dect
/
linux-2.6
Archived
13
0
Fork 0

sbs-battery: Rename internals to new name

Now that this driver is named more generally, this change updates
the internal variables, defines and functions to use this new name.

Signed-off-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Anton Vorontsov <cbouatmailru@gmail.com>
This commit is contained in:
Rhyland Klein 2011-12-05 17:50:46 -08:00 committed by Anton Vorontsov
parent c78f2b6496
commit 3ddca062f8
2 changed files with 208 additions and 223 deletions

View File

@ -1,5 +1,5 @@
/* /*
* Gas Gauge driver for TI's BQ20Z75 * Gas Gauge driver for SBS Compliant Batteries
* *
* Copyright (c) 2010, NVIDIA Corporation. * Copyright (c) 2010, NVIDIA Corporation.
* *
@ -28,7 +28,7 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/gpio.h> #include <linux/gpio.h>
#include <linux/power/bq20z75.h> #include <linux/power/sbs-battery.h>
enum { enum {
REG_MANUFACTURER_DATA, REG_MANUFACTURER_DATA,
@ -53,7 +53,7 @@ enum {
/* Battery Mode defines */ /* Battery Mode defines */
#define BATTERY_MODE_OFFSET 0x03 #define BATTERY_MODE_OFFSET 0x03
#define BATTERY_MODE_MASK 0x8000 #define BATTERY_MODE_MASK 0x8000
enum bq20z75_battery_mode { enum sbs_battery_mode {
BATTERY_MODE_AMPS, BATTERY_MODE_AMPS,
BATTERY_MODE_WATTS BATTERY_MODE_WATTS
}; };
@ -67,62 +67,56 @@ enum bq20z75_battery_mode {
#define BATTERY_FULL_CHARGED 0x20 #define BATTERY_FULL_CHARGED 0x20
#define BATTERY_FULL_DISCHARGED 0x10 #define BATTERY_FULL_DISCHARGED 0x10
#define BQ20Z75_DATA(_psp, _addr, _min_value, _max_value) { \ #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
.psp = _psp, \ .psp = _psp, \
.addr = _addr, \ .addr = _addr, \
.min_value = _min_value, \ .min_value = _min_value, \
.max_value = _max_value, \ .max_value = _max_value, \
} }
static const struct bq20z75_device_data { static const struct chip_data {
enum power_supply_property psp; enum power_supply_property psp;
u8 addr; u8 addr;
int min_value; int min_value;
int max_value; int max_value;
} bq20z75_data[] = { } sbs_data[] = {
[REG_MANUFACTURER_DATA] = [REG_MANUFACTURER_DATA] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
[REG_TEMPERATURE] = [REG_TEMPERATURE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
[REG_VOLTAGE] = [REG_VOLTAGE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000), SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
[REG_CURRENT] = [REG_CURRENT] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
32767),
[REG_CAPACITY] = [REG_CAPACITY] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0E, 0, 100), SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0E, 0, 100),
[REG_REMAINING_CAPACITY] = [REG_REMAINING_CAPACITY] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
[REG_REMAINING_CAPACITY_CHARGE] = [REG_REMAINING_CAPACITY_CHARGE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
[REG_FULL_CHARGE_CAPACITY] = [REG_FULL_CHARGE_CAPACITY] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
[REG_FULL_CHARGE_CAPACITY_CHARGE] = [REG_FULL_CHARGE_CAPACITY_CHARGE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
[REG_TIME_TO_EMPTY] = [REG_TIME_TO_EMPTY] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
65535),
[REG_TIME_TO_FULL] = [REG_TIME_TO_FULL] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
65535),
[REG_STATUS] = [REG_STATUS] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
[REG_CYCLE_COUNT] = [REG_CYCLE_COUNT] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
[REG_DESIGN_CAPACITY] = [REG_DESIGN_CAPACITY] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
65535),
[REG_DESIGN_CAPACITY_CHARGE] = [REG_DESIGN_CAPACITY_CHARGE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
65535),
[REG_DESIGN_VOLTAGE] = [REG_DESIGN_VOLTAGE] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
65535),
[REG_SERIAL_NUMBER] = [REG_SERIAL_NUMBER] =
BQ20Z75_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535), SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
}; };
static enum power_supply_property bq20z75_properties[] = { static enum power_supply_property sbs_properties[] = {
POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_PRESENT,
@ -144,10 +138,10 @@ static enum power_supply_property bq20z75_properties[] = {
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
}; };
struct bq20z75_info { struct sbs_info {
struct i2c_client *client; struct i2c_client *client;
