dect
/
linux-2.6
Archived
13
0
Fork 0

msm: timer: Remove msm_clocks[] and simplify code

We can simplify the timer code now that we only use the DGT for
the clocksource and the GPT for the clockevent. Get rid of the
msm_clocks[] array and propagate the changes throughout the code.
This reduces the lines of code in this file and improves
readability.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: David Brown <davidb@codeaurora.org>
This commit is contained in:
Stephen Boyd 2011-11-08 10:34:07 -08:00 committed by David Brown
parent a850c3f644
commit 2a00c1068b
1 changed files with 76 additions and 145 deletions

View File

@ -40,8 +40,6 @@
#define GPT_HZ 32768 #define GPT_HZ 32768
#define MSM_GLOBAL_TIMER MSM_CLOCK_GPT
/* TODO: Remove these ifdefs */ /* TODO: Remove these ifdefs */
#if defined(CONFIG_ARCH_QSD8X50) #if defined(CONFIG_ARCH_QSD8X50)
#define DGT_HZ (19200000 / 4) /* 19.2 MHz / 4 by default */ #define DGT_HZ (19200000 / 4) /* 19.2 MHz / 4 by default */
@ -57,31 +55,7 @@
#define MSM_DGT_SHIFT (5) #define MSM_DGT_SHIFT (5)
#endif #endif
struct msm_clock { static void __iomem *event_base;
struct clock_event_device clockevent;
struct clocksource clocksource;
unsigned int irq;
void __iomem *regbase;
uint32_t freq;
uint32_t shift;
void __iomem *global_counter;
void __iomem *local_counter;
union {
struct clock_event_device *evt;
struct clock_event_device __percpu **percpu_evt;
};
};
enum {
MSM_CLOCK_GPT,
MSM_CLOCK_DGT,
NR_TIMERS,
};
static struct msm_clock msm_clocks[];
static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt);
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{ {
@ -90,59 +64,31 @@ static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
return IRQ_HANDLED; return IRQ_HANDLED;
/* Stop the timer tick */ /* Stop the timer tick */
if (evt->mode == CLOCK_EVT_MODE_ONESHOT) { if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
struct msm_clock *clock = clockevent_to_clock(evt); u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
u32 ctrl = readl_relaxed(clock->regbase + TIMER_ENABLE);
ctrl &= ~TIMER_ENABLE_EN; ctrl &= ~TIMER_ENABLE_EN;
writel_relaxed(ctrl, clock->regbase + TIMER_ENABLE); writel_relaxed(ctrl, event_base + TIMER_ENABLE);
} }
evt->event_handler(evt); evt->event_handler(evt);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static cycle_t msm_read_timer_count(struct clocksource *cs)
{
struct msm_clock *clk = container_of(cs, struct msm_clock, clocksource);
/*
* Shift timer count down by a constant due to unreliable lower bits
* on some targets.
*/
return readl(clk->global_counter) >> clk->shift;
}
static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt)
{
#ifdef CONFIG_SMP
int i;
for (i = 0; i < NR_TIMERS; i++)
if (evt == &(msm_clocks[i].clockevent))
return &msm_clocks[i];
return &msm_clocks[MSM_GLOBAL_TIMER];
#else
return container_of(evt, struct msm_clock, clockevent);
#endif
}
static int msm_timer_set_next_event(unsigned long cycles, static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt) struct clock_event_device *evt)
{ {
struct msm_clock *clock = clockevent_to_clock(evt); u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
u32 match = cycles << clock->shift;
u32 ctrl = readl_relaxed(clock->regbase + TIMER_ENABLE);
writel_relaxed(0, clock->regbase + TIMER_CLEAR); writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(match, clock->regbase + TIMER_MATCH_VAL); writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
writel_relaxed(ctrl | TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE); writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
return 0; return 0;
} }
static void msm_timer_set_mode(enum clock_event_mode mode, static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt) struct clock_event_device *evt)
{ {
struct msm_clock *clock = clockevent_to_clock(evt);
u32 ctrl; u32 ctrl;
ctrl = readl_relaxed(clock->regbase + TIMER_ENABLE); ctrl = readl_relaxed(event_base + TIMER_ENABLE);
ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN); ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
switch (mode) { switch (mode) {
@ -156,59 +102,61 @@ static void msm_timer_set_mode(enum clock_event_mode mode,
case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_SHUTDOWN:
break; break;
} }
writel_relaxed(ctrl, clock->regbase + TIMER_ENABLE); writel_relaxed(ctrl, event_base + TIMER_ENABLE);
} }
static struct msm_clock msm_clocks[] = { static struct clock_event_device msm_clockevent = {
[MSM_CLOCK_GPT] = { .name = "gp_timer",
.clockevent = { .features = CLOCK_EVT_FEAT_ONESHOT,
.name = "gp_timer", .shift = 32,
.features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200,
.shift = 32, .set_next_event = msm_timer_set_next_event,
.rating = 200, .set_mode = msm_timer_set_mode,
.set_next_event = msm_timer_set_next_event, };
.set_mode = msm_timer_set_mode,
}, static union {
.irq = INT_GP_TIMER_EXP, struct clock_event_device *evt;
.freq = GPT_HZ, struct clock_event_device __percpu **percpu_evt;
}, } msm_evt;
[MSM_CLOCK_DGT] = {
.clocksource = { static void __iomem *source_base;
.name = "dg_timer",
.rating = 300, static cycle_t msm_read_timer_count(struct clocksource *cs)
.read = msm_read_timer_count, {
.mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)), /*
.flags = CLOCK_SOURCE_IS_CONTINUOUS, * Shift timer count down by a constant due to unreliable lower bits
}, * on some targets.
