;
struct siginfo info;
struct ucontext uc;
uint32_t retcode[2];
@ -233,7 +233,7 @@ static inline void __user *get_sigframe(struct k_sigaction *ka,
/* This is the X/Open sanctioned signal stack switching. */
if (ka->sa.sa_flags & SA_ONSTACK) {
if (! on_sig_stack(sp))
if (! sas_ss_flags(sp))
sp = current->sas_ss_sp + current->sas_ss_size;
}
@ -284,7 +284,7 @@ static int setup_frame(int sig, struct k_sigaction *ka, sigset_t *set)
* setlos #__NR_sigreturn,gr7
* tira gr0,0
*/
if (__put_user((void (*)(void))frame->retcode, &frame->pretcode) ||
if (__put_user((__sigrestore_t)frame->retcode, &frame->pretcode) ||
__put_user(0x8efc0000|__NR_sigreturn, &frame->retcode[0]) ||
__put_user(0xc0700000, &frame->retcode[1]))
goto give_sigsegv;
@ -300,7 +300,7 @@ static int setup_frame(int sig, struct k_sigaction *ka, sigset_t *set)
if (get_personality & FDPIC_FUNCPTRS) {
struct fdpic_func_descriptor __user *funcptr =
(struct fdpic_func_descriptor *) ka->sa.sa_handler;
(struct fdpic_func_descriptor __user *) ka->sa.sa_handler;
__get_user(__frame->pc, &funcptr->text);
__get_user(__frame->gr15, &funcptr->GOT);
} else {
@ -359,8 +359,8 @@ static int setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
/* Create the ucontext. */
if (__put_user(0, &frame->uc.uc_flags) ||
__put_user(0, &frame->uc.uc_link) ||
__put_user((void*)current->sas_ss_sp, &frame->uc.uc_stack.ss_sp) ||
__put_user(NULL, &frame->uc.uc_link) ||
__put_user((void __user *)current->sas_ss_sp, &frame->uc.uc_stack.ss_sp) ||
__put_user(sas_ss_flags(__frame->sp), &frame->uc.uc_stack.ss_flags) ||
__put_user(current->sas_ss_size, &frame->uc.uc_stack.ss_size))
goto give_sigsegv;
@ -382,7 +382,7 @@ static int setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
* setlos #__NR_sigreturn,gr7
* tira gr0,0
*/
if (__put_user((void (*)(void))frame->retcode, &frame->pretcode) ||
if (__put_user((__sigrestore_t)frame->retcode, &frame->pretcode) ||
__put_user(0x8efc0000|__NR_rt_sigreturn, &frame->retcode[0]) ||
__put_user(0xc0700000, &frame->retcode[1]))
goto give_sigsegv;
@ -398,7 +398,7 @@ static int setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
__frame->gr9 = (unsigned long) &frame->info;
if (get_personality & FDPIC_FUNCPTRS) {
struct fdpic_func_descriptor *funcptr =
struct fdpic_func_descriptor __user *funcptr =
(struct fdpic_func_descriptor __user *) ka->sa.sa_handler;
__get_user(__frame->pc, &funcptr->text);
__get_user(__frame->gr15, &funcptr->GOT);

View File

@ -32,7 +32,7 @@
* sys_pipe() is the normal C calling standard for creating
* a pipe. It's not the way unix traditionally does this, though.
*/
asmlinkage long sys_pipe(unsigned long * fildes)
asmlinkage long sys_pipe(unsigned long __user * fildes)
{
int fd[2];
int error;

View File

@ -49,7 +49,7 @@ static void frv_change_dcache_mode(unsigned long newmode)
* handle requests to dynamically switch the write caching mode delivered by /proc
*/
static int procctl_frv_cachemode(ctl_table *table, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *ppos)
void __user *buffer, size_t *lenp, loff_t *ppos)
{
unsigned long hsr0;
char buff[8];
@ -123,7 +123,7 @@ static int procctl_frv_cachemode(ctl_table *table, int write, struct file *filp,
*/
#ifdef CONFIG_MMU
static int procctl_frv_pin_cxnr(ctl_table *table, int write, struct file *filp,
void *buffer, size_t *lenp, loff_t *ppos)
void __user *buffer, size_t *lenp, loff_t *ppos)
{
pid_t pid;
char buff[16], *p;

Some files were not shown because too many files have changed in this diff Show More