struct power_supply power_supply; struct power_supply power_supply;
struct bq20z75_platform_data *pdata; struct sbs_platform_data *pdata;
bool is_present; bool is_present;
bool gpio_detect; bool gpio_detect;
bool enable_detection; bool enable_detection;
@ -158,14 +152,14 @@ struct bq20z75_info {
int ignore_changes; int ignore_changes;
}; };
static int bq20z75_read_word_data(struct i2c_client *client, u8 address) static int sbs_read_word_data(struct i2c_client *client, u8 address)
{ {
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0; s32 ret = 0;
int retries = 1; int retries = 1;
if (bq20z75_device->pdata) if (chip->pdata)
retries = max(bq20z75_device->pdata->i2c_retry_count + 1, 1); retries = max(chip->pdata->i2c_retry_count + 1, 1);
while (retries > 0) { while (retries > 0) {
ret = i2c_smbus_read_word_data(client, address); ret = i2c_smbus_read_word_data(client, address);
@ -184,15 +178,15 @@ static int bq20z75_read_word_data(struct i2c_client *client, u8 address)
return le16_to_cpu(ret); return le16_to_cpu(ret);
} }
static int bq20z75_write_word_data(struct i2c_client *client, u8 address, static int sbs_write_word_data(struct i2c_client *client, u8 address,
u16 value) u16 value)
{ {
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0; s32 ret = 0;
int retries = 1; int retries = 1;
if (bq20z75_device->pdata) if (chip->pdata)
retries = max(bq20z75_device->pdata->i2c_retry_count + 1, 1); retries = max(chip->pdata->i2c_retry_count + 1, 1);
while (retries > 0) { while (retries > 0) {
ret = i2c_smbus_write_word_data(client, address, ret = i2c_smbus_write_word_data(client, address,
@ -212,44 +206,41 @@ static int bq20z75_write_word_data(struct i2c_client *client, u8 address,
return 0; return 0;
} }
static int bq20z75_get_battery_presence_and_health( static int sbs_get_battery_presence_and_health(
struct i2c_client *client, enum power_supply_property psp, struct i2c_client *client, enum power_supply_property psp,
union power_supply_propval *val) union power_supply_propval *val)
{ {
s32 ret; s32 ret;
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
if (psp == POWER_SUPPLY_PROP_PRESENT && if (psp == POWER_SUPPLY_PROP_PRESENT &&
bq20z75_device->gpio_detect) { chip->gpio_detect) {
ret = gpio_get_value( ret = gpio_get_value(chip->pdata->battery_detect);
bq20z75_device->pdata->battery_detect); if (ret == chip->pdata->battery_detect_present)
if (ret == bq20z75_device->pdata->battery_detect_present)
val->intval = 1; val->intval = 1;
else else
val->intval = 0; val->intval = 0;
bq20z75_device->is_present = val->intval; chip->is_present = val->intval;
return ret; return ret;
} }
/* Write to ManufacturerAccess with /* Write to ManufacturerAccess with
* ManufacturerAccess command and then * ManufacturerAccess command and then
* read the status */ * read the status */
ret = bq20z75_write_word_data(client, ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
bq20z75_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_STATUS);
MANUFACTURER_ACCESS_STATUS);
if (ret < 0) { if (ret < 0) {
if (psp == POWER_SUPPLY_PROP_PRESENT) if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 0; /* battery removed */ val->intval = 0; /* battery removed */
return ret; return ret;
} }
ret = bq20z75_read_word_data(client, ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
bq20z75_data[REG_MANUFACTURER_DATA].addr);
if (ret < 0) if (ret < 0)
return ret; return ret;
if (ret < bq20z75_data[REG_MANUFACTURER_DATA].min_value || if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
ret > bq20z75_data[REG_MANUFACTURER_DATA].max_value) { ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
val->intval = 0; val->intval = 0;
return 0; return 0;
} }
@ -279,24 +270,23 @@ static int bq20z75_get_battery_presence_and_health(
return 0; return 0;
} }
static int bq20z75_get_battery_property(struct i2c_client *client, static int sbs_get_battery_property(struct i2c_client *client,
int reg_offset, enum power_supply_property psp, int reg_offset, enum power_supply_property psp,
union power_supply_propval *val) union power_supply_propval *val)
{ {
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret; s32 ret;
ret = bq20z75_read_word_data(client, ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
bq20z75_data[reg_offset].addr);
if (ret < 0) if (ret < 0)
return ret; return ret;
/* returned values are 16 bit */ /* returned values are 16 bit */
if (bq20z75_data[reg_offset].min_value < 0) if (sbs_data[reg_offset].min_value < 0)