.freq = DGT_HZ >> MSM_DGT_SHIFT, */
.shift = MSM_DGT_SHIFT, return readl_relaxed(source_base + TIMER_COUNT_VAL) >> MSM_DGT_SHIFT;
} }
static struct clocksource msm_clocksource = {
.name = "dg_timer",
.rating = 300,
.read = msm_read_timer_count,
.mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
}; };
static void __init msm_timer_init(void) static void __init msm_timer_init(void)
{ {
struct msm_clock *clock; struct clock_event_device *ce = &msm_clockevent;
struct clock_event_device *ce = &msm_clocks[MSM_CLOCK_GPT].clockevent; struct clocksource *cs = &msm_clocksource;
struct clocksource *cs = &msm_clocks[MSM_CLOCK_DGT].clocksource;
int res; int res;
int global_offset = 0;
if (cpu_is_msm7x01()) { if (cpu_is_msm7x01()) {
msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE; event_base = MSM_CSR_BASE;
msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x10; source_base = MSM_CSR_BASE + 0x10;
} else if (cpu_is_msm7x30()) { } else if (cpu_is_msm7x30()) {
msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE + 0x04; event_base = MSM_CSR_BASE + 0x04;
msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x24; source_base = MSM_CSR_BASE + 0x24;
} else if (cpu_is_qsd8x50()) { } else if (cpu_is_qsd8x50()) {
msm_clocks[MSM_CLOCK_GPT].regbase = MSM_CSR_BASE; event_base = MSM_CSR_BASE;
msm_clocks[MSM_CLOCK_DGT].regbase = MSM_CSR_BASE + 0x10; source_base = MSM_CSR_BASE + 0x10;
} else if (cpu_is_msm8x60() || cpu_is_msm8960()) { } else if (cpu_is_msm8x60() || cpu_is_msm8960()) {
msm_clocks[MSM_CLOCK_GPT].regbase = MSM_TMR_BASE + 0x04; event_base = MSM_TMR_BASE + 0x04;
msm_clocks[MSM_CLOCK_DGT].regbase = MSM_TMR_BASE + 0x24; /* Use CPU0's timer as the global clock source. */
source_base = MSM_TMR0_BASE + 0x24;
/* Use CPU0's timer as the global timer. */
global_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
} else } else
BUG(); BUG();
@ -216,88 +164,71 @@ static void __init msm_timer_init(void)
writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL); writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
#endif #endif
clock = &msm_clocks[MSM_CLOCK_GPT]; writel_relaxed(0, event_base + TIMER_ENABLE);
clock->local_counter = clock->regbase + TIMER_COUNT_VAL; writel_relaxed(0, event_base + TIMER_CLEAR);
writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
writel_relaxed(0, clock->regbase + TIMER_ENABLE); ce->mult = div_sc(GPT_HZ, NSEC_PER_SEC, ce->shift);
writel_relaxed(0, clock->regbase + TIMER_CLEAR);
writel_relaxed(~0, clock->regbase + TIMER_MATCH_VAL);
ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
/* /*
* allow at least 10 seconds to notice that the timer * allow at least 10 seconds to notice that the timer
* wrapped * wrapped
*/ */
ce->max_delta_ns = ce->max_delta_ns = clockevent_delta2ns(0xf0000000, ce);
clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
/* 4 gets rounded down to 3 */ /* 4 gets rounded down to 3 */
ce->min_delta_ns = clockevent_delta2ns(4, ce); ce->min_delta_ns = clockevent_delta2ns(4, ce);
ce->cpumask = cpumask_of(0); ce->cpumask = cpumask_of(0);
ce->irq = clock->irq; ce->irq = INT_GP_TIMER_EXP;
if (cpu_is_msm8x60() || cpu_is_msm8960()) { if (cpu_is_msm8x60() || cpu_is_msm8960()) {
clock->percpu_evt = alloc_percpu(struct clock_event_device *); msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
if (!clock->percpu_evt) { if (!msm_evt.percpu_evt) {