ret = (s16)ret; ret = (s16)ret;
if (ret >= bq20z75_data[reg_offset].min_value && if (ret >= sbs_data[reg_offset].min_value &&
ret <= bq20z75_data[reg_offset].max_value) { ret <= sbs_data[reg_offset].max_value) {
val->intval = ret; val->intval = ret;
if (psp != POWER_SUPPLY_PROP_STATUS) if (psp != POWER_SUPPLY_PROP_STATUS)
return 0; return 0;
@ -310,12 +300,12 @@ static int bq20z75_get_battery_property(struct i2c_client *client,
else else
val->intval = POWER_SUPPLY_STATUS_CHARGING; val->intval = POWER_SUPPLY_STATUS_CHARGING;
if (bq20z75_device->poll_time == 0) if (chip->poll_time == 0)
bq20z75_device->last_state = val->intval; chip->last_state = val->intval;
else if (bq20z75_device->last_state != val->intval) { else if (chip->last_state != val->intval) {
cancel_delayed_work_sync(&bq20z75_device->work); cancel_delayed_work_sync(&chip->work);
power_supply_changed(&bq20z75_device->power_supply); power_supply_changed(&chip->power_supply);
bq20z75_device->poll_time = 0; chip->poll_time = 0;
} }
} else { } else {
if (psp == POWER_SUPPLY_PROP_STATUS) if (psp == POWER_SUPPLY_PROP_STATUS)
@ -327,7 +317,7 @@ static int bq20z75_get_battery_property(struct i2c_client *client,
return 0; return 0;
} }
static void bq20z75_unit_adjustment(struct i2c_client *client, static void sbs_unit_adjustment(struct i2c_client *client,
enum power_supply_property psp, union power_supply_propval *val) enum power_supply_property psp, union power_supply_propval *val)
{ {
#define BASE_UNIT_CONVERSION 1000 #define BASE_UNIT_CONVERSION 1000
@ -338,7 +328,7 @@ static void bq20z75_unit_adjustment(struct i2c_client *client,
case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
/* bq20z75 provides energy in units of 10mWh. /* sbs provides energy in units of 10mWh.
* Convert to µWh * Convert to µWh
*/ */
val->intval *= BATTERY_MODE_CAP_MULT_WATT; val->intval *= BATTERY_MODE_CAP_MULT_WATT;
@ -354,7 +344,7 @@ static void bq20z75_unit_adjustment(struct i2c_client *client,
break; break;
case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TEMP:
/* bq20z75 provides battery temperature in 0.1K /* sbs provides battery temperature in 0.1K
* so convert it to 0.1°C * so convert it to 0.1°C
*/ */
val->intval -= TEMP_KELVIN_TO_CELSIUS; val->intval -= TEMP_KELVIN_TO_CELSIUS;
@ -362,7 +352,7 @@ static void bq20z75_unit_adjustment(struct i2c_client *client,
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
/* bq20z75 provides time to empty and time to full in minutes. /* sbs provides time to empty and time to full in minutes.
* Convert to seconds * Convert to seconds
*/ */
val->intval *= TIME_UNIT_CONVERSION; val->intval *= TIME_UNIT_CONVERSION;
@ -374,13 +364,12 @@ static void bq20z75_unit_adjustment(struct i2c_client *client,
} }
} }
static enum bq20z75_battery_mode static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
bq20z75_set_battery_mode(struct i2c_client *client, enum sbs_battery_mode mode)
enum bq20z75_battery_mode mode)
{ {
int ret, original_val; int ret, original_val;
original_val = bq20z75_read_word_data(client, BATTERY_MODE_OFFSET); original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
if (original_val < 0) if (original_val < 0)
return original_val; return original_val;
@ -392,68 +381,67 @@ bq20z75_set_battery_mode(struct i2c_client *client,
else else
ret = original_val | BATTERY_MODE_MASK; ret = original_val | BATTERY_MODE_MASK;
ret = bq20z75_write_word_data(client, BATTERY_MODE_OFFSET, ret); ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
if (ret < 0) if (ret < 0)
return ret; return ret;
return original_val & BATTERY_MODE_MASK; return original_val & BATTERY_MODE_MASK;
} }
static int bq20z75_get_battery_capacity(struct i2c_client *client, static int sbs_get_battery_capacity(struct i2c_client *client,
int reg_offset, enum power_supply_property psp, int reg_offset, enum power_supply_property psp,
union power_supply_propval *val) union power_supply_propval *val)
{ {
s32 ret; s32 ret;
enum bq20z75_battery_mode mode = BATTERY_MODE_WATTS; enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
if (power_supply_is_amp_property(psp)) if (power_supply_is_amp_property(psp))
mode = BATTERY_MODE_AMPS; mode = BATTERY_MODE_AMPS;
mode = bq20z75_set_battery_mode(client, mode); mode = sbs_set_battery_mode(client, mode);
if (mode < 0) if (mode < 0)
return mode; return mode;
ret = bq20z75_read_word_data(client, bq20z75_data[reg_offset].addr); ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0) if (ret < 0)
return ret; return ret;
if (psp == POWER_SUPPLY_PROP_CAPACITY) { if (psp == POWER_SUPPLY_PROP_CAPACITY) {
/* bq20z75 spec says that this can be >100 % /* sbs spec says that this can be >100 %
* even if max value is 100 % */ * even if max value is 100 % */
val->intval = min(ret, 100); val->intval = min(ret, 100);
} else } else
val->intval = ret; val->intval = ret;
ret = bq20z75_set_battery_mode(client, mode); ret = sbs_set_battery_mode(client, mode);
if (ret < 0) if (ret < 0)
return ret; return ret;
return 0; return 0;
} }
static char bq20z75_serial[5]; static char sbs_serial[5];
static int bq20z75_get_battery_serial_number(struct i2c_client *client, static int sbs_get_battery_serial_number(struct i2c_client *client,
union power_supply_propval *val) union power_supply_propval *val)
{ {
int ret; int ret;
ret = bq20z75_read_word_data(client, ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
bq20z75_data[REG_SERIAL_NUMBER].addr);
if (ret < 0) if (ret < 0)
return ret; return ret;
ret = sprintf(bq20z75_serial, "%04x", ret); ret = sprintf(sbs_serial, "%04x", ret);
val->strval = bq20z75_serial; val->strval = sbs_serial;
return 0; return 0;
} }
static int bq20z75_get_property_index(struct i2c_client *client, static int sbs_get_property_index(struct i2c_client *client,
enum power_supply_property psp) enum power_supply_property psp)
{ {
int count; int count;
for (count = 0; count < ARRAY_SIZE(bq20z75_data); count++) for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
if (psp == bq20z75_data[count].psp) if (psp == sbs_data[count].psp)
return count; return count;
dev_warn(&client->dev, dev_warn(&client->dev,
@ -462,19 +450,19 @@ static int bq20z75_get_property_index(struct i2c_client *client,
return -EINVAL; return -EINVAL;
} }
static int bq20z75_get_property(struct power_supply *psy, static int sbs_get_property(struct power_supply *psy,
enum power_supply_property psp, enum power_supply_property psp,
union power_supply_propval *val) union power_supply_propval *val)
{ {
int ret = 0; int ret = 0;
struct bq20z75_info *bq20z75_device = container_of(psy, struct sbs_info *chip = container_of(psy,
struct bq20z75_info, power_supply); struct sbs_info, power_supply);
struct i2c_client *client = bq20z75_device->client; struct i2c_client *client = chip->client;
switch (psp) { switch (psp) {
case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_HEALTH: case POWER_SUPPLY_PROP_HEALTH:
ret = bq20z75_get_battery_presence_and_health(client, psp, val); ret = sbs_get_battery_presence_and_health(client, psp, val);
if (psp == POWER_SUPPLY_PROP_PRESENT) if (psp == POWER_SUPPLY_PROP_PRESENT)
return 0; return 0;
break; break;
@ -490,15 +478,15 @@ static int bq20z75_get_property(struct power_supply *psy,
case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
case POWER_SUPPLY_PROP_CAPACITY: case POWER_SUPPLY_PROP_CAPACITY:
ret = bq20z75_get_property_index(client, psp); ret = sbs_get_property_index(client, psp);
if (ret < 0) if (ret < 0)
break; break;
ret = bq20z75_get_battery_capacity(client, ret, psp, val); ret = sbs_get_battery_capacity(client, ret, psp, val);
break; break;
case POWER_SUPPLY_PROP_SERIAL_NUMBER: case POWER_SUPPLY_PROP_SERIAL_NUMBER:
ret = bq20z75_get_battery_serial_number(client, val); ret = sbs_get_battery_serial_number(client, val);
break; break;
case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_STATUS:
@ -509,11 +497,11 @@ static int bq20z75_get_property(struct power_supply *psy,
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
ret = bq20z75_get_property_index(client, psp); ret = sbs_get_property_index(client, psp);
if (ret < 0) if (ret < 0)
break; break;
ret = bq20z75_get_battery_property(client, ret, psp, val); ret = sbs_get_battery_property(client, ret, psp, val);
break; break;
default: default:
@ -522,25 +510,25 @@ static int bq20z75_get_property(struct power_supply *psy,
return -EINVAL; return -EINVAL;
} }
if (!bq20z75_device->enable_detection) if (!chip->enable_detection)
goto done; goto done;
if (!bq20z75_device->gpio_detect && if (!chip->gpio_detect &&
bq20z75_device->is_present != (ret >= 0)) { chip->is_present != (ret >= 0)) {
bq20z75_device->is_present = (ret >= 0); chip->is_present = (ret >= 0);
power_supply_changed(&bq20z75_device->power_supply); power_supply_changed(&chip->power_supply);
} }