pr_err("memory allocation failed for %s\n", ce->name); pr_err("memory allocation failed for %s\n", ce->name);
goto err; goto err;
} }
*__this_cpu_ptr(msm_evt.percpu_evt) = ce;
*__this_cpu_ptr(clock->percpu_evt) = ce;
res = request_percpu_irq(ce->irq, msm_timer_interrupt, res = request_percpu_irq(ce->irq, msm_timer_interrupt,
ce->name, clock->percpu_evt); ce->name, msm_evt.percpu_evt);
if (!res) if (!res)
enable_percpu_irq(ce->irq, 0); enable_percpu_irq(ce->irq, 0);
} else { } else {
clock->evt = ce; msm_evt.evt = ce;
res = request_irq(ce->irq, msm_timer_interrupt, res = request_irq(ce->irq, msm_timer_interrupt,
IRQF_TIMER | IRQF_NOBALANCING | IRQF_TIMER | IRQF_NOBALANCING |
IRQF_TRIGGER_RISING, ce->name, &clock->evt); IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
} }
if (res) if (res)
pr_err("request_irq failed for %s\n", ce->name); pr_err("request_irq failed for %s\n", ce->name);
clockevents_register_device(ce); clockevents_register_device(ce);
err: err:
clock = &msm_clocks[MSM_CLOCK_DGT]; writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
clock->local_counter = clock->regbase + TIMER_COUNT_VAL; res = clocksource_register_hz(cs, DGT_HZ >> MSM_DGT_SHIFT);
clock->global_counter = clock->local_counter + global_offset;
writel_relaxed(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
res = clocksource_register_hz(cs, clock->freq);
if (res) if (res)
pr_err("clocksource_register failed for %s\n", cs->name); pr_err("clocksource_register failed\n");
} }
#ifdef CONFIG_LOCAL_TIMERS #ifdef CONFIG_LOCAL_TIMERS
int __cpuinit local_timer_setup(struct clock_event_device *evt) int __cpuinit local_timer_setup(struct clock_event_device *evt)
{ {
static bool local_timer_inited;
struct msm_clock *clock = &msm_clocks[MSM_GLOBAL_TIMER];
/* Use existing clock_event for cpu 0 */ /* Use existing clock_event for cpu 0 */
if (!smp_processor_id()) if (!smp_processor_id())
return 0; return 0;
if (!local_timer_inited) { writel_relaxed(0, event_base + TIMER_ENABLE);
writel(0, clock->regbase + TIMER_ENABLE); writel_relaxed(0, event_base + TIMER_CLEAR);
writel(0, clock->regbase + TIMER_CLEAR); writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
writel(~0, clock->regbase + TIMER_MATCH_VAL); evt->irq = msm_clockevent.irq;
local_timer_inited = true;
}
evt->irq = clock->irq;
evt->name = "local_timer"; evt->name = "local_timer";
evt->features = CLOCK_EVT_FEAT_ONESHOT; evt->features = msm_clockevent.features;
evt->rating = clock->clockevent.rating; evt->rating = msm_clockevent.rating;
evt->set_mode = msm_timer_set_mode; evt->set_mode = msm_timer_set_mode;
evt->set_next_event = msm_timer_set_next_event; evt->set_next_event = msm_timer_set_next_event;
evt->shift = clock->clockevent.shift; evt->shift = msm_clockevent.shift;
evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift); evt->mult = div_sc(GPT_HZ, NSEC_PER_SEC, evt->shift);
evt->max_delta_ns = evt->max_delta_ns = clockevent_delta2ns(0xf0000000, evt);
clockevent_delta2ns(0xf0000000 >> clock->shift, evt);
evt->min_delta_ns = clockevent_delta2ns(4, evt); evt->min_delta_ns = clockevent_delta2ns(4, evt);
*__this_cpu_ptr(clock->percpu_evt) = evt; *__this_cpu_ptr(msm_evt.percpu_evt) = evt;
enable_percpu_irq(evt->irq, 0); enable_percpu_irq(evt->irq, 0);
clockevents_register_device(evt); clockevents_register_device(evt);
return 0; return 0;
} }