done: done:
if (!ret) { if (!ret) {
/* Convert units to match requirements for power supply class */ /* Convert units to match requirements for power supply class */
bq20z75_unit_adjustment(client, psp, val); sbs_unit_adjustment(client, psp, val);
} }
dev_dbg(&client->dev, dev_dbg(&client->dev,
"%s: property = %d, value = %x\n", __func__, psp, val->intval); "%s: property = %d, value = %x\n", __func__, psp, val->intval);
if (ret && bq20z75_device->is_present) if (ret && chip->is_present)
return ret; return ret;
/* battery not present, so return NODATA for properties */ /* battery not present, so return NODATA for properties */
@ -550,7 +538,7 @@ done:
return 0; return 0;
} }
static irqreturn_t bq20z75_irq(int irq, void *devid) static irqreturn_t sbs_irq(int irq, void *devid)
{ {
struct power_supply *battery = devid; struct power_supply *battery = devid;
@ -559,36 +547,35 @@ static irqreturn_t bq20z75_irq(int irq, void *devid)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static void bq20z75_external_power_changed(struct power_supply *psy) static void sbs_external_power_changed(struct power_supply *psy)
{ {
struct bq20z75_info *bq20z75_device; struct sbs_info *chip;
bq20z75_device = container_of(psy, struct bq20z75_info, power_supply); chip = container_of(psy, struct sbs_info, power_supply);
if (bq20z75_device->ignore_changes > 0) { if (chip->ignore_changes > 0) {
bq20z75_device->ignore_changes--; chip->ignore_changes--;
return; return;
} }
/* cancel outstanding work */ /* cancel outstanding work */
cancel_delayed_work_sync(&bq20z75_device->work); cancel_delayed_work_sync(&chip->work);
schedule_delayed_work(&bq20z75_device->work, HZ); schedule_delayed_work(&chip->work, HZ);
bq20z75_device->poll_time = bq20z75_device->pdata->poll_retry_count; chip->poll_time = chip->pdata->poll_retry_count;
} }
static void bq20z75_delayed_work(struct work_struct *work) static void sbs_delayed_work(struct work_struct *work)
{ {
struct bq20z75_info *bq20z75_device; struct sbs_info *chip;
s32 ret; s32 ret;
bq20z75_device = container_of(work, struct bq20z75_info, work.work); chip = container_of(work, struct sbs_info, work.work);
ret = bq20z75_read_word_data(bq20z75_device->client, ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
bq20z75_data[REG_STATUS].addr);
/* if the read failed, give up on this work */ /* if the read failed, give up on this work */
if (ret < 0) { if (ret < 0) {
bq20z75_device->poll_time = 0; chip->poll_time = 0;
return; return;
} }
@ -601,14 +588,14 @@ static void bq20z75_delayed_work(struct work_struct *work)
else else
ret = POWER_SUPPLY_STATUS_CHARGING; ret = POWER_SUPPLY_STATUS_CHARGING;
if (bq20z75_device->last_state != ret) { if (chip->last_state != ret) {
bq20z75_device->poll_time = 0; chip->poll_time = 0;
power_supply_changed(&bq20z75_device->power_supply); power_supply_changed(&chip->power_supply);
return; return;
} }
if (bq20z75_device->poll_time > 0) { if (chip->poll_time > 0) {
schedule_delayed_work(&bq20z75_device->work, HZ); schedule_delayed_work(&chip->work, HZ);
bq20z75_device->poll_time--; chip->poll_time--;
return; return;
} }
} }
@ -618,17 +605,18 @@ static void bq20z75_delayed_work(struct work_struct *work)
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_gpio.h> #include <linux/of_gpio.h>
static const struct of_device_id bq20z75_dt_ids[] = { static const struct of_device_id sbs_dt_ids[] = {
{ .compatible = "sbs,sbs-battery" },
{ .compatible = "ti,bq20z75" }, { .compatible = "ti,bq20z75" },
{ } { }
}; };
MODULE_DEVICE_TABLE(i2c, bq20z75_dt_ids); MODULE_DEVICE_TABLE(i2c, sbs_dt_ids);
static struct bq20z75_platform_data *bq20z75_of_populate_pdata( static struct sbs_platform_data *sbs_of_populate_pdata(
struct i2c_client *client) struct i2c_client *client)
{ {
struct device_node *of_node = client->dev.of_node; struct device_node *of_node = client->dev.of_node;
struct bq20z75_platform_data *pdata = client->dev.platform_data; struct sbs_platform_data *pdata = client->dev.platform_data;
enum of_gpio_flags gpio_flags; enum of_gpio_flags gpio_flags;
int rc; int rc;
u32 prop; u32 prop;
@ -644,31 +632,31 @@ static struct bq20z75_platform_data *bq20z75_of_populate_pdata(
/* first make sure at least one property is set, otherwise /* first make sure at least one property is set, otherwise
* it won't change behavior from running without pdata. * it won't change behavior from running without pdata.
*/ */
if (!of_get_property(of_node, "ti,i2c-retry-count", NULL) && if (!of_get_property(of_node, "sbs,i2c-retry-count", NULL) &&
!of_get_property(of_node, "ti,poll-retry-count", NULL) && !of_get_property(of_node, "sbs,poll-retry-count", NULL) &&
!of_get_property(of_node, "ti,battery-detect-gpios", NULL)) !of_get_property(of_node, "sbs,battery-detect-gpios", NULL))
goto of_out; goto of_out;
pdata = devm_kzalloc(&client->dev, sizeof(struct bq20z75_platform_data), pdata = devm_kzalloc(&client->dev, sizeof(struct sbs_platform_data),
GFP_KERNEL); GFP_KERNEL);
if (!pdata) if (!pdata)
goto of_out; goto of_out;
rc = of_property_read_u32(of_node, "ti,i2c-retry-count", &prop); rc = of_property_read_u32(of_node, "sbs,i2c-retry-count", &prop);
if (!rc) if (!rc)
pdata->i2c_retry_count = prop; pdata->i2c_retry_count = prop;
rc = of_property_read_u32(of_node, "ti,poll-retry-count", &prop); rc = of_property_read_u32(of_node, "sbs,poll-retry-count", &prop);
if (!rc) if (!rc)
pdata->poll_retry_count = prop; pdata->poll_retry_count = prop;
if (!of_get_property(of_node, "ti,battery-detect-gpios", NULL)) { if (!of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) {
pdata->battery_detect = -1; pdata->battery_detect = -1;
goto of_out; goto of_out;
} }
pdata->battery_detect = of_get_named_gpio_flags(of_node, pdata->battery_detect = of_get_named_gpio_flags(of_node,
"ti,battery-detect-gpios", 0, &gpio_flags); "sbs,battery-detect-gpios", 0, &gpio_flags);
if (gpio_flags & OF_GPIO_ACTIVE_LOW) if (gpio_flags & OF_GPIO_ACTIVE_LOW)
pdata->battery_detect_present = 0; pdata->battery_detect_present = 0;
@ -679,60 +667,57 @@ of_out:
return pdata; return pdata;
} }
#else #else
#define bq20z75_dt_ids NULL #define sbs_dt_ids NULL
static struct bq20z75_platform_data *bq20z75_of_populate_pdata( static struct sbs_platform_data *sbs_of_populate_pdata(
struct i2c_client *client) struct i2c_client *client)
{ {
return client->dev.platform_data; return client->dev.platform_data;
} }
#endif #endif
static int __devinit bq20z75_probe(struct i2c_client *client, static int __devinit sbs_probe(struct i2c_client *client,
const struct i2c_device_id *id) const struct i2c_device_id *id)
{ {
struct bq20z75_info *bq20z75_device; struct sbs_info *chip;
struct bq20z75_platform_data *pdata = client->dev.platform_data; struct sbs_platform_data *pdata = client->dev.platform_data;
int rc; int rc;
int irq; int irq;
bq20z75_device = kzalloc(sizeof(struct bq20z75_info), GFP_KERNEL); chip = kzalloc(sizeof(struct sbs_info), GFP_KERNEL);
if (!bq20z75_device) if (!chip)
return -ENOMEM; return -ENOMEM;
bq20z75_device->client = client; chip->client = client;
bq20z75_device->enable_detection = false; chip->enable_detection = false;
bq20z75_device->gpio_detect = false; chip->gpio_detect = false;
bq20z75_device->power_supply.name = "battery"; chip->power_supply.name = "battery";
bq20z75_device->power_supply.type = POWER_SUPPLY_TYPE_BATTERY; chip->power_supply.type = POWER_SUPPLY_TYPE_BATTERY;
bq20z75_device->power_supply.properties = bq20z75_properties; chip->power_supply.properties = sbs_properties;
bq20z75_device->power_supply.num_properties = chip->power_supply.num_properties = ARRAY_SIZE(sbs_properties);
ARRAY_SIZE(bq20z75_properties); chip->power_supply.get_property = sbs_get_property;
bq20z75_device->power_supply.get_property = bq20z75_get_property;
/* ignore first notification of external change, it is generated /* ignore first notification of external change, it is generated
* from the power_supply_register call back * from the power_supply_register call back
*/ */
bq20z75_device->ignore_changes = 1; chip->ignore_changes = 1;
bq20z75_device->last_state = POWER_SUPPLY_STATUS_UNKNOWN; chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
bq20z75_device->power_supply.external_power_changed = chip->power_supply.external_power_changed = sbs_external_power_changed;
bq20z75_external_power_changed;
pdata = bq20z75_of_populate_pdata(client); pdata = sbs_of_populate_pdata(client);
if (pdata) { if (pdata) {
bq20z75_device->gpio_detect = chip->gpio_detect = gpio_is_valid(pdata->battery_detect);
gpio_is_valid(pdata->battery_detect); chip->pdata = pdata;
bq20z75_device->pdata = pdata;
} }
i2c_set_clientdata(client, bq20z75_device); i2c_set_clientdata(client, chip);
if (!bq20z75_device->gpio_detect) if (!chip->gpio_detect)
goto skip_gpio; goto skip_gpio;
rc = gpio_request(pdata->battery_detect, dev_name(&client->dev)); rc = gpio_request(pdata->battery_detect, dev_name(&client->dev));
if (rc) { if (rc) {
dev_warn(&client->dev, "Failed to request gpio: %d\n", rc); dev_warn(&client->dev, "Failed to request gpio: %d\n", rc);
bq20z75_device->gpio_detect = false; chip->gpio_detect = false;
goto skip_gpio; goto skip_gpio;
} }
@ -740,7 +725,7 @@ static int __devinit bq20z75_probe(struct i2c_client *client,
if (rc) { if (rc) {
dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc); dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc);
gpio_free(pdata->battery_detect); gpio_free(pdata->battery_detect);
bq20z75_device->gpio_detect = false; chip->gpio_detect = false;
goto skip_gpio; goto skip_gpio;
} }
@ -748,25 +733,25 @@ static int __devinit bq20z75_probe(struct i2c_client *client,
if (irq <= 0) { if (irq <= 0) {
dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq); dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
gpio_free(pdata->battery_detect); gpio_free(pdata->battery_detect);
bq20z75_device->gpio_detect = false; chip->gpio_detect = false;
goto skip_gpio; goto skip_gpio;
} }
rc = request_irq(irq, bq20z75_irq, rc = request_irq(irq, sbs_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
dev_name(&client->dev), &bq20z75_device->power_supply); dev_name(&client->dev), &chip->power_supply);
if (rc) { if (rc) {
dev_warn(&client->dev, "Failed to request irq: %d\n", rc); dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
gpio_free(pdata->battery_detect); gpio_free(pdata->battery_detect);
bq20z75_device->gpio_detect = false; chip->gpio_detect = false;
goto skip_gpio; goto skip_gpio;
} }
bq20z75_device->irq = irq; chip->irq = irq;
skip_gpio: skip_gpio:
rc = power_supply_register(&client->dev, &bq20z75_device->power_supply); rc = power_supply_register(&client->dev, &chip->power_supply);
if (rc) { if (rc) {
dev_err(&client->dev, dev_err(&client->dev,
"%s: Failed to register power supply\n", __func__); "%s: Failed to register power supply\n", __func__);
@ -776,96 +761,96 @@ skip_gpio:
dev_info(&client->dev, dev_info(&client->dev,
"%s: battery gas gauge device registered\n", client->name); "%s: battery gas gauge device registered\n", client->name);
INIT_DELAYED_WORK(&bq20z75_device->work, bq20z75_delayed_work); INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
bq20z75_device->enable_detection = true; chip->enable_detection = true;
return 0; return 0;
exit_psupply: exit_psupply:
if (bq20z75_device->irq) if (chip->irq)
free_irq(bq20z75_device->irq, &bq20z75_device->power_supply); free_irq(chip->irq, &chip->power_supply);
if (bq20z75_device->gpio_detect) if (chip->gpio_detect)
gpio_free(pdata->battery_detect); gpio_free(pdata->battery_detect);
kfree(bq20z75_device); kfree(chip);
return rc; return rc;
} }
static int __devexit bq20z75_remove(struct i2c_client *client) static int __devexit sbs_remove(struct i2c_client *client)
{ {
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
if (bq20z75_device->irq) if (chip->irq)
free_irq(bq20z75_device->irq, &bq20z75_device->power_supply); free_irq(chip->irq, &chip->power_supply);
if (bq20z75_device->gpio_detect) if (chip->gpio_detect)
gpio_free(bq20z75_device->pdata->battery_detect); gpio_free(chip->pdata->battery_detect);
power_supply_unregister(&bq20z75_device->power_supply); power_supply_unregister(&chip->power_supply);
cancel_delayed_work_sync(&bq20z75_device->work); cancel_delayed_work_sync(&chip->work);
kfree(bq20z75_device); kfree(chip);
bq20z75_device = NULL; chip = NULL;
return 0; return 0;
} }
#if defined CONFIG_PM #if defined CONFIG_PM
static int bq20z75_suspend(struct i2c_client *client, static int sbs_suspend(struct i2c_client *client,
pm_message_t state) pm_message_t state)
{ {
struct bq20z75_info *bq20z75_device = i2c_get_clientdata(client); struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret; s32 ret;
if (bq20z75_device->poll_time > 0) if (chip->poll_time > 0)
cancel_delayed_work_sync(&bq20z75_device->work); cancel_delayed_work_sync(&chip->work);
/* write to manufacturer access with sleep command */ /* write to manufacturer access with sleep command */
ret = bq20z75_write_word_data(client, ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
bq20z75_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_SLEEP); MANUFACTURER_ACCESS_SLEEP);
if (bq20z75_device->is_present && ret < 0) if (chip->is_present && ret < 0)
return ret; return ret;
return 0; return 0;
} }
#else #else
#define bq20z75_suspend NULL #define sbs_suspend NULL
#endif #endif
/* any smbus transaction will wake up bq20z75 */ /* any smbus transaction will wake up sbs */
#define bq20z75_resume NULL #define sbs_resume NULL
static const struct i2c_device_id bq20z75_id[] = { static const struct i2c_device_id sbs_id[] = {
{ "bq20z75", 0 }, { "bq20z75", 0 },
{ "sbs-battery", 1 },
{} {}
}; };
MODULE_DEVICE_TABLE(i2c, bq20z75_id); MODULE_DEVICE_TABLE(i2c, sbs_id);
static struct i2c_driver bq20z75_battery_driver = { static struct i2c_driver sbs_battery_driver = {
.probe = bq20z75_probe, .probe = sbs_probe,
.remove = __devexit_p(bq20z75_remove), .remove = __devexit_p(sbs_remove),
.suspend = bq20z75_suspend, .suspend = sbs_suspend,
.resume = bq20z75_resume, .resume = sbs_resume,
.id_table = bq20z75_id, .id_table = sbs_id,
.driver = { .driver = {
.name = "bq20z75-battery", .name = "sbs-battery",
.of_match_table = bq20z75_dt_ids, .of_match_table = sbs_dt_ids,
}, },
}; };
static int __init bq20z75_battery_init(void) static int __init sbs_battery_init(void)
{ {
return i2c_add_driver(&bq20z75_battery_driver); return i2c_add_driver(&sbs_battery_driver);
} }
module_init(bq20z75_battery_init); module_init(sbs_battery_init);
static void __exit bq20z75_battery_exit(void) static void __exit sbs_battery_exit(void)
{ {
i2c_del_driver(&bq20z75_battery_driver); i2c_del_driver(&sbs_battery_driver);
} }
module_exit(bq20z75_battery_exit); module_exit(sbs_battery_exit);
MODULE_DESCRIPTION("BQ20z75 battery monitor driver"); MODULE_DESCRIPTION("SBS battery monitor driver");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -1,5 +1,5 @@
/* /*
* Gas Gauge driver for TI's BQ20Z75 * Gas Gauge driver for SBS Compliant Gas Gauges
* *
* Copyright (c) 2010, NVIDIA Corporation. * Copyright (c) 2010, NVIDIA Corporation.
* *
@ -18,21 +18,21 @@
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/ */
#ifndef __LINUX_POWER_BQ20Z75_H_ #ifndef __LINUX_POWER_SBS_BATTERY_H_
#define __LINUX_POWER_BQ20Z75_H_ #define __LINUX_POWER_SBS_BATTERY_H_
#include <linux/power_supply.h> #include <linux/power_supply.h>
#include <linux/types.h> #include <linux/types.h>
/** /**
* struct bq20z75_platform_data - platform data for bq20z75 devices * struct sbs_platform_data - platform data for sbs devices
* @battery_detect: GPIO which is used to detect battery presence * @battery_detect: GPIO which is used to detect battery presence
* @battery_detect_present: gpio state when battery is present (0 / 1) * @battery_detect_present: gpio state when battery is present (0 / 1)
* @i2c_retry_count: # of times to retry on i2c IO failure * @i2c_retry_count: # of times to retry on i2c IO failure
* @poll_retry_count: # of times to retry looking for new status after * @poll_retry_count: # of times to retry looking for new status after
* external change notification * external change notification
*/ */
struct bq20z75_platform_data { struct sbs_platform_data {
int battery_detect; int battery_detect;
int battery_detect_present; int battery_detect_present;
int i2c_retry_count; int i2c_retry_